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Lecture 3

Solution: flaw in TLS variant.

Industrial applications and flaws:

• smart-card based electronic purse scheme

• biometric authentication system

Lecture 4:

• General results and reasoning techniques.

• Tool demo.
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TLS Variant
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Man-in-the-Middle Attack
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The Fix

e-Setheo: knows(s) not derivable. Thus secure.
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Common Electronic Purse Specifications

Global electronic purse standard (90% of market).
Smart card contains account balance. Chip performs

cryptographic operations securing the transactions.
More fraud protection than credit cards (transaction-

bound authorisation).
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Load Protocol
Unlinked, cash-based load transaction (on-line).

Load value onto card using cash at load device.

Load device contains Load Security Application 
Module (LSAM): secure data processing and 
storage.

Card account balance adjusted; transaction 
data logged and sent to issuer for financial 
settlement.

Uses symmetric cryptography.
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Load Protocol
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Load Protocol: Physical View

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 9

Load Protocol: Structural View
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Load Protocol: Coordination View
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Load Protocol: Interaction View
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Security Threat Model

Card, LSAM, issuer security module assumed 
tamper-resistant.

Intercept communication links, replace
components.

Possible attack motivations:
• Cardholder: charge without pay
• Load acquirer: keep cardholder's money 
• Card issuer: demand money from load 

acquirer
May coincide or collude.
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Audit Security

No direct communication between card and 
cardholder. Manipulate load device display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions completed 
without exception).
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Security Conditions (informal)

Cardholder security If card appears to have 
been loaded with m according to its logs, 
cardholder can prove to card Issuer that a 
load acquirer owes m to card issuer.

Load acquirer security Load acquirer has to pay 
m to card issuer only if load acquirer has 
received m from cardholder.

Card issuer security Sum of balances of 
cardholder and load acquirer remains 
unchanged by transaction.
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Load Acquirer Security
Suppose card issuer I possesses 

mln=Signrn(cep::nt::lda::mn::s1::hcnt::hln::h2ln) and 
card C possesses rln, where hln = Hash 
(lda::cep::nt::rln).

Then after execution either of following hold:
• Llog(cep,lda,mn,nt) has been sent to l:LLog (so load

acquirer L has received and retains mn in cash) or
• Llog (cep, lda, 0, nt) has been sent to l : LLog (so L

returns mn to cardholder) and L has received rcnt

with hcnt=Hash(lda::cep::nt::rcnt) (negating mln).
"mln provides guarantee that load acquirer owes 

transaction amount to card issuer" (CEPS)
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Flaw

L does not provide load acquirer security 
against adversaries of type insider.

Why ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 17

Flaw

?
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Correction

?
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Major Industrial Application

Verisoft project. Goal: Practical application of 
formal methods.

Planned for 8 years from 7/2003; 10 industrial + 
academic partners.

Integrated formal verification from application
software down to operating system and 
prozessor on C-code level. Security-relevant:

• Biometric access control system
• Automotive emergeny application
Apply UMLsec approach, tools.
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Architecture
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Use case:

Biometric
verification
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Big 
Picture
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Translation to First-order Logic II

Message order not enforced by smart card (!).
Connection from smart card
TR1=(in(msg_in),cond(msg_in),out(msg_out))
followed by TR2 gives predicate PRED(TR1)=

� msg_in. [knows(msg_in) � cond(msg_in)
� � knows(msg_out)]

� PRED(TR2)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 24

Crypto Protocol Part 2: Problem ?

?
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Some Further UMLsec Applications

Java Security Architecture, Security
Architecture Patterns (

�
Saturday)

Secure Design Principles by Saltzer, 
Schroeder

Telematic automobile emergency
application of German car company

Electronic signature architecture of German 
insurance company

Electronic purse for Oktoberfest
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Summary Lecture 3
Conclusions:

• Security really is difficult.

• There really are a lot of security flaws in industrially
developed and used systems.

• Many of them can actually be detected on the
specification level in a model-based approach.

• This can be done using automated tool support.

Lecture 4:

• General results and reasoning techniques.

• Tool demo.
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Secure Channel Abstractions

So far, usually concentrated on specific 
properties of protocols in isolation.

Need to refine security properties so protocol is 
still secure in system context. Surprisingly 
problematic.

Motivates research towards providing secure 
channel abstractions to use security protocols 
securely in the system context.
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Refinement Problem

Common formalizations of security
properties not preserved by
refinement (!).

Bad: re-verify after each refinement.

Code is refinement of spec !
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Refinement Problem: Examples

if H=0 then (0 or 1) else (0 or 1)
Might view as secure. Might refine to:

if H=0 then 0 else 1

choose K1 or … or choose Kn

Secure for large n, but not:
choose K1
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Refinement Problem: Causes

At least two kinds of non-determinism:

• under-specification

• unpredictability

Refinement: Get rid of under-specification.

Security: Keep unpredictability.

Some formalisms model both kinds by same
non-determinsm operator.

�
Problem.
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Refinement Problem: Solution

Separate two kinds of non-determinism:

Usual non-determinism = under-specification
(e.g. choice between firable transitions).

Security formalized so all resolutions must
satisfy it. Preserved by refinement.

For unpredictability, use only dedicated
operators (nonce generation, …). Not 
removed by refinement.
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Modularity

Can also show formalizations of security
properties are composable
(rely/guarantee style).

Have initial results for secure information
flow.
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Secure Channel: Approach

• Define a secure channel abstraction.

• Define concrete secure channel
(protocol).

• Show simulates the abstraction.

Give conditions under which it is secure to 
substitute channel abstractions by 
concrete protocols.
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Secure Channel Pattern: Problem

To keep d secret, must be sent encrypted.
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Secure Channel Pattern: (Toy) Solution

Exchange certificate and send encrypted data 
over Internet.
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Secure Channel Abstraction

Show concrete channel is delayed
equivalent to abstract channel, given a 
reasonable adversary model.

Use notion of delayed bisimulation.

Details: talk on Saturday (Vodca’04).
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Layered Security Protocols

Protokol on top uses security below.

confidentiality, integrity, server authenticity

client authenticity

confidentiality, … + client authenticity
= ?

Security properties additive ?
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Here: Bank application

• Security analysis of web-based banking 
application, to be put to commercial use 
(clients fill out and sign digital order forms).

• In cooperation with major German bank.
• Layered security protocol

– first layer: SSL protocol.
– second layer: client authentication protocol

• Main security requirements:
– personal data confidential.
– orders not submitted in name of others.
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The Application II

• Two layer architecture.

• When user logs on, an SSL-connection is 
established (first layer). 
– Provides secrecy, integrity, server authentication

but no client authentication (this version).

• Custom-made protocol on top of SSL for 
client authentication.

• Session key generated by SSL used to 
encrypt messages on second layer.
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Layered Security Protocol

• Adjust adversary model to account for SSL 
security properties.

• Justify that specialised adversary model
wrt. top-level protocol is as powerful as 
generic adversary wrt. protocol
composition.

• Verify top-level protocol wrt. specialised
adversary.

• Implies verification of protocol composition.
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Insight

Protocol layering indeed additive wrt. 
security properties in this particular case.

Generalize to classes of protocols and 
security requirements.
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Beyond Specification Analysis

Model-based test generation.

Configuration analysis.

• Analyze permission data using Prolog (e.g. 
SAP R/3)

• Analyze firewall configurations using model-
checkers

Source-code analysis (C).
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Beyond Security

Apply to other non-functional requirements

• fault tolerance

• safety

• dependability

• real-time

Relate to security.
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Tool-supported analysis

Draw UML models with editor. 

Save UML models as XMI (XML dialect).

Connect to verification tools (automated 
theorem prover, model-checker …), e.g. 
using XMI Data Binding.
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UMLsec Framework

Framework for analysis plug-ins to access UML 
models on conceptual level over various UI’s.

Exposes a set of commands. Has internal state 
(preserved between command calls).

Framework and analysis tools accessible and 
available at http://www4.in.tum.de/~umlsec .

Upload UML model (as .xmi file) on website. Analyse 
model for included security requirements. Download 
report and UML model with highlighted weaknesses.
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Connection with analysis tool

Industrial CASE tool with UML-like notation: 
AUTOFOCUS (http://autofocus. 
informatik.tu-muenchen.de)

• Simulation

• Validation (Consistency, Testing, Model Checking)

• Code Generation (e.g. Java, C, Ada)

• Connection to Matlab

Connect UML tool to underlying analysis
engine.
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Summary Lecture 4

Conclusions:
• Have general results and reasoning

techniques.
• Have tool support for automatically checking

UMLsec constraints.
• Can apply approach as well to models

generated from configuration data, source
code.

• Can apply to other non-functional
requirements.
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Conclusions

Model-based Security Engineering using
UML:

• formally based approach
• automated tool support

• industrially used notation
• integrated approach (source-code, 

configuration data)
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Ongoing Work, Open Problems

Ongoing work on most of the above issues:
• Security properties: E.g. composability
• Crypto verification: crypto-specific

equations
• Tools: E.g. Extensibility for self-defined

stereotypes
• Source-code analysis: extract Dolev-Yao

model
• Application domains: Mobility
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Resources

Jan Jürjens, Secure Systems Develop-
ment with UML, Springer 04 (get Oct.)

Tutorials: Sept.: SAFECOMP (Potsdam),
ASE (Linz), NODe (Erfurt). Oct.: UML
(Lisabon). Nov.: ISSRE (Bretagne).

Spring School: May 2005, Carlos IV Univ.
Madrid

Workshops: CSDUML@UML04, WITS05@POPL05

More information (papers, slides, tool etc.): 
http://www.umlsec.org


