
2

1

Secure Software Engineering
and Embedded Systems

Jan Jürjens

Competence Center for IT Security

Software & Systems Engineering

TU Munich, Germany

juerjens@in.tum.de

http://www.jurjens.de/jan
Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 2

Personal Introduction + History

Me: Leading the Competence Center for IT-Security at
Software & Systems Engineering, TU Munich

• Extensive collaboration with industry (BMW,
HypoVereinsbank, T-Systems, Deutsche Bank,
Siemens, …)

• PhD in Computer Science from Oxford Univ.,
Masters in Mathematics from Bremen Univ.

• Numerous publications incl. 1 book on the subject
This tutorial: part of series of 30 tutorials on secure

software engineering. Continuously improved
(please fill in feedback forms).

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 3

A Need for Security

Society and economies rely on computer
networks for communication, finance,
energy distribution, transportation...

Attacks threaten economical and physical
integrity of people and organizations.

Interconnected systems can be attacked
anonymously and from a safe distance.

Networked computers need to be secure.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 4

Secure Systems Development

High quality development of security-
critical systems difficult.

Many systems developed, deployed, used
that do not satisfy security requirements,
sometimes with spectacular attacks.

Example: NSA hackers break into U.S.
Department of Defense computers.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 5

Causes I

Designing secure systems correctly is
difficult. Even experts may fail:

• Needham-Schroeder protocol (1978)
• Attacks found 1981 (Denning, Sacco),

1995 (Lowe)
Designers often lack background in security.
Security as an afterthought.
Little feedback from customers.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 6

Causes II

„Blind“ use of mechanisms:
• Security often compromised

by circumventing (rather than
breaking) them.

• Assumptions on system context, physical
environment.

„Those who think that their problem can be solved
by simply applying cryptography don`t understand
cryptography and don`t understand their problem“
(R. Needham).

2

2

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 7

Quality vs. Cost

Correctness in conflict with cost.

Thorough methods of system design
not used if too expensive.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 8

Security Requirements

� � � � ��� � � �
	�� �
 � ��� � �� � ��� � � � ��� ��� � � ��� � � � � ��� � ��� � � �� ��� � � � � � � ��� � � � ���� � ��� � � � �
���� �! "$#&%���' (� � ��� � � � �)�� � ��� � � � �) � � � * � � � *�* + � � � � ��� � � ��� � � � �,�� � � * � ��� � � � � 	�� � � � � � � � *�*-�� � * � � ��� � � � �

Protection of the system, against attacks.0/ "�1�2 ! 3 4 Protection of environment, against faults. ��5 / 3 4

6

6

���� �! "$7�1�8�"�3 ! %�8�
� ��� � � �
 � � � � � � �
� � � 9�� � � � � � � � � �

� � � 9 � � � : � � � � �
)�� ��9 � *&; � � � ��� ;�<

)�� ��9 � *� � � � � � �
= � ����� � � > � � � �� � � ��� � � � � 	�� � � � � �

6

? / "�@���8�! �AB
	 9�� �C� � � � *,�� * * D0� � � *

(� � � � � � � � ��
�� � � �
��� � � * *�	�� � � � � �
��� * � � � � �E��� � � ���

	 � ��� � � ���� � ��9 � 	���;&;�� ��� � <��� � � � � � � *
� � ��� �
= � � *)�� � � � ��� � � �

F� �G / "�3
[Wec03]

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 9

Basic Security Requirements I

Secrecy

Information

Information

Integrity

Information

Availability

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 10

Basic Security Requirements II

Information

Authenticity

Sender

Sender

Nonrepudiability

Informa-

tion

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 11

Internet Attacks: Eavesdropping

H I J

K

Packet
sniffer

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 12

Internet II: Masquerading (Spoofing)

L M N
. G�%�%�5

OQP�R&S T�U VXW&Y V
Z P�[�\XS]�P^HQ_ _ TX]�`

abTXc�d&e&P�[�TXf&P�[

g h Mbi

2

3

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 13

�����

� � ��� 	
 � � �

 � 	 � �� �� � � ��� � � �

� � � � �	 � � � � �	

� � � � �	 � � � � �	

� � 	 	 ��� �� � � ��� �� �

Internet III: „Man-in-the-Middle“

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 14

Defense: Cryptography

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 15

Cryptographic Algorithms
Symmetric:

• Digital Encryption Standard (DES), 3DES

• Advanced Encryption Standard (AES): Ryndael 2001

Asymmetric:

• RSA (Rivest/Shamir/Adleman): relies on integer
factorization

• ElGamal: relies on diskrete logarithm

• Diffie-Hellman: Generate key shared between two
parties

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 16

Encryption vs. Secrecy

A B
{m}K::K A B

{m}K

Against eavesdropper:

• Secrecy of {m}K::K not preserved
• Secrecy of {m}K preserved

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 17

Hybrid Encryption Schemes
������� � �
	���

�

��� ��� ��� ������� � � ������� � ��������� � �
(� ;&; � � � � �"!�� � � ����� � � �

(� ;&; � � � � �"#�� � � ����� � � �

��� � $���� �%	���
%&

(� * * � � ��' � �"(

(� * * � � ��' � ��(

!�� � � � ��� � �(� * * � � ��' � �"!�) (�*

!�� � � � ��� � �(� * * � � ��' � ��!�) (�*

� * � ;&; � � � � �
!�� � � ����� � � �

� * � ;&; � � � � �
#�� � � ����� � � �

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 18

Hybrid Schemes vs. Secrecy

A B
{K}PubB

{m}K

• Secrecy of m not preserved against an
attacker who can delete and insert
messages.

• Secrecy of m preserved against an attacker
who can eavesdrop, but not alter the link.

2

4

Creation of digital signatures

� 	 � � � � �

� �
 �

��� ��� � � �������

� �� � � � � � �� �� � � � � � �

� �� �� � ��� � �� � � � � 	 � � � � � � � �

� � � � � � � �� �� � �

asymmetric
Decryption

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 20

Verification of digital Signatures

��� ��� � � �������

� � � � � � � �� �� � �

� � ��� ����� &�� ��� � ����� ���� � ��� ����� &�� ��� � ����� � �

�$e	�&U S]
`�P�

�

&�� ��� � ��� ����� ������� ��� ���

�� �4�A A / 3 2 ! "
� / "�2 4�G�3 ! %�8

�	�

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 21

Cryptographic Protocols

Need to be able to securely determine identity of
communication partners. Threats:

• forge identifications
• replay old identifications
Need to manage keys, perform electronic

transactions, ...
Use cryptographic protocols: Exchange of

messages for distributing session keys,
authenticating principals etc.

Notoriously hard to get right.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 22

Protocol: Attack Scenario

A BAdversary

m(x)

Adversary
knowledge:

k-1, y,

m(x)

x

return({ z} k)

[argb,1,1 = x]

{ z} k, z

return({ y::x} z)

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 23

Using Protocols: Secure Channel

To keep d secret, must be sent encrypted.
Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 24

Secure Channel Pattern: Solution

Exchange certificate and send encrypted data
over Internet.

2

5

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 25

� � � D0� � '&� � � ���
 � � �	 � �� ! �
 � � " !

� � �� � �� � ! � � � �

� � � : D0� � '�� � � ���
 � � �	 � �� ! �
 � � " !

� � �� � �� � ! � � � �

(D � � � 9�� � � � � � � �
" �

-�� � � * � � � ��� � � � �
$ � � � % � # � �

-�� � � * � � � ��� � � � '
$ � � � % � # � �(D � � � 9�� � � � � � � �

" �

������� � � � � � � �&� � � � �
� # # � ! � � & ' ! �

' � # � !
 # � ! �

' & � � ! � (�) ! � #

���� ��

������� � � � � � � �&� � � � �
� # # � ! � � & ' ! �

' � # � !
 # � ! �

' & � � ! � (�) ! � #

���� ��

�� * �� � � � �

+

,

)

-

.

/

0

+

,

)

-

.

/

0

F�G�G�' ! "���3 ! %�8 F�G�G�' ! "���3 ! %�8

� @�4� �! "���'���2 ��8� �G�%�2 3�����4 / 2

(�� + � + !���,�	X,�� ,�! + � (�(�

(�� � � � � � * � (!�-�� (�
 -�-�,

(�(= � -�= (
� , * � �

! 	 ,�� 	
 ��,

Encryption and Protocol Layers

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 26

Mobile Systems: Mobile IP

Mobile computers (laptops).
Wireless networks (GPRS, UMTS,…).
Move from one link to another without

changing IP address.
• Don’t restart communication (VoIP).
• IP-v6: provides “everything” with IP

address.
Solution: home address vs. care-of

address.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 27

IP network
(Internet)

Home
Network

Router/
HomeAgent

Application
server

Foreign
Network

Mobile IP Scenario

Home Address

Care-Of Address =
FN Address

GPRS

Hotel

[Noo01]

Triangular Routing.
Binding Update (BU)
for route optimization.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 28

Security Issues

IP network
(Internet)

Home
Network

Router/
HomeAgent

Application
server

Foreign
Network

Home IP Addr

Attacker

Rtr/
Foreign
Agent

Attacker may redirect traffic:
Man-in-the-middle, Denial-of-Service

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 29

Routing-based authentication

Foreign network sends secret key to home
agent through (hopefully) secure route.

Home agents forwards key to mobile node
through secure tunnel.

Mobile node uses key for authenticating
binding update to foreign network.

Goal of Mobile IP: as secure as wired
network.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 30

Embedded Application Security: CEPS

Common Electronic Purse Specifications (CEPS): Global
electronic purse standard (90% of market).

Smart card contains account balance. Chip performs
cryptographic operations securing the transactions.

Securer than credit cards (transaction-bound
authorization).

2

6

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 31

Load protocol

Unlinked, cash-based load transaction (on-line).
Load value on card using cash at load device.
Load device contains Load Security Application

Module (LSAM): secure data processing and
storage.

Card account balance adjusted; transaction
data logged and sent to issuer for financial
settlement.

Uses symmetric cryptography.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 32

Load protocol

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 33

Security Threat Model

Card, LSAM, issuer security module assumed
tamper-resistant.

Intercept communication links, replace
components.

Possible attack motivations:
• Cardholder: charge without pay
• Load acquirer: keep cardholder's money
• Card issuer: demand money from load

acquirer
May coincide or collude.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 34

Audit security

No direct communication between card and
cardholder. Manipulate load device display.

Use post-transaction settlement scheme.
Relies on secure auditing.
Verify this here (only executions completed

without exception). For example:
Load acquirer security: Load acquirer has to

pay m to card issuer only if load acquirer
has received m from cardholder.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 35

Load acquirer security: details
Suppose card issuer I possesses

mln=Signrn(cep::nt::lda::mn::s1::hcnt::hln::h2ln) and
card C possesses rln, where hln = Hash
(lda::cep::nt::rln).

Then after execution either of following hold:
• Llog(cep,lda,mn,nt) has been sent to l:LLog (so load

acquirer L has received and retains mn in cash) or
• Llog (cep, lda, 0, nt) has been sent to l : LLog (so L

returns mn to cardholder) and L has received rcnt

with hcnt=Hash(lda::cep::nt::rcnt) (negating mln).
"mln provides guarantee that load acquirer owes

transaction amount to card issuer" (CEPS)

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 36

Flaw

L does not provide load acquirer security
against adversaries of type insider.

Automatically detected using UML tools.

Modification: use asymmetric key in ,
include signature certifying .

Automatically verified this version wrt.
above conditions.

2

7

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 37

Code-based attack: Buffer Overflow

Common security vulnerability.
Values written into fixed length buffer and

partially written outside buffer’s boundaries.
Facilitated by use of vulnerable library

routines (Unix: e.g. get s and st r cpy)

• execute arbitrary code with superuser rights

• often in connection with stack smashing.
C, C++, and assembly offer no protection.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 38

The Stack

Portion of address space of a process.
Provides storage for local variables.
Scratch-pad area when process needs

temporary storage.
“Bookkeeping” information for function call:
• Parameters that won’t fit in registers
• Saved values of registers
• Address from which function was called.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 39

Stack Smashing

Attacker provides input
string containing
executable binary code.

The buffer overflow lets
return address in stack
frame for currently
active function point to
attack code.

������

� � � 	
 � � 	 �
 	 �
 ��

� �� ��� � � � � ��� �

� � � 	 � � � � � � �

On function return: control transferred to
attack code, not returned to calling routine.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 40

Stack Smashing Example

l i ne: 512-byte array
allocated on stack

get s() provided with
more than 512 bytes:
still puts data on stack

mai n(ar gc, ar gv)
{

char l i ne[512] ;

. . .
get s(l i ne) ;
. . .

By choice of data in l i ne, can divert flow
of execution to special instruction
sequence calling execv() to replace
running image with a shell.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 41

Stack Smashing and Privileges

Often used to attack programs running as
root or binaries installed SetUID root:

SetUID permissions in UNIX grant user
privilege to run programs or scripts as
another user.

Programs that are SetUID root may be
executable by underprivileged user, but run
with unrestricted system access.

Attacks may allow unprivileged user to
acquire root privileges with one exploit.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 42

Preventing Stack Smashing in C

Validate all input. Perform bounds checking on
all arrays. Let programs execute at lowest
necessary privilege level.

Avoid using functions that do not check bounds
(st r cpy () , st r cat () , spr i nt f () ,
get s () , …).

Use safer alternative functions (st r ncpy() ,
st r ncat () , snpr i nt f () , f get s() , …).

Use libraries and tools that can prevent buffer
overflow vulnerabilities.

2

8

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 43

Preventing Stack Smashing: Tools

StackGuard: gcc patch enabling executed code
to detect change in return address (and fail
safely). Moderate performance penalty. No
modification in source code necessary.

• Canary Words: Write random „canary“ word
between local variables and return address.
Jump back only if intact.

• MemGuard: Make memory page with return
address „read-only“. Emulate write‘s to variables
on same memory page. Securer but slower.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 44

Tools II

• Linux kernel patch: stack non-
executable. Non performance penalty
but buffer-overflow attacks still possible.

• gcc patch: array bounds checking.
Securer than StackGuard but significant
performance penalty.

• Where possible, use type-safe
languages (Java).

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 45

Software Engineering & Security

„Penetrate-and-patch“
(aka „banana strategy):

• insecure
• disruptive

Traditional formal methods: expensive.

• training people
• constructing formal specifications.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 46

Consider security

• from early on

• within development context

• taking an expansive view

• in a seamless way.

Secure design by model analysis.

Secure implementation by test generation.

Goal: Security by Design

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 47

Model-based Security Engineering

Requirements

Models

Code

Requirements

Models

Code

Analyze

Codegen. Testgen.

Combined strategy:
• Analyze models automati-

cally against security
requirements

• Generate code from
models where reasonable

• Write code and generate
test-sequences otherwise.

Increase quality with bounded time-to-
market and cost.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 48

Using UML

UML: unprecedented opportunity for
high-quality critical systems development
feasible in industrial context:

• De-facto standard in industrial modeling:
large number of developers trained in UML.

• Relatively precisely defined (given the user
community).

• Many tools in development (also for analysis,
testing, simulation, transformation).

2

9

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 49

UMLsec: Goals

Extensions for secure systems development.
• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

secure engineering as checklist
• make available to developers not specialized

in secure systems
• consider security requirements from early

design phases, in system context
• make certification cost-effective

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 50

The UMLsec Profile

Recurring security requirements, adversary
scenarios, concepts offered as stereotypes
with tags on component-level.

Use associated constraints to evaluate
specifications and indicate possible
weaknesses.

Ensures that UML specification provides
desired level of security requirements.

Link to code via test-sequence generation.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 51

Further Applications

Multi-layer security protocol for web application
of German bank

SAP access control configurations

Biometric authentication system of German
telecommunication company

Automobile emergency application of German
car manufacturer

Electronic signature architecture of German
insurance company

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 52

Test-generation: Conformance testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, once and for all].

Works independently of criticality
requirements.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 53

Conformance testing: Problems

Complete test-coverage usually infeasible.
Need to somehow select test-cases.

Can only test code against what is
contained in behavioral model. Usually,
model more abstract than code. So may
have „blind spots“ in the code.

For both reasons, may miss critical test-
cases.

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 54

Criticality testing

Strategies:

• Ensure test-case selection from behavioral
models does not miss critical cases: Select
according to information on criticality
(„internal“ criticality testing).

• Test code against possible environment
interaction generated from external parts of
the model (e.g. deployment diagram with
information on physical environment).

2

10

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 55

UMLsec Tool

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 56

Some resources
Book: Jan Jürjens, Secure Systems

Development with UML, Springer-
Verlag, 2004

Tutorials: Sept.: SAFECOMP (Potsdam),
ASE (Linz), NODe (Erfurt).

Summer School Lecture: FOSAD
(Bertinoro, Italy, Sept.)

Workshop: CSDUML@UML04

More information (papers, slides, tool etc.):
http://www4.in.tum.de/~juerjens/csdumltut
(user Participant, password Iwasthere)

Jan Jürjens, TU Munich: Secure Software Engineering and Embedded Systems 57

Finally

We are always interested in industrial
challenges for our tools, methods,
and ideas to solve practical problems.
More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Thanks for your attention !

