
Model-based vs. Code-based
Verification for Critical Systems

Jan Jürjens

Computing Department,The Open University, GB
from 1 Oct 2008 also:

Microsoft Research (Cambridge)

http://www.jurjens.de/jan

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 2

Personal Introduction

• Senior Lecturer (equiv. US Assoc. Prof.), Computing
Departm., The Open University, GB

• From 1 Oct 2008: Royal Society Industrial Fellow at
Microsoft Research (Cambridge)

• Extensive collaboration with industry (British Telecom,
BMW, HypoVereinsbank, T-Systems, Munich Re, O2,
Deutsche Bank, Siemens, Infineon, Allianz, …)

• PhD in Computer Science from Oxford Univ., Masters
in Mathematics from Bremen Univ.

• Numerous publicat. inc. 2 books
on secure software engineering

IT Security

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 3

Verifying Critical Systems

Very challenging.
For high level of assurance, would need full coverage

(test every possible execution).
Usually infeasible (especially reactive systems).
Have heuristics for trade-off between development

effort and reliability.
Need to ask yourself:
• How complete is the heuristic ?
• How can I validate it ?
This talk: focus on security. Generalizes to other

criticality requirements (fault-tolerance, reliability, …)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 4

Problem: Security is Elusive

• Classical weakness in old Unix systems:
“wrong password” message at first wrong
letter in password. Using timing attack,
reduce password space from 26^n
to 26*n (n = password length)

• More recent weakness on smart-card: reconstruct
secret key by timed measurement of power
consumption during crypto operations

 How do you find these weaknesses
using classical testing ?

(You
don`t.)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 5

• For security assurance, may not even trust the
programmer of the code.

• May have intentionally built in back-door into
code.

• May be impossible to find by random or black-
box testing (e.g. hard-coded special password).

• Even worse when elusive weaknesses are used
(previous slide).

 What is the precaution in practice?

Problem: Untrustworthy Programmer
(Usually none.)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 6

Special Problem: Crypto

• Cryptography plays important role in many
security-critical applications

• By definition, needs to be secure against
brute-force attacks

 Paradox: How do you get sufficient test
coverage (for inputs accessible to a given
attacker) of a system that needs to be secure
against brute-force attacks on that input ?

(Not using classical testing.)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 7

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

 Long-term goal: Tool-supported, theoretically sound,
efficient automated security design & analysis.

Idea: Extract models from
artefacts in development
and use of software.

Model-based System Assurance

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 8

Requirements
and use cases

Abuse
cases

Critical
requirements

Risk
analysis

External
review

Design Test
plans

Code Test
results

Field
feedback

Risk-based
tests

Static
analysis
(tools)

Risk
analysis

System
Monitoring

System
breaks

[McGraw 2003]

Critical System Lifecycle

Model-based System Assurance

Design: Encapsulate prudent engineering rules.
Analysis: Formally based, automated, efficient tools.
Note: emphasis on high-level requirements.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 9

Models

Configurations

Code

Architectural Layers

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 10

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 11

Model-based Security with UMLsec

Extension of the Unified Modeling Language
(UML) for secure systems development.

• evaluate UML models for security
• encapsulate established rules of prudent

secure engineering
• make available to developers not specialized

in secure systems
• consider security requirements from

early design phases, in system context
• can use in certification

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 12

UMLsec

Insert recurring security
requirements, adversary
scenarios, security mecha-
nisms as predefined markers.

Use associated logical constraints to verify
specifications using model checkers and
ATPs based on formal semantics.

Ensures that UML specification enforces the
relevant security requirements wrt Dolev-Yao
type adversaries. [FASE01,UML02,FOSAD05,ICSE05]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 13

What Does UMLsec Cover ?

Security requirements: <<secrecy>>,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example <<smart card>>.

Security mechanisms: E.g. <<guarded access>>.

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 14

Security Protocols

System distributed over untrusted networks.

„Adversary“ intercepts, modifies, deletes,
inserts messages.

Cryptography provides security.

Cryptographic Protocol: Exchange of messages
for distributing session keys, authenticating
principals etc. using cryptographic algorithms

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 15

Security Protocols: Problems

Many protocols have vulnerabilities or subtleties
for various reasons

• weak cryptography

• core message exchange

• interfaces, prologues, epilogues

• deployment

• implementation bugs

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 16

Crypto-based Software (e.g. Protocols)

A BAdversary

m(x)

Adversary
knowledge:

k-1, y,

m(x)

x

return({z}k)

[argb,1,1 = x]

{z}k, z

return({y::x}z)
Attacker may …
• control system parts,
• know data in advance,
• intercept messages,
• delete messages,
• inject messages.

(cf. [Dolev, Yao 1982])

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 17

Example: TLS Variant

Presented at
IEEE Infocom
1999.
Goal: send
secret protected
by session key
using fewer
server
resources.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 18

Protocol

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 19

Security Analysis in First-order Logic

Define cryptosystem etc. E.g.: DecK-1({E}K)=E

Bound on adversary knowledge set:
Predicate knows(E), means adversary may get to

know E during the execution of the system.
E.g. secrecy requirement:

For any secret s, check whether can derive
knows(s) from model-generated formulas using
automated theorem prover.

Formal foundations using streams.
[JLAP08]

[ICSE05]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 20

Example TLS
Variant [IEEE
Infocom
1999]

knows(N)∧ knows(KC)∧ knows(SignKC
-1(C::KC))

 ∧ ∀init1,init2,init3.[knows(init1) ∧ knows(init2) ∧
 knows(init3) ∧ snd(Extinit2(init3)) = init2

 ⇒ knows({SignKS
-1(…)}…) ∧ [knows(Sign…)]

 ∧ ∀resp1,resp2. […⇒...]]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems 21

Analysis

Check whether can
derive knows(s) e.g.
using ATP for FOL.

Surprise: Yes !

 Protocol does not
preserve secrecy of s.

Why ? Use Prolog-based
attack generator.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Man-in-the-Middle Attack

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

e-Setheo: Proof that knows(s) not derivable.

Note completeness of FOL (but also
undecidability).

The Fix

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Refinement, Composability, Aspects, Services

Need to refine models down to code.
Common formalizations of security properties not

preserved by refinement.
Bad: re-verify after each step (incl code).
Theorem: Our notion of model refinement

preserves security requirements.
Similar: Established composability for certain

security requirements under suitable assumptions.
Also: Demonstrated how to apply security using

aspect-oriented weaving / service orientation.

[FME01]

[Concur01]

[ICSOC 04, Models 05]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Layered Security Protocols

System layer on top uses security services
below.

confidentiality, integrity, server authenticity

client authenticity

confidentiality, … + client authenticity
= ?

Security properties additive ?

Theorem: Yes, under suitable conditions.

[Safecomp03]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

FOL

ATP[FASE05,ICSE05,
ICSE06]

Model Verification

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Tool-support: Pragmatics

Commercial modelling tools: so far mainly
syntactic checks and code-generation.

Goal: sophisticated analysis. Solution:

• Draw UML models with editor.

• Save UML models as XMI (XML dialect).

• Connect to verification tools (automated
theorem prover, model-checker …), e.g.
using XMI Data Binding.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

CSDUML Framework: Features

Framework for analysis plug-ins to access UML
models on conceptual level over various UI’s.

Exposes a set of commands. Has internal state
(preserved between command calls).

Framework and analysis tools accessible and
available at http://www.umlsec.org .

Upload UML model (as .xmi file) on website.
Analyse model for included critical
requirements. Download report and UML
model with highlighted weaknesses.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Tool Support

For example:
• consistency checks
• mechanical analysis of complicated

requirements on model level (bindings to
model-checkers, constraint solvers,
automated theorem provers, …)

• code generation
• test-sequence generation
• configuration data analysis against UML.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Tool
Support

[UML04,
FASE05,ICSE06]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Security Analysis: Model or Code ?

Model:
+ earlier (less expensive to fix flaws)
+ more abstract  more efficient
- more abstract  may miss attacks
- programmers may introduce security flaws
- even code generators, if not formally verified
Code:
+ „the real thing“ (which is executed)

 Do both where feasible !

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Problem

How do I know a crypto-protocol implementation (as
opposed to specification) is secure ?

Possible solution:

Verify specification, write code generator, verify code
generator.

Problems:
• very challenging to verify code generator
• generated code satisfactory for given requirements

(maintainability, performance, size, …) ?
• not applicable to existing implementations

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Alternative Solution
Verify implementation against security requirements.

So far applied to self-written or restricted code.

Surprisingly few approaches so far:
• J. Jürjens, M. Yampolski (ASE´05, ASE’06, …):

methodology + initial results for restricted C code
• J. Goubault-Larrecq, F. Parrennes (VMCAI´05):

self-coded client-side of Needham-Schroeder in C
• K. Bhargavan, C. Fournet, A. Gordon (CSFW´06, …):

self-coded implementations in F-sharp
• Haneberg, Schellhorn, Grandy, Reif (forthcoming): self-

constructed code

May reduce first problem (verify code generator). How about other
two (requirements on code; legacy code)?

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Towards Verifying Legacy Implementations

Goal: Verify pre-existing implementation. Options:
2) Generate models from code and verify these.

– Advantages:
-- Seems more automatic.
-- Users in practice can work on familiar artifact (code),
don´t need to otherwise change development process (!).

– Challenges: Currently possible for restricted code or using
significant annotations. Need to verify model generator.

2) Create models and code manually and verify code against
models. Advantages:
– Split heavy verification burden (Model-level analysis more

efficient).
– Get some verification result already in design phase (for non-

legacy implementations)  cheaper to fix.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Just an Exercise in Code Verification ?

State of the art in code verification in practice: execution
exploration by testing. Limitations:

• For highly interactive systems usually only partial test
coverage due to test-space explosion.

• Cryptography inherently un-testable since resilient to
brute-force attack.

Interactive formal software verification (Isabelle et al):
assumes specialist users.

Automated … (Bandera, Soot et al.): scalability wrt. code
size / complexity; sophistication of properties (security).

 Develop specialized verification approach based on
these.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Model vs. Implementation

Implement
-ation

.java

Elements of connectionsSent and received data

„meaning“ „meaning“

compare meaning!

Backtrace
assignments

Defined during
model creation

Find Has

Abstract model

Equal?

[with David
Kirscheneder
]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Generate control
flow graph (e.g.
aicall (Absint)).

Transform to state machine:

trans(state,inpattern,condition,action,nextstate)

where action can be outpattern or
localvar:=value.

Models from Code

[ASE05,ASE06]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Real Life
Challenges
…

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Experiences

Can generate behavioral models from code
(e.g. CFGs). Problem: too concrete

 understanding + automated verification
 hard (even with annotations).

Constructing abstract specifications from
practical software is manually intensive.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Code Analysis vs. Model Analysis

Options:

• generate code from models
 currently not possible in general

• generate models from code
 challenging

• create models and code manually and verify
code against models
 next slides

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Verify Code against Models

Assumption: Have textual specification.
Then:

• construct interface spec from textual spec
• analyze interface spec for security
• verify that software satisfies interface spec

(using run-time verification)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

JSSE / Jessie

• Java Secure Sockets Extension (JSSE)
contains implementation of SSL.

• Open-source clean-room reimplementation
Jessie.

• Applied our approach to fragment of Jessie
(SSL handshake using RSA, verifying secrecy
of exchanged secret).

• Currently extending the work to JSSE recently
made open-source by Sun.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

p

qg

Interface
spec of SSL

I) Identify program points:
 value (r), receive (p), guard (g), send (q)
II) Check guards enforced

r [ICSM 05]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Implementation
(Jessie):
Identify Values

Currently do
this manually
using code
assertions

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

 public void write(OutputStream out) throws IOException
 { ... out.write(randomBytes); … }

 public void write(OutputStream out)
throws IOException
{ ... random.write(out); ... }

 ClientHello(… , Random random,)
 { ... this.random = random; ... }

ClientHello clientHello = new ClientHello(...,clientRandom,...);

Random clientRandom =
new Random(...,session.random.generateSeed(28));

class SecureRandom (specified in: FIPS
140-2,RFC 1750) of package java.security
Function: generateSeed

Identify: randomBytes
2nd parameter of Random constructor
called by ClientHello.write()

2nd parameter of ClientHello constructor

initialized in SSLSocket.doClientHandshake()

initialization of the used Random object

via Handshake.write()

„meaning“

(in message
ClientHello)

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Input / Output

To extract input/output labels for state machine
transitions, analyze input / output mechanism used
in the implementation.

Many implementations (e.g. Jessie and JSSE) use
buffered communication where the message
objects implement read and write methods.
Translate these method calls to input / output
labels (need to track successive subcalls).

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Sending Messages

SSLSocket.doClientHandshake() ClientHello.write()

Random.write()

traverse CFG

call of
OutputStream.
write()

Handshake.write()

Automate this
using patterns

ProtocolVersion.write()

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Guard g enforced by code?

b) Generate runtime check
for g at q from diagram:
simple + effective, but performance penalty.

c) Testing against checks (symbolic crypto for
inequalities).

d) Automated formal local verification:
conditionals between p and q logically imply
g (using ATP for FOL).

Checking Guards

[ICFEM02]

[ASE06]

p

qg

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

private void checkTrusted(X509Certificate[] chain,
String authType) throws CertificateException
 { ... }

public void verify(PublicKey key, String provider)
 throws CertificateException, ...
 { ... }

private void doVerify(Signature sig,PublicKey key)
 throws CertificateException, ...
 { ... sig.initVerify(key);
 sig.update(tbsCertBytes);
 if (!sig.verify(signature))
 {… throw new CertificateException
 ("signature not validated"); … } }

public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {… checkTrusted(chain, authType); }

Guard:
checkServerTrusted()

calls checkTrusted()

calls verify() for every member of certificate chain

calls doVerify()

java.security.Signature
• Initializatize
• Update
• Verify
„verifies the signature“

„meaning
“

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

msg = Handshake.read(din, certType);

session.trustManager.checkServerTrusted
(peerCerts,suite.getAuthType());

msg = new Handshake(Handshake.Type.CLIENT_KEY_EXCHANGE, ckex);
 msg.write (dout, version);

p

q

g

try

catch

only possible way
without throwing
exception

p

qg

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Model-based Testing

Advantages over classical testing:

• Precise measures for completeness.

• Can be formally validated.

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Conformance Testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, but only once and for all].

Works independently of real-time
requirements.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Conformance Testing: Caveats

• Complete test-coverage still infeasible
(although can measure coverage).

• Can only test code against what is
contained in model. Usually, model
more abstract than code. May lead to
„blind spots“.

For both reasons, may miss critical test-
cases. Want: „criticality testing“.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Criticality Testing: Strategies

Internal: Ensure test-case selection from
models does not miss critical cases: Select
according to information on criticality.

External: Test code against possible
environment interaction generated from
parts of the model (e.g. deployment
diagram with information on physical
environment).

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Criticality Testing

Shortcoming of classical model-based
test-generation (conformance testing)
motivates „criticality testing“.

Goal: model-based test-generation
adequate for critical real-time systems.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Internal Criticality Testing

Need behavioral semantics of used
specification language (precise enough to be
understood by a tool).

Here: semantics for simplified fragment of UML
in „pseudo-code“ (ASMs).

Select test-cases according to criticality
annotations in the class diagrams.

Test-cases: critical selections of intended
behavior of the system.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

External Criticality Testing

Generate test-sequences representing the

environment behaviour from the

criticality information in the deployment

diagrams.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

• Generate control flow graph.

• Analyze for criticality requirements.

• Use to generate critical test-cases.

Automated White-Box Testing

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Model-based Testing with UML

Meaning of diagrams stated informally in (OMG
2003).

Ambiguities problem for

• tool support

• establishing behavioral properties (safety,
security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Vulnerability in SSL implementation
Analyzed open-source implementation Jessie of SSL

protocol.
• According to SSL specification, a certificate with

(issuedDate, expiredDate) should be checked
whenever a message is received.

• 4 call sites of certificate() were found in the code.
• Only 3 of them call the Veri() function.
• Test cases were constructed to reveal the

vulnerability.
• Fix of the vulnerability can be done using AOP

techniques.

[ICSMM07, with
Yijun Yu, J.
Mylopoulos]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Verification of Guards in Code

send: represents send command

g: FOL formula with symbols msgn representing
nth argument of message received before
program fragment p is executed

[d] p ²g : g checked in any execution of p
initially satisfying d before any send

write p ²g for [true] p ²g.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Loops

In automated verification, often only consider
finite number of iterations.

Here: in translation to logic, replace variables in
loops by infinite arrays (index: loop counter).

Note: using ATP, don‘t need to worry about
finding loop invariants.

General problem undecidable, but at our level
of abstraction for crypto-protocols not a
problem since emphasis on interaction rather
than computation.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Loops: Example

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Identify maximal transition paths in CFG
between points where shared variables
written or read.

In translation to logic, consider possible
interleavings of threads by defining:

φ from predicates PRED(Pi) as above (for each
path i)

ψ assigning variables according to given
interleaving

Join formulas ψ) φ together by conjunction.

Concurrent threads

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Abstraction by Code Annotations

//@J2SD_ANN (<<method name>>)

//@J2SD_CONN (<<trigger>>; <<guard>>;
<<effect>>)

//@J2SD_INSERT (<<value>>)

//@J2SD_AXIOMS (<<value>>)

// <<FOL axioms>>

//@J2SD_AXIOMS_END

Similarly for variables / constants.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Modular Verification

For program fragment p, generate set of
statements derive(L,C,E) such that adversary
knowledge is contained in every set K that:
– for every list l of values for the variables in L that

satisfy the conditions in C contains the value
constructed by instantiating the variables in the
expression E with the values from l

When considering single protocol run, can
construct finite set of such statements similar
to FOL formulas from security analysis.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Another Problem
How do I know the running implementation is still

secure after deployment ?
• Does system model capture all relevant aspects

about a system ?
• Are assumptions about influences from a system's

operational environment reflected adequately ?
• Are the abstractions that need to be made to enable

automated static verification of non-trivial systems
faithful wrt the verification result ?

 Run-time verification.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Dynamic verification technique on the actual
system.

Essentially a symbiosis
of model-checking
and testing.

“Lazy model-checking”:
only check the system
traces which are
executed, when they
are executed.

Runtime Verification using Monitors

t

Property
fulfilled?

Actions

System

Property

Monitor

automatic
generation of

Runtime verification in a nutshell

[A. Bauer]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

• System (safety) property, , specified in
terms of linear time temporal logic [Pnu77]:

• Continuous interpretation of over
sequence of system events
(behaviours),

• Automatic monitor
generation: “Inspired” by
translation of LTL to Büchi-automata

Formal underpinnings

p q p q

Monitor

[A. Bauer]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Semantics

Write F phi for true U phi (“eventually phi”); G phi for not F not phi
(“globally phi”); phi1 W phi2 for G phi1 or (phi1 U phi2) (weak-
until)

(w word, i position)

[A. Bauer]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Monitoring-friendly LTL semantics

3-valued semantics:

Gives finite-state machines for detecting minimal
bad prefixes:

true

0

l

j

1

i inconclusivefalse k

inconclusive

...
true

Predictiveness

[A. Bauer]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

ClientKeyExchange

Client will not send out ClientKeyExchange
message until has received Certificate message
and check is positive, and then sends it out.

not safety but co-safety

[SESS 08, with A.
Bauer]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Client Transport Data

Client will not send any transport data before
has checked that MD5 hash received in
Server`s Finished message is equal to MD5
created by Client (and correspondingly for
SHA hash).

not co-safety but safety

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Server Finished

Server will not send Finished message before MD5
received in Client`s Finished message equal to
MD5 created by server. Then sends out eventually.

NB: Improves on Schneider’s security automata.

neither safety nor co-safety

not safety nor co-safety

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Tool
Support

[UML04,
FASE05,ICSE06]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Tracing Security Requirements

• Tracing security requirements to models…
• … reconciling them with other non-functional

requirements such as fault-tolerance, performance
• … and from models to code.
• For legacy systems:

need to extract
security domain
knowledge from
the code.

[ASE 07, ICSM 08, ASE 08, w. Y. Yu]

[CAISE 06]

[UML 04,
JSS 07]

[CSMR 07, CSMR 08,
IPCP 08, w. D. Ratiu]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Applications of MBSE

Analyzed designs / implementations /
configurations for

• biometry, smart-card or RFID
based identification

• authentication (crypto protocols)
• authorization (user permissions,

e.g. SAP systems)
Analyzed security policies, e.g. for

privacy regulations.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

German Health Card Architecture

• Analyzed
architecture
against security
requirements
using UMLsec

• Detected
several security
weaknesses in
the architecture

[Meth. Inform.
Medicine 08]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Mobile Communications
• Application of Model-based Security Assurance at Mobile

Communication Systems at O2 (Germany)
• All 62 relevant security requirements from security policy

successfully established using the approach
• Model-based development does incur extra effort.
• Seems manageable when applied to critical system core.
• Justifiable in case of high

assurance needs (security).
• Compares favorably with other

assurance/same trustworthiness.
• UMLsec well-suited for mobile

communication systems.

[ICSE 08]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

MetaSearch Engine: Personalized search in company
intranet (including password protected).

Some documents highly security-critical.
More than 1,000 potential users, index 280,000

documents, allow 20,000 queries per day.
Seamlessly integrated in enterprise-wide security

reference architecture. Provides security services to
applications, including user authentication, role-
based access control, global single-sign-on and
hook-up of new security apps.

Successfully analyzed using model-based security.

Intranet Information System
[ICSE 07]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Bank Application

Security analysis of web-based banking
application, to be put to commercial use
(clients fill out and sign digital order forms).

Layered security protocol (first layer: SSL
protocol, second layer: client authentication
protocol)

Security requirements:

• confidentiality

• authenticity

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Common Electronic Purse Specifications

Global elec. purse standard (Visa, 90% market).
Smart card contains account balance, performs
crypto operations securing each transaction.

Formal analysis of load and purchase protocols:
three significant weaknesses: purchase
redirection, fraud bank vs. load device owner.

[ASE01]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Biometric Authentication System

In development by company in joint
project. Uses bio-reference template
on smart-card. Analyze given UML spec.

Discovered three major weaknesses in
subsequently improved versions (misuse
counter circumvented by dropping / replaying
messages, smart-card insufficiently
authenticated by mixing sessions).

Here: consider different protocol from
public sources but with similar problems.

[ACSAC05]

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

How does it compare ?

• Empirical study to compare classical vs.
model-based testing: embedded software /
Automotive (window controller). In
cooperation with colleagues from BMW /
Elektrobit.

THIS
FRIDAY !

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Conclusions

Model-based vs Code-based Verification using
UMLsec:

• formally based approach
• automated tool support
• industrially used methods
• integrated approach (source-code, configuration

data)
Future work: collaboration with Andy Gordon

(MSRC) on verifying cryptoprotocol
implementations in C.

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Ongoing Work
• Security Verification of Crypto Protocol Implementations in

C: Use VCC to verify C code. (with Andy Gordon, MSR
Cambridge; RS Industrial Fellowship & 2 PhD projects)

• Modelling for Compliance (EPSRC CASE PhD project with
British Telecom)

• Security Engineering for Lifelong Evolvable Systems (EU
FP7 Integrated Project): HIRING NOW: 2 Postdocs !

• RS Joint International Project with TU Munich on Formal
Security Analysis of Cryptoprotocol Implementations

• RS Joint International Project with NII Tokyo on
Relating Security Requirements and Design

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

IT Security

Overview

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

Questions?
More information
(papers, slides,

tool etc.):
http://www.jurjens.de/jan

 Jan Jürjens, Open U: Model-based vs. Code-based Verification for Critical Systems <number>

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

ConfigurationsVerify.

Roadmap

Runtime System

Configure

Configure

Verify

Execute

