
2

1

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 1

Lecture 3

Solution: flaw in TLS variant.

Industrial applications and flaws:

• smart-card based electronic purse scheme

• biometric authentication system

Lecture 4:

• General results and reasoning techniques.

• Tool demo.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 2

TLS Variant

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 3

Man-in-the-Middle Attack

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 4

The Fix

e-Setheo: knows(s) not derivable. Thus secure.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 5

Common Electronic Purse Specifications

Global electronic purse standard (90% of market).
Smart card contains account balance. Chip performs

cryptographic operations securing the transactions.
More fraud protection than credit cards (transaction-

bound authorisation).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 6

Load Protocol
Unlinked, cash-based load transaction (on-line).

Load value onto card using cash at load device.

Load device contains Load Security Application 
Module (LSAM): secure data processing and 
storage.

Card account balance adjusted; transaction 
data logged and sent to issuer for financial 
settlement.

Uses symmetric cryptography.



2

2

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 7

Load Protocol

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 8

Load Protocol: Physical View

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 9

Load Protocol: Structural View

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 10

Load Protocol: Coordination View

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 11

Load Protocol: Interaction View

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 12

Security Threat Model

Card, LSAM, issuer security module assumed 
tamper-resistant.

Intercept communication links, replace
components.

Possible attack motivations:
• Cardholder: charge without pay
• Load acquirer: keep cardholder's money 
• Card issuer: demand money from load 

acquirer
May coincide or collude.



2

3

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 13

Audit Security

No direct communication between card and 
cardholder. Manipulate load device display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions completed 
without exception).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 14

Security Conditions (informal)

Cardholder security If card appears to have 
been loaded with m according to its logs, 
cardholder can prove to card Issuer that a 
load acquirer owes m to card issuer.

Load acquirer security Load acquirer has to pay 
m to card issuer only if load acquirer has 
received m from cardholder.

Card issuer security Sum of balances of 
cardholder and load acquirer remains 
unchanged by transaction.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 15

Load Acquirer Security
Suppose card issuer I possesses 

mln=Signrn(cep::nt::lda::mn::s1::hcnt::hln::h2ln) and 
card C possesses rln, where hln = Hash 
(lda::cep::nt::rln).

Then after execution either of following hold:
• Llog(cep,lda,mn,nt) has been sent to l:LLog (so load

acquirer L has received and retains mn in cash) or
• Llog (cep, lda, 0, nt) has been sent to l : LLog (so L

returns mn to cardholder) and L has received rcnt

with hcnt=Hash(lda::cep::nt::rcnt) (negating mln).
"mln provides guarantee that load acquirer owes 

transaction amount to card issuer" (CEPS)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 16

Flaw

L does not provide load acquirer security 
against adversaries of type insider.

Why ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 17

Flaw

?
Jan Jürjens, TU Munich: Model-based Security Engineering with UML 18

Correction

?



2

4

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 19

Major Industrial Application

Verisoft project. Goal: Practical application of 
formal methods.

Planned for 8 years from 7/2003; 10 industrial + 
academic partners.

Integrated formal verification from application
software down to operating system and 
prozessor on C-code level. Security-relevant:

• Biometric access control system
• Automotive emergeny application
Apply UMLsec approach, tools.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 20

Architecture

Threatsinsider(����������) 
= Threatsinsider (� � � �)
= {� �	 
 � � � � ���� � 
 � ���}

Threatsinsider(� � 	 � ��	 � 
 ) 
= Threatsinsider (�	 � � �� � � � ��� ) 
= Ø

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 21

Use case:

Biometric
verification

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 22

Big 
Picture

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 23

Translation to First-order Logic II

Message order not enforced by smart card (!).
Connection from smart card
TR1=(in(msg_in),cond(msg_in),out(msg_out))
followed by TR2 gives predicate PRED(TR1)=

� msg_in. [knows(msg_in) � cond(msg_in)
� � knows(msg_out)]

� PRED(TR2)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 24

Crypto Protocol Part 2: Problem ?

?



2

5

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 25

Some Further UMLsec Applications

Java Security Architecture, Security
Architecture Patterns (

�
Saturday)

Secure Design Principles by Saltzer, 
Schroeder

Telematic automobile emergency
application of German car company

Electronic signature architecture of German 
insurance company

Electronic purse for Oktoberfest

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 26

Summary Lecture 3
Conclusions:

• Security really is difficult.

• There really are a lot of security flaws in industrially
developed and used systems.

• Many of them can actually be detected on the
specification level in a model-based approach.

• This can be done using automated tool support.

Lecture 4:

• General results and reasoning techniques.

• Tool demo.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 27

Secure Channel Abstractions

So far, usually concentrated on specific 
properties of protocols in isolation.

Need to refine security properties so protocol is 
still secure in system context. Surprisingly 
problematic.

Motivates research towards providing secure 
channel abstractions to use security protocols 
securely in the system context.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 28

Refinement Problem

Common formalizations of security
properties not preserved by
refinement (!).

Bad: re-verify after each refinement.

Code is refinement of spec !

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 29

Refinement Problem: Examples

if H=0 then (0 or 1) else (0 or 1)
Might view as secure. Might refine to:

if H=0 then 0 else 1

choose K1 or … or choose Kn

Secure for large n, but not:
choose K1

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 30

Refinement Problem: Causes

At least two kinds of non-determinism:

• under-specification

• unpredictability

Refinement: Get rid of under-specification.

Security: Keep unpredictability.

Some formalisms model both kinds by same
non-determinsm operator.

�
Problem.



2

6

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 31

Refinement Problem: Solution

Separate two kinds of non-determinism:

Usual non-determinism = under-specification
(e.g. choice between firable transitions).

Security formalized so all resolutions must
satisfy it. Preserved by refinement.

For unpredictability, use only dedicated
operators (nonce generation, …). Not 
removed by refinement.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 32

Modularity

Can also show formalizations of security
properties are composable
(rely/guarantee style).

Have initial results for secure information
flow.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 33

Secure Channel: Approach

• Define a secure channel abstraction.

• Define concrete secure channel
(protocol).

• Show simulates the abstraction.

Give conditions under which it is secure to 
substitute channel abstractions by 
concrete protocols.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 34

Secure Channel Pattern: Problem

To keep d secret, must be sent encrypted.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 35

Secure Channel Pattern: (Toy) Solution

Exchange certificate and send encrypted data 
over Internet.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 36

Secure Channel Abstraction

Show concrete channel is delayed
equivalent to abstract channel, given a 
reasonable adversary model.

Use notion of delayed bisimulation.

Details: talk on Saturday (Vodca’04).



2

7

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 37

Layered Security Protocols

Protokol on top uses security below.

confidentiality, integrity, server authenticity

client authenticity

confidentiality, … + client authenticity
= ?

Security properties additive ?

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 38

Here: Bank application

• Security analysis of web-based banking 
application, to be put to commercial use 
(clients fill out and sign digital order forms).

• In cooperation with major German bank.
• Layered security protocol

– first layer: SSL protocol.
– second layer: client authentication protocol

• Main security requirements:
– personal data confidential.
– orders not submitted in name of others.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 39

The Application II

• Two layer architecture.

• When user logs on, an SSL-connection is 
established (first layer). 
– Provides secrecy, integrity, server authentication

but no client authentication (this version).

• Custom-made protocol on top of SSL for 
client authentication.

• Session key generated by SSL used to 
encrypt messages on second layer.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 40

Authentication protocol

A
ut

he
nt

ic
at

io
n

T
ra

ns
ac

tio
n

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 41

Layered Security Protocol

• Adjust adversary model to account for SSL 
security properties.

• Justify that specialised adversary model
wrt. top-level protocol is as powerful as 
generic adversary wrt. protocol
composition.

• Verify top-level protocol wrt. specialised
adversary.

• Implies verification of protocol composition.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 42

Insight

Protocol layering indeed additive wrt. 
security properties in this particular case.

Generalize to classes of protocols and 
security requirements.



2

8

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 43

Beyond Specification Analysis

Model-based test generation.

Configuration analysis.

• Analyze permission data using Prolog (e.g. 
SAP R/3)

• Analyze firewall configurations using model-
checkers

Source-code analysis (C).

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 44

Beyond Security

Apply to other non-functional requirements

• fault tolerance

• safety

• dependability

• real-time

Relate to security.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 45

Tool-supported analysis

Draw UML models with editor. 

Save UML models as XMI (XML dialect).

Connect to verification tools (automated 
theorem prover, model-checker …), e.g. 
using XMI Data Binding.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 46

UMLsec Framework

Framework for analysis plug-ins to access UML 
models on conceptual level over various UI’s.

Exposes a set of commands. Has internal state 
(preserved between command calls).

Framework and analysis tools accessible and 
available at http://www4.in.tum.de/~umlsec .

Upload UML model (as .xmi file) on website. Analyse 
model for included security requirements. Download 
report and UML model with highlighted weaknesses.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 47 Jan Jürjens, TU Munich: Model-based Security Engineering with UML 48

Connection with analysis tool

Industrial CASE tool with UML-like notation: 
AUTOFOCUS (http://autofocus. 
informatik.tu-muenchen.de)

• Simulation

• Validation (Consistency, Testing, Model Checking)

• Code Generation (e.g. Java, C, Ada)

• Connection to Matlab

Connect UML tool to underlying analysis
engine.



2

9

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 49

Summary Lecture 4

Conclusions:
• Have general results and reasoning

techniques.
• Have tool support for automatically checking

UMLsec constraints.
• Can apply approach as well to models

generated from configuration data, source
code.

• Can apply to other non-functional
requirements.

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 50

Conclusions

Model-based Security Engineering using
UML:

• formally based approach
• automated tool support

• industrially used notation
• integrated approach (source-code, 

configuration data)

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 51

Ongoing Work, Open Problems

Ongoing work on most of the above issues:
• Security properties: E.g. composability
• Crypto verification: crypto-specific

equations
• Tools: E.g. Extensibility for self-defined

stereotypes
• Source-code analysis: extract Dolev-Yao

model
• Application domains: Mobility

Jan Jürjens, TU Munich: Model-based Security Engineering with UML 52

Resources

Jan Jürjens, Secure Systems Develop-
ment with UML, Springer 04 (get Oct.)

Tutorials: Sept.: SAFECOMP (Potsdam),
ASE (Linz), NODe (Erfurt). Oct.: UML
(Lisabon). Nov.: ISSRE (Bretagne).

Spring School: May 2005, Carlos IV Univ.
Madrid

Workshops: CSDUML@UML04, WITS05@POPL05

More information (papers, slides, tool etc.): 
http://www.umlsec.org


