
2

1

Model-based Security
Engineering with UML

Jan Jürjens
Competence Center for IT Security

Software & Systems Engineering

TU Munich, Germany

juerjens@in.tum.de

http://www.jurjens.de/jan
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 2

A Need for Security

Society and economies rely on computer
networks for communication, finance,
energy distribution, transportation...

Attacks threaten economical and physical
integrity of people and organizations.

Interconnected systems can be attacked
anonymously and from a safe distance.

Networked computers need to be secure.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 3

Problems

Many flaws found in designs of security-critical
systems, sometimes years after publication
or use.

Spectacular Example (1997):

NSA hacker team breaks into U.S.
Department of Defense computers and the
U.S.electric power grid system. Simulates
power outages and 911 emergency
telephone overloads in Washington, D.C..

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 4

Causes I

• Designing secure systems correctly is
difficult.
Even experts may fail:

– Needham-Schroeder protocol (1978)

– attacks found 1981 (Denning, Sacco),
1995 (Lowe)

• Designers often lack background in security.

• Security as an afterthought.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 5

Causes II

„Blind“ use of mechanisms:
• Security often compromised

by circumventing (rather than
breaking) them.

• Assumptions on system context, physical
environment.

„Those who think that their problem can be solved
by simply applying cryptography don`t understand
cryptography and don`t understand their problem“
(R. Needham).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 6

Causes III

„Penetrate-and-patch“ (aka „banana
strategy):

• insecure

• disruptive
� loose customer trust.
Goal: reduce number of

flaws arising this way.

2

2

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 7

Formal Methods
Lots of very successful research using logic-based

methods to analyze systems for security flaws. Often
based on specialized, „academic“ notations and
concerned with crypto protocols or information flow:

LaPadula, Bell 73; Goguen, Meseguer 82; Millen,
Clark, Freedman 87; Burrows, Abadi, Needham 89;
Kemmerer 89; Gong, Needham, Yahalom 90;
Meadows 91; McLean 94; Focardi, Gorrieri 94;
Syverson, van Oorschot 94; Roscoe, Woodcock,
Wulf 94; Lowe 96; Schneider 96; Abadi, Gordon 97;
Mitchell, Mitchell, Stern 97; Paulson 98, …

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 8

How used in Security Engineering ?

Saltzer, Schröder (1975): Security Design Principles.
Gasser (1988): Formal techniques, not integrated with

system development.
Abrams, Jajodia, Podell (1995): Collection of unlinked

approaches.
Abadi, Needham; Anderson, Needham (1996): Design

rules for security protocols.
Anderson (2001): Use formal techniques for protocols.
Viega, McGraw (2002): How to avoid buffer-overflows.
Seemingly no encompassing, integrated

formally based approach.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 9

Some Open Problems

Secure systems out of (in)secure mechanisms.
Security as pervasive property: vs. dependability,

program analysis, formal methods, software
engineering, programming languages, compilers,
computer architectures, operating systems, reactive
systems, …, …

Problem: no integration / coherence.
How to put all this stuff together in a water-tight

way within security engineering approach ?
Necessary for security (attacks on boundaries

between views / aspects / levels …).
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 10

Towards Use in Practice

Increase security with bounded
investment in time, costs
(crucial for industry). Idea:

• Extract models from artefacts arising in industrial
development and use of security-critical systems
(UML models, source code, configuration data).

• Tool-supported theoretically sound efficient
automated security analysis.

� Model-based Security Engineering

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 11

Model-based Security Engineering

Combined strategy:
• Analyze models automatically

against security requirements.
• Generate code (or tests) from

models automatically.
• Generate models from code to

get changes (or analyze
legacy systems).

Goal: model-based = source-
based.

Idea notation-independent. Here: use UML.

Requirements

Models

Requirements

Models

CodeCode

Analyze

Codegen.
Testgen.

Modelgen./
Reverse E.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 12

Why UML ?

Seemingly de-facto standard in industrial
modeling. Large number of developers
trained in UML.

Relatively precisely defined (given the
user community).

Many tools in development (also for code-
generation, testing, reverse engineering,
simulation, transformation).

2

3

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 13

UMLsec: Goals

Extension for secure systems development.
• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

secure engineering as checklist
• make available to developers not specialized

in secure systems
• consider security requirements from early

design phases, in system context
• make certification cost-effective

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 14

UMLsec: How

Recurring security requirements, adversary
scenarios, concepts offered as stereotypes
with tags on component-level.

Use associated constraints to verify
specifications using automated theorem
provers and indicate possible weaknesses.

Ensures that UML specification provides
desired level of security requirements.

Link to code via round-trip engineering etc.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 15

Example:
Biometric
authentication
system in
industrial
development.
Secure ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 16

This tutorial

Background knowledge on using UML for
model-based security engineering.

• UMLsec extension

• Tools.

• Industrial applications (biometry, security
protocols, electronic purses, …).

• Attacks against them.

Research-oriented (not user-oriented).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 17

Requirements on UML extension for security I

Provide basic security requirements such
as secrecy, integrity, authenticity.

Allow considering different threat scenarios
depending on adversary strengths.

Allow including important security concepts
(e.g. tamper-resistant hardware).

Allow incorporating security mechanisms
(e.g. access control).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 18

Requirements on UML extension for security II

Provide security primitives (e.g.
(a)symmetric encryption).

Allow considering underlying physical security.
Allow addressing security management

(e.g. secure workflow).

Also: Include domain-specific security
knowledge (Java, smart cards, CORBA, ...).

2

4

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 19

Requirements with use case diagrams

Capture security requirements
in use case diagrams.

Constraint: need to appear in
corresponding activity diagram.

Sales application

Business

sells goods

Customer

buys goods

«fair exchange»

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 20

� fair exchange�

Ensures generic fair exchange condition.

Constraint: after a {start} state in activity
diagram is reached, eventually reach
{stop} state.

(Cannot be ensured for systems that an
attacker can stop completely.)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 21

Example � fair exchange�

Customer buys a good
from a business.

Fair exchange means:
after payment,
customer is
eventually either
delivered good or
able to reclaim
payment.

Reclaim

Deliver

«fair exchange»Purchase

Request good

BusinessCustomer

Wait until
delivery due

Pay

undelivered

Pick up

{start={Pay}} {stop={Reclaim,Pick up}}

delivered

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 22

� Internet� , � encrypted� , …

Kinds of communication links resp. system
nodes.

For adversary type A, stereotype s, have set
Threats (s)

�

{delete, read, insert, access}
of actions that adversaries are capable of.

Default attacker:
Internet
encrypted

LAN
smart card

{delete, read, insert}
{delete}
�

�

Threats ()Stereotype

A

default

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 23

� secure links�

Ensures that physical layer meets security
requirements on communication.

Constraint: for each dependency d with stereotype
s � {� secrecy� , � integrity� } between
components on nodes n � m, have a
communication link l between
n and m with stereotype t such that

• if s = � secrecy� : have read � Threats (t).

• if s = � integrity� : have insert � Threats (t).
A

A

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 24

Example � secure links�

Given default adversary type, is � secure links�
provided ?

«secure links»

server machineclient machine
get_password

browser
client apps

access control
web server

Remote access

«call»

«Internet»

«secrecy»

2

5

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 25

Example � secure links�

Given default adversary type, is � secure links�
provided ?

«secure links»

server machineclient machine
get_password

browser
client apps

access control
web server

Remote access

«call»

«Internet»

«secrecy»?
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 26

� secure dependency�

Ensure that � call� and � send�
dependencies between components respect
security requirements on communicated data
given by tags {secrecy}, {integrity}.

Constraint: for � call� or � send� dependency
from C to D (and similarly for {integrity}):

• Msg in D is {secrecy} in C if and only if also in D.

• If msg in D is {secrecy} in C, dependency
stereotyped � secrecy� .

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 27

Example � secure dependency�

� secure dependency� �provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 28

Example � secure dependency�

� secure dependency� �provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 29

� no down–flow�

Enforce secure information flow.

Constraint:

Value of any data specified in {secrecy}
may influence only the values of data
also specified in {secrecy}.

Formalize by referring to formal
behavioural semantics.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 30

Example � no down-flow�

� no down–flow� provided ?

2

6

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 31

Example � no down-flow�

� no down–flow� provided ??
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 32

� data security�

Security requirements of data marked
� critical� enforced against threat
scenario from deployment diagram.

Constraints:

Secrecy of {secrecy} data preserved.

Integrity of {integrity} data preserved.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 33

Example � data security�

Variant of TLS
(INFOCOM`99).

� data security� �
against default
adversary
provided ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 34

Example � data security�

Variant of TLS
(INFOCOM`99).

Violates {secrecy}
of s
against default
adversary.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 35

� guarded access�

Ensures that in Java, � guarded� classes
only accessed through {guard} classes.

Constraints:

• References of � guarded� objects
remain secret.

• Each � guarded� class has {guard}
class.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 36

Example � guarded access�

Provides � guarded access� :
Access to MicSi protected by MicGd.

2

7

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 37

Does UMLsec meet requirements?

Security requirements: � secrecy� ,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example � smart card� .

Security mechanisms: E.g. � guarded access� .

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 38

UMLsec as Integrating Formal Framework

Have formalizations of major security
requirements in one integrated notation.

Want to relate / combine requirements; get
modularity / composability, hierarchical
decomposition, refinement, … :

For example:

• If system satisfies � secure links� and
subsystems satisfy � data security� then
system satisfies � data security� .

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 39

Summary Lecture 1

Defined UMLsec extension.
Goal: express security requirements within an

industrially used specification notation in a
way which allows automated verification.

Aims:
• model-based security engineering, integrated

with source-code, configuration data
• formal framework to relate different security

aspects.
Coming up in Lecture 2: formal security analysis

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 40

Security Analysis

Specify system parts as processes following
Dolev, Yao 1982: In addition to expected
participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public
network,

• injects messages that it can produce into the
public network.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 41

Security Analysis

Model classes of adversaries.

May attack different parts of the system
according to threat scenarios.

Example: insider attacker may intercept
communication links in LAN.

To evaluate security of specification,
verify against adversary model.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 42

Security Analysis II

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.

2

8

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 43

Cryptographic Expressions
Exp: quotient of term algebra generated from

sets Data, Keys, Var of symbols using
• _::_ (concatenation), head(_), tail(_),
• (_)-1 (inverse keys)
• { _ }_ (encryption)
• Dec_() (decryption)
• Sign_() (signing)
• Ext_() (extracting from signature)

under equations …
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 44

Cryptographic Expressions

• " E,K.DecK
-1({E}K)=E

• " E,K.ExtK(SignK
-1(E))=E

• " E1,E2.head(E1::E2)=E1

• " E1,E2.tail(E1::E2)=E2

• Associativity for ::.
Write E1::E2::E3 for E1::(E2::E3) and

fst(E1::E2) for head(E1::E2) etc.
Can include further crypto-specific primitives

and laws (XOR, …).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 45

Adversary Model

memory
logic

A B

ad
ve

rs
ar

y

* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 46

Adversary: Simulation

A BAdversary

m(x)

Adversary
knowledge:

k-1, y,

m(x)

x

return({ z} k)

[argb,1,1 = x]

{ z} k, z

return({ y::x} z)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 47

Abstract adversary

Specify set of initial knowledge of an
adversary of type A. Let be the
Exp-subalgebra generated by and
the expressions received after n+1st
iteration of the protocol.

Definition (Dolev, Yao 1982).
S keeps secrecy of M against attackers
of type A if there is no n with M .Î

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 48

Encryption vs. Secrecy

A B
{m}K::K A B

{m}K

Against eavesdropper:

• Secrecy of m, K not preserved.
• Secrecy of m, K preserved.

2

9

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 49

Hybrid Crypto vs. Secrecy

A B
{K}PubB

{m}K

• Secrecy of m not preserved against an
attacker who can delete and insert
messages.

• Secrecy of m preserved against an attacker
who can eavesdrop, but not alter the link.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 50

Security analysis in first-order logic

Idea: approximate set of possible data
values flowing through system from
above.

Predicate knows(E) meaning that the
adversary may get to know E during
the execution of the protocol.

For any secret s, check whether can
derive knows(s) using automated
theorem prover.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 51

First-order logic: basic rules

For initial adversary knowledge (K0): Define
knows(E) for any E initially known to the
adversary (protocol-specific, e.g. KA , KA

-1).
Define above equations.
For evolving knowledge (Kn) define
" E1,E2.(knows(E1)Ù knows(E2) �

knows(E1::E2) Ù knows({E1}E2) Ù
knows(DecE2(E1)) Ù knows(SignE2 (E1)) Ù
knows(ExtE2 (E1)))

" E.(knows(E) �

knows(head(E)) Ù knows(tail(E)))

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 52

Given Sequence Diagram …

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 53

… and Physical Layer Model …

Deployment diagram.
Derived adversary model: read, delete,

insert data.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 54

… Translate to 1st Order Logic

Connection (or statechart transition)
TR1=(in(msg_in),cond(msg_in),out(msg_out))
followed by TR2 gives predicate PRED(TR1)=

� msg_in. [knows(msg_in)� cond(msg_in)
� �knows(msg_out)

� PRED(TR2)]
(Assume: order enforced (!).)
Can include senders, receivers in messages.
Abstraction: find all attacks, may have false

positives.

2

10

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 55

Example: Translation to Logic

knows(N)� knows(KC)� knows(SignKC-1(C::KC))
� � init1,init2,init3.[knows(init1)� knows(init2)�

knows(init3) � snd(Extinit2(init3)) = init2
� knows({SignKS-1(…)}…)� […] � […� ...]…]

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 56

Execute in System Context

Activity diagram.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 57

Formulate Data Security Requirements

Class diagram.
Gives conjecture: knows(s) derivable ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 58

Example: Proposed Variant of TLS (SSL)

Apostolopoulos,
Peris, Saha;
IEEE Infocom
1999.

Goal: send secret
protected by
session key
using fewer
server resources.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 59

TLS Variant in TPTP notation I

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 60

TLS Variant in TPTP notation II

2

11

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 61

Surprise …

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 62

… which means:

Can derive knows(s) (!).

That is: Protocol does not preserve
secrecy of s against adversaries.

� Completely insecure wrt stated goals.

But why ?

Could look at proof tree.

Or: use prolog-based attack generator.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 63

Man-in-the-Middle Attack

?
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 64

The fix

e-Setheo: knows(s) not derivable. Thus secure.?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 65

Summary Lecture 2

Automated formal security analysis for security
requirements included in UMLsec models as
stereotypes.

Running example: TLS variant with security
flaw.

Exercise: find flaw, propose correction � .
Coming up tomorrow: Electronic purses,

biometric authentication systems (including
more flaws). General results and reasoning
techniques.

