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A Need for Security

Society and economies rely on computer
networks for communication, finance, 
energy distribution, transportation...

Attacks threaten economical and physical
integrity of people and organizations.

Interconnected systems can be attacked
anonymously and from a safe distance.

Networked computers need to be secure.
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Problems

Many flaws found in designs of security-critical
systems, sometimes years after publication
or use.

Spectacular Example (1997):

NSA hacker team breaks into U.S. 
Department of Defense computers and the
U.S.electric power grid system. Simulates
power outages and 911 emergency
telephone overloads in Washington, D.C..
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Causes I

• Designing secure systems correctly is
difficult. 
Even experts may fail:

– Needham-Schroeder protocol (1978)

– attacks found 1981 (Denning, Sacco), 
1995 (Lowe)

• Designers often lack background in security.

• Security as an afterthought.
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Causes II

„Blind“ use of mechanisms: 
• Security often compromised

by circumventing (rather than
breaking) them.

• Assumptions on system context, physical
environment.

„Those who think that their problem can be solved
by simply applying cryptography don`t understand
cryptography and don`t understand their problem“ 
(R. Needham).
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Causes III

„Penetrate-and-patch“ (aka „banana
strategy): 

• insecure

• disruptive
� loose customer trust.
Goal: reduce number of

flaws arising this way.
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Formal Methods
Lots of very successful research using logic-based

methods to analyze systems for security flaws. Often
based on specialized, „academic“ notations and 
concerned with crypto protocols or information flow:

LaPadula, Bell 73; Goguen, Meseguer 82; Millen, 
Clark, Freedman 87; Burrows, Abadi, Needham 89; 
Kemmerer 89; Gong, Needham, Yahalom 90; 
Meadows 91; McLean 94; Focardi, Gorrieri 94; 
Syverson, van Oorschot 94; Roscoe, Woodcock, 
Wulf 94; Lowe 96; Schneider 96; Abadi, Gordon 97; 
Mitchell, Mitchell, Stern 97; Paulson 98, …
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How used in Security Engineering ?

Saltzer, Schröder (1975): Security Design Principles.
Gasser (1988): Formal techniques, not integrated with

system development.
Abrams, Jajodia, Podell (1995): Collection of unlinked

approaches.
Abadi, Needham; Anderson, Needham (1996): Design 

rules for security protocols.
Anderson (2001): Use formal techniques for protocols.
Viega, McGraw (2002): How to avoid buffer-overflows.
Seemingly no encompassing, integrated

formally based approach.
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Some Open Problems

Secure systems out of (in)secure mechanisms.
Security as pervasive property: vs. dependability, 

program analysis, formal methods, software
engineering, programming languages, compilers, 
computer architectures, operating systems, reactive
systems, …, …

Problem: no integration / coherence.
How to put all this stuff together in a water-tight

way within security engineering approach ?
Necessary for security (attacks on boundaries

between views / aspects / levels …).
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Towards Use in Practice

Increase security with bounded
investment in time, costs
(crucial for industry). Idea: 

• Extract models from artefacts arising in industrial
development and use of security-critical systems
(UML models, source code, configuration data).

• Tool-supported theoretically sound efficient
automated security analysis.

� Model-based Security Engineering

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 11

Model-based Security Engineering

Combined strategy:
• Analyze models automatically

against security requirements.
• Generate code (or tests) from

models automatically.
• Generate models from code to 

get changes (or analyze
legacy systems).

Goal: model-based = source-
based.

Idea notation-independent. Here: use UML.

Requirements

Models

Requirements

Models

CodeCode

Analyze

Codegen.
Testgen.

Modelgen./
Reverse E.
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Why UML ?

Seemingly de-facto standard in industrial 
modeling. Large number of developers 
trained in UML.

Relatively precisely defined (given the 
user community).

Many tools in development (also for code-
generation, testing, reverse engineering, 
simulation, transformation).
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UMLsec: Goals

Extension for secure systems development.
• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

secure engineering as checklist
• make available to developers not specialized

in secure systems
• consider security requirements from early

design phases, in system context
• make certification cost-effective
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UMLsec: How

Recurring security requirements, adversary
scenarios, concepts offered as stereotypes 
with tags on component-level.

Use associated constraints to verify
specifications using automated theorem
provers and indicate possible weaknesses.

Ensures that UML specification provides
desired level of security requirements.

Link to code via round-trip engineering etc.
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Example: 
Biometric 
authentication 
system in 
industrial 
development.
Secure ?
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This tutorial

Background knowledge on using UML for 
model-based security engineering.

• UMLsec extension

• Tools.

• Industrial applications (biometry, security
protocols, electronic purses, …).

• Attacks against them.

Research-oriented (not user-oriented).
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Requirements on UML extension for security I

Provide basic security requirements such 
as secrecy, integrity, authenticity.

Allow considering different threat scenarios
depending on adversary strengths.

Allow including important security concepts
(e.g. tamper-resistant hardware).

Allow incorporating security mechanisms
(e.g. access control).
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Requirements on UML extension for security II

Provide security primitives (e.g. 
(a)symmetric encryption).

Allow considering underlying physical security.
Allow addressing security management

(e.g. secure workflow).

Also: Include domain-specific security
knowledge (Java, smart cards, CORBA, ...).
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Requirements with use case diagrams

Capture security requirements
in use case diagrams.

Constraint: need to appear in 
corresponding activity diagram.

Sales application

Business

sells goods

Customer

buys goods

«fair exchange»
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� fair exchange�

Ensures generic fair exchange condition.

Constraint: after a {start} state in activity
diagram is reached, eventually reach
{stop} state.

(Cannot be ensured for systems that an 
attacker can stop completely.)
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Example � fair exchange�

Customer buys a good 
from a business.

Fair exchange means: 
after payment, 
customer is
eventually either
delivered good or
able to reclaim
payment.

Reclaim

Deliver

«fair exchange»Purchase

Request good

BusinessCustomer

Wait until
delivery due

Pay

undelivered

Pick up

{start={Pay}} {stop={Reclaim,Pick up}}

delivered
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� Internet� , � encrypted� , …

Kinds of communication links resp. system
nodes. 

For adversary type A, stereotype s, have set
Threats (s)

�

{delete, read, insert, access} 
of actions that adversaries are capable of.

Default attacker:
Internet
encrypted

LAN
smart card

{delete, read, insert}
{delete}
�

�

Threats ()Stereotype

A

default
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� secure links�

Ensures that physical layer meets security
requirements on communication.

Constraint: for each dependency d with stereotype 
s � {� secrecy� , � integrity� } between
components on nodes n � m, have a 
communication link l between
n and m with stereotype t such that

• if s = � secrecy� : have read � Threats (t).

• if s = � integrity� : have insert � Threats (t).
A

A
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Example � secure links�

Given default adversary type, is � secure links�
provided ?

«secure links»

server machineclient machine
get_password

browser
client apps

access control
web server

Remote access

«call»

«Internet»

«secrecy»
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Example � secure links�

Given default adversary type, is � secure links�
provided ?

«secure links»

server machineclient machine
get_password

browser
client apps

access control
web server

Remote access

«call»

«Internet»

«secrecy»?
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� secure dependency�

Ensure that � call� and � send�
dependencies between components respect
security requirements on communicated data
given by tags {secrecy}, {integrity}.

Constraint: for � call� or � send� dependency
from C to D (and similarly for {integrity}):

• Msg in D is {secrecy} in C if and only if also in D.

• If msg in D is {secrecy} in C, dependency
stereotyped � secrecy� .
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Example � secure dependency�

� secure dependency� �provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}
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Example � secure dependency�

� secure dependency� �provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}?
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� no down–flow�

Enforce secure information flow.

Constraint:

Value of any data specified in {secrecy}
may influence only the values of data
also specified in {secrecy}. 

Formalize by referring to formal 
behavioural semantics.
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Example � no down-flow�

� no down–flow� provided ?
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Example � no down-flow�

� no down–flow� provided ??
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� data security�

Security requirements of data marked
� critical� enforced against threat
scenario from deployment diagram.

Constraints:

Secrecy of {secrecy} data preserved.

Integrity of {integrity} data preserved.
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Example � data security�

Variant of TLS 
(INFOCOM`99).

� data security� �
against default
adversary
provided ?
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Example � data security�

Variant of TLS 
(INFOCOM`99).

Violates {secrecy}
of s
against default
adversary.
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� guarded access�

Ensures that in Java, � guarded� classes
only accessed through {guard} classes.

Constraints:

• References of � guarded� objects
remain secret. 

• Each � guarded� class has {guard}
class.
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Example � guarded access�

Provides � guarded access� :
Access to MicSi protected by MicGd.



2

7

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 37

Does UMLsec meet requirements?

Security requirements: � secrecy� ,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example � smart card� .

Security mechanisms: E.g. � guarded access� .

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.
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UMLsec as Integrating Formal Framework

Have formalizations of major security
requirements in one integrated notation.

Want to relate / combine requirements; get
modularity / composability, hierarchical
decomposition, refinement, … :

For example:

• If system satisfies � secure links� and 
subsystems satisfy � data security� then
system satisfies � data security� .
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Summary Lecture 1

Defined UMLsec extension.
Goal: express security requirements within an 

industrially used specification notation in a 
way which allows automated verification.

Aims: 
• model-based security engineering, integrated

with source-code, configuration data
• formal framework to relate different security

aspects.
Coming up in Lecture 2: formal security analysis
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Security Analysis

Specify system parts as processes following 
Dolev, Yao 1982: In addition to expected 
participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public 
network,

• injects messages that it can produce into the 
public network.
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Security Analysis

Model classes of adversaries.

May attack different parts of the system
according to threat scenarios.

Example: insider attacker may intercept
communication links in LAN.

To evaluate security of specification, 
verify against adversary model.
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Security Analysis II

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.



2

8

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 43

Cryptographic Expressions
Exp: quotient of term algebra generated from 

sets Data, Keys, Var of symbols using
• _::_ (concatenation), head(_), tail(_),
• (_)-1 (inverse keys)
• { _ }_ (encryption)
• Dec_( ) (decryption)
• Sign_( ) (signing)
• Ext_( ) (extracting from signature)

under equations …
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Cryptographic Expressions

• " E,K.DecK
-1({E}K)=E

• " E,K.ExtK(SignK
-1(E))=E

• " E1,E2.head(E1::E2)=E1

• " E1,E2.tail(E1::E2)=E2

• Associativity for ::.
Write E1::E2::E3 for E1::(E2::E3) and 

fst(E1::E2) for head(E1::E2) etc.
Can include further crypto-specific primitives 

and laws (XOR, …).
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Adversary Model

memory
logic

A B

ad
ve

rs
ar

y

* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives
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Adversary: Simulation

A BAdversary

m(x)

Adversary
knowledge:

k-1, y,

m(x)

x

return({ z} k)

[argb,1,1 = x]

{ z} k, z

return({ y::x} z)
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Abstract adversary

Specify set of  initial knowledge of an 
adversary of type A. Let            be the 
Exp-subalgebra generated by        and 
the expressions received after n+1st 
iteration of the protocol.

Definition (Dolev, Yao 1982). 
S keeps secrecy of M against attackers 
of type A if there is no n with M .Î
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Encryption vs. Secrecy

A B
{m}K::K A B

{m}K

Against eavesdropper:

• Secrecy of m, K not preserved.
• Secrecy of m, K preserved.
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Hybrid Crypto vs. Secrecy

A B
{K}PubB

{m}K

• Secrecy of m not preserved against an 
attacker who can delete and insert 
messages.

• Secrecy of m preserved against an attacker 
who can eavesdrop, but not alter the link.
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Security analysis in first-order logic

Idea: approximate set of possible data
values flowing through system from
above.

Predicate knows(E) meaning that the 
adversary may get to know E during 
the execution of the protocol.

For any secret s, check whether can 
derive knows(s) using automated 
theorem prover.
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First-order logic: basic rules

For initial adversary knowledge (K0): Define 
knows(E) for any E initially known to the 
adversary (protocol-specific, e.g. KA , KA

-1).
Define above equations.
For evolving knowledge (Kn) define
" E1,E2.(knows(E1)Ù knows(E2) �

knows(E1::E2) Ù knows({E1}E2) Ù
knows(DecE2(E1)) Ù knows(SignE2 (E1)) Ù
knows(ExtE2 (E1)))

" E.(knows(E) �

knows(head(E)) Ù knows(tail(E)))
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Given Sequence Diagram …
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… and Physical Layer Model …

Deployment diagram.
Derived adversary model: read, delete, 

insert data.
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… Translate to 1st Order Logic

Connection (or statechart transition)
TR1=(in(msg_in),cond(msg_in),out(msg_out))
followed by TR2 gives predicate PRED(TR1)=

� msg_in. [knows(msg_in)� cond(msg_in)
� �knows(msg_out)

� PRED(TR2)]
(Assume: order enforced (!).)
Can include senders, receivers in messages. 
Abstraction: find all attacks, may have false

positives.
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Example: Translation to Logic

knows(N)� knows(KC)� knows(SignKC-1(C::KC))
� � init1,init2,init3.[knows(init1)� knows(init2)�

knows(init3) � snd(Extinit2(init3)) = init2
� knows({SignKS-1(…)}…)� […] � […� ...]…]
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Execute in System Context

Activity diagram.
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Formulate Data Security Requirements

Class diagram.
Gives conjecture: knows(s) derivable ?
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Example: Proposed Variant of TLS (SSL)

Apostolopoulos, 
Peris, Saha; 
IEEE Infocom
1999.

Goal: send secret 
protected by 
session key 
using fewer 
server resources.
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TLS Variant in TPTP notation I
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TLS Variant in TPTP notation II
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Surprise …
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… which means:

Can derive knows(s ) (!).

That is: Protocol does not preserve 
secrecy of s against adversaries.

� Completely insecure wrt stated goals.

But why ?

Could look at proof tree.

Or: use prolog-based attack generator.
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Man-in-the-Middle Attack

?
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The fix

e-Setheo: knows(s) not derivable. Thus secure.?
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Summary Lecture 2

Automated formal security analysis for security
requirements included in UMLsec models as 
stereotypes.

Running example: TLS variant with security
flaw.

Exercise: find flaw, propose correction � .
Coming up tomorrow: Electronic purses, 

biometric authentication systems (including
more flaws). General results and reasoning
techniques.


