
Critical Systems Development
with UML and

Model-based Testing
Jan Jürjens

(contrib. UMLsec group@TUM, S. Houmb)

Software & Systems Engineering
TU Munich, Germany

juerjens@in.tum.de
http://www.jurjens.de/jan

Jan Jürjens, TU Munich: Critical Systems Development 2

Critical Systems Development

High quality development of critical
systems (dependable, security-critical,
real-time,...) is difficult.

Many systems developed, fielded, used
that do not satisfy their criticality
requirements, sometimes with
spectacular failures.

Jan Jürjens, TU Munich: Critical Systems Development 3

Quality vs. cost

Systems on which human life and commercial
assets depend need careful development.

Systems operating under possible
system failure or attack need to be
free from weaknesses.

Correctness in conflict with cost.
Thorough methods of system design

not used if too expensive.

Jan Jürjens, TU Munich: Critical Systems Development 4

Model-based Development

Goal: easen transition
from human ideas to
executed systems.

Increase quality with
bounded time-to-
market and cost.

Requirements

Models

Code

Jan Jürjens, TU Munich: Critical Systems Development 5

Goal: Critical properties by design

Consider critical properties
• from early on
• within development context
• taking an expansive view
• in a seamless way.

Critical design by model analysis.

Critical implementation by test generation.

Jan Jürjens, TU Munich: Critical Systems Development 6

Model-based Development

Combined strategy:
• Verify models against

requirements
• Generate code from

models where
reasonable

• Write code and
generate test-
sequences otherwise.

Requirements

Models

Code

Verify

Codegen. Testgen.

Jan Jürjens, TU Munich: Critical Systems Development 7

Using UML

UML: unprecedented opportunity for
high-quality critical systems development
feasible in industrial context:

• De-facto standard in industrial modeling:
large number of developers trained in UML.

• Relatively precisely defined (given the user
community).

• Many tools in development (also for analysis,
testing, simulation, transformation).

Jan Jürjens, TU Munich: Critical Systems Development 8

Challenges

• Adapt UML to critical system
application domains.

• Correct use of UML in the application
domains.

• Conflict between flexibility and unambiguity
in the meaning of a notation.

• Improving tool-support for critical systems
development with UML.

Jan Jürjens, TU Munich: Critical Systems Development 9

This tutorial

Background knowledge on using UML for
critical systems development.

• UML basics, including extension mechanisms.
• Extensions of UML (UMLsec, UML-RT, ...)
• UML as a formal design technique.
• Model-based testing.
• Tools.
• Case studies.
Concentrate on safety-critical systems.
Generalize to other application domains.

Jan Jürjens, TU Munich: Critical Systems Development 10

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 11

Using UML

Unified Modeling Language (UML):
• visual modelling for OO systems
• different views on a system
• high degree of abstraction possible
• de-facto industry standard (OMG)
• standard extension mechanisms

Jan Jürjens, TU Munich: Critical Systems Development 12

A glimpse at UML

Jan Jürjens, TU Munich: Critical Systems Development 13

Used fragment of UML

Activity diagram: flow of control between system
components

Class diagram: data structure of the system
Sequence diagram: interaction between

components by message exchange
Statechart diagram: dynamic component behaviour
Deployment diagram: Components in physical

environment
Package: collect system parts into groups

Current: UML 1.5 (released Mar 2003)

Jan Jürjens, TU Munich: Critical Systems Development 14

UML run–through: Activity diagrams

Specify the control flow between components within
the system, at higher degree of abstraction than
statecharts and sequence diagrams.

Jan Jürjens, TU Munich: Critical Systems Development 15

UML run-through: Class diagrams

Class structure of system.

Classes with attributes and operations/signals;
relationships between classes.

Jan Jürjens, TU Munich: Critical Systems Development 16

Describe interaction between objects or
components via message exchange.

UML run-through: Sequence Diagrams

Jan Jürjens, TU Munich: Critical Systems Development 17

UML run-through: Statecharts

Dynamic behaviour of individual component.

Input events cause state change and output
actions.

Jan Jürjens, TU Munich: Critical Systems Development 18

UML run-through: Deployment diagrams

Describe the physical layer on which the
system is to be implemented.

Jan Jürjens, TU Munich: Critical Systems Development 19

UML run-through: Package

May be used to organize model
elements into groups.

Jan Jürjens, TU Munich: Critical Systems Development 20

UML Extension mechanisms

Stereotype: specialize model element
using ¿labelÀ.

Tagged value: attach {tag=value} pair to
stereotyped element.

Constraint: refine semantics of
stereotyped element.

Profile: gather above information.

Jan Jürjens, TU Munich: Critical Systems Development 21

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 22

Safety

Safety-critical systems: five failure condition
categories: catastrophic, hazardous, major,
minor, no effect.

Corresponding safety levels A - E (DO-178B
standards in avionics).

Safety goals: via the maximum allowed failure
rate. For high degree of safety, testing not
sufficient (1 failure per 100,000 years).

Jan Jürjens, TU Munich: Critical Systems Development 23

Failures
Exchanged data may be
• delayed (and possibly reordered)
• lost
• corrupted.
Often, failures occur randomly (e.g. hardware).
Failure semantics examples:
• crash/performance: component may crash or

exceed time limit, but partially correct.
• value: component may deliver incorrect

values.

Jan Jürjens, TU Munich: Critical Systems Development 24

Fault-tolerance

Redundancy model determines which
level of redundancy provided.

Goal: no hazards in presence of single-
point failures.

Jan Jürjens, TU Munich: Critical Systems Development 25

Embedded Systems
In particular, embedded software increasingly

used in safety-critical systems (flexibility):
• Automotive
• Avionics
• Aeronautics
• Robotics, Telemedicine
• …
Our treatment of safety-critical systems also

applies to embedded systems.

Jan Jürjens, TU Munich: Critical Systems Development 26

UMLsafe: goals

Extensions for safe systems development.
• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

safety engineering as checklist
• make available to developers not specialized

in safety-critical systems
• consider safety from early design phases, in

system context
• make certification cost-effective

Jan Jürjens, TU Munich: Critical Systems Development 27

The UMLsafe profile
Recurring safety requirements, failure

scenarios, concepts offered as stereotypes
with tags on component-level.

Use associated constraints to evaluate
specifications and indicate possible
weaknesses.

Ensures that UML specification provides
desired level of safety.

Link to code via test-sequence generation.
Here: only fault tolerance aspects !

Jan Jürjens, TU Munich: Critical Systems Development 28

Failure semantics modelling

For redundancy model R, stereotype
s?{¿crash/performanceÀ, ¿valueÀ}, have
set FailuresR(s)? {delay(t), loss(p), corrupt(q)}:

• t: expected maximum time delay,
• p: probability that value not delivered within t,
• q: probability that value delivered in time

corrupted
(in each case incorporating redundancy).

Or use ¿riskÀ stereotype with {failure} tag.

Jan Jürjens, TU Munich: Critical Systems Development 29

Example

Suppose redundancy model R uses
controller with redundancy 3 and the
fastest result. Then could take:

• delay(t): t delay of fastest controller,
• loss(p): p probability that fastest result

not delivered within t,
• corrupt(q): q probability that fastest result

is corrupted.

Jan Jürjens, TU Munich: Critical Systems Development 30

¿guaranteeÀ

Describe guarantees required from
communication dependencies resp. system
components.

Tags: {goal} with value subset of
{immediate(t), eventual(p), correct(q)}, where

• t: expected maximum time delay,
• p: probability that value is delivered within t,
• q: probability that value delivered in time not

corrupted.

Jan Jürjens, TU Munich: Critical Systems Development 31

¿safe linksÀ

Physical layer should meet safety requirements on
communication given redundancy model R.

Constraint: For dependency d stereotyped
¿guaranteeÀ have corresponding communication
link l with stereotype s such that

• if {goal} has immediate(t) as value then
delay(t‘) 2 FailuresR(s) implies t‘·t,

• if {goal} has eventual(p) as value then
loss(p‘) 2 FailuresR(s) implies p‘·1-p, and

• if {goal} has correct(q) as value then
corruption(q‘) 2 FailuresR(s) implies q‘·1-q.

Jan Jürjens, TU Munich: Critical Systems Development 32

Example ¿safe linksÀ

Given redundany model none, ¿safe linksÀ
fulfilled iff T· expected delay according to
Failuresnone(¿crash/performanceÀ).

Jan Jürjens, TU Munich: Critical Systems Development 33

¿safe dependencyÀ

Communication dependencies should respect
safety requirements on ¿criticalÀ data.

For each safety level {l} for ¿criticalÀ data, have
goals(l)µ{immediate(t), eventual(p), correct(q)}.

Constraint: for each dependency d from C to D
stereotyped ¿guaranteeÀ:

• Goals on data in D same as those in C.
• Goals on data in C also appearing in D met by

guarantees of d.

Jan Jürjens, TU Munich: Critical Systems Development 34

Example ¿safe dependencyÀ

Assuming immediate(t) 2 goals(realtime), violates
¿safe dependencyÀ, since Sensor and
dependency do not provide realtime goal
immediate(t) for measure() required by Controller.

Jan Jürjens, TU Munich: Critical Systems Development 35

¿safe behaviourÀ
Ensures that system behavior in presence of

failure model provides required safety {goals}
by requiring that in any trace h of the
execution:

• immediate(t): Value delivered after at most t
time steps.

• eventual(p): Probability that delivered value is
lost during transmission at most 1-p.

• correct(q): Probability that delivered value
corrupted during transmission at most 1-q.

Jan Jürjens, TU Munich: Critical Systems Development 36

¿containmentÀ

Prevent indirect corruption of data.
Constraint:

Value of any data element d may only be
influenced by data whose requirements
attached to ¿criticalÀ imply those of d.

Make precise by referring to execution
semantics (view of history associated
with safety level).

Jan Jürjens, TU Munich: Critical Systems Development 37

Example ¿containmentÀ

Violates containment because a {safe} value
depends on un{safe} value.

Can check this mechanically.

Jan Jürjens, TU Munich: Critical Systems Development 38

Other checks

Have other consistency checks such as
• Is the software‘s response to out-of-

range values specified for every input ?
• If input arrives when it shouldn't, is a

response specified ?
…and other safety checks from the

literature.

Jan Jürjens, TU Munich: Critical Systems Development 39

Failure models
lql

n: messages on link l delayed further n time units.
ph

n: probability of failure at nth iteration in history h.
For link l stereotyped s where loss(p)2FailuresR(s),
• history may give lql

0:=;; then append p to (ph
n)n2N,

• or no change, then append 1-p.
For link l stereotyped s where corruption(q)2FailuresR(s),
• history may give lql

0:={¥}; then append q,
• or no change; append 1-q.
For link l stereotyped s with delay(t)2FailuresR(s), and

lql
0≠;, history may give lql

n:=lql
0 for n·t; append 1/t .

Then for each n, lql
n:=lql

n+1.

Jan Jürjens, TU Munich: Critical Systems Development 40

Execution semantics

Behavioral interpretation of a UML subsystem:
(1) Takes input events.
(2) Events distributed from input and link

queues between subcomponents to
intended recipients where they are
processed.

(3) Output distributed to link or output queues.
(4) Failure model applied as defined above.

Jan Jürjens, TU Munich: Critical Systems Development 41

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 42

A Need for Security

Society and economies rely on computer
networks for communication, finance,
energy distribution, transportation...

Attacks threaten economical and physical
integrity of people and organizations.

Interconnected systems can be attacked
anonymously and from a safe distance.

Networked computers need to be secure.

Jan Jürjens, TU Munich: Critical Systems Development 43

Basic Security Requirements I

Secrecy

Information

Information

Integrity

Information

Availability

Jan Jürjens, TU Munich: Critical Systems Development 44

Basic Security Requirements II

Information

Authenticity

Sender

Sender

Nonrepudiability

Informa-

tion

Jan Jürjens, TU Munich: Critical Systems Development 45

Problems

Many flaws found in designs of security-critical
systems, sometimes years after publication
or use.

Spectacular Example (1997):

NSA hacker team breaks into U.S.
Department of Defense computers and the
U.S.electric power grid system. Simulates
power outages and 911 emergency
telephone overloads in Washington, D.C..

Jan Jürjens, TU Munich: Critical Systems Development 46

Causes I

• Designing secure systems correctly is
difficult.
Even experts may fail:

– Needham-Schroeder protocol (1978)
– attacks found 1981 (Denning, Sacco),

1995 (Lowe)
• Designers often lack background in security.
• Security as an afterthought.

Jan Jürjens, TU Munich: Critical Systems Development 47

Causes II

Cannot use security mechanisms „blindly“:
• Security often compromised by circumventing

(rather than breaking) them.
• Assumptions on system context, physical

environment.
„Those who think that their problem can be

solved by simply applying cryptography don`t
understand cryptography and don`t understand
their problem“ (Lampson, Needham).

Jan Jürjens, TU Munich: Critical Systems Development 48

Difficulties

Exploit information spreads quickly.

No feedback on delivered security from
customers.

Jan Jürjens, TU Munich: Critical Systems Development 49

Previous approaches

„Penetrate-and-patch“: unsatisfactory.

• insecure (damage until discovered)
• disruptive (distributing patches costs

money, destroys confidence, annoys
customers)

Traditional formal methods: expensive.

• training people
• constructing formal specifications.

Jan Jürjens, TU Munich: Critical Systems Development 50

Goal: Security by design

Consider security
• from early on
• within development context
• taking an expansive view
• in a seamless way.

Secure design by model analysis.

Secure implementation by test generation.

Jan Jürjens, TU Munich: Critical Systems Development 51

Holistic view on Security

„An expansive view of the problem is most
appropriate to help ensure that no gaps
appear in the strategy“ (Saltzer, Schroeder
1975).

But „no complete method applicable to the
construction of large general-purpose
systems exists yet“ - since 1975.

Jan Jürjens, TU Munich: Critical Systems Development 52

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 53

UMLsec

UMLsec: extension for secure systems
development.

• evaluate UML specifications for vulnerabilities

• encapsulate security engineering patterns

• also for developers not specialized in security
• security from early design phases, in system

context
• make certification cost-effective

Jan Jürjens, TU Munich: Critical Systems Development 54

Basic Security Requirements I

Secrecy

Information

Information

Integrity

Information

Availability

Jan Jürjens, TU Munich: Critical Systems Development 55

Basic Security Requirements II

Information

Authenticity

Sender

Sender

Nonrepudiability

Informa-

tion

Jan Jürjens, TU Munich: Critical Systems Development 56

The UMLsec profile

Recurring security requirements as
stereotypes with tags (secrecy, integrity,...).

Associated constraints to evaluate model,
indicate possible vulnerabilities.

Ensures that stated security requirements
enforce given security policy.

Ensures that UML specification provides
requirements.

Jan Jürjens, TU Munich: Critical Systems Development 57

Requirements on UML extension for security I

Mandatory requirements:
• Provide basic security requirements such as

secrecy and integrity.
• Allow considering different threat scenarios

depending on adversary strengths.
• Allow including important security concepts

(e.g. tamper-resistant hardware).
• Allow incorporating security mechanisms

(e.g. access control).

Jan Jürjens, TU Munich: Critical Systems Development 58

Requirements on UML extension for security II

• Provide security primitives (e.g.
(a)symmetric encryption).

• Allow considering underlying physical
security.

• Allow addressing security management
(e.g. secure workflow).

Optional requirements: Include domain-specific
security knowledge (Java, smart cards,
CORBA, ...).

Jan Jürjens, TU Munich: Critical Systems Development 59

From UMLsafe to UMLsec

Safety = „Security against stupid adversaries“

Security = „Safety for paranoids“

Adversaries in security correspond to failures in
safety.

Replace failure model in UMLsafe by adversary
model to get UMLsec.

Jan Jürjens, TU Munich: Critical Systems Development 60

UMLsec: general ideas

Activity diagram: secure control flow,
coordination

Class diagram: exchange of data
preserves security levels

Sequence diagram: security-critical interaction
Statechart diagram: security preserved

within object
Deployment diagram: physical security

requirements
Package: holistic view on security

Jan Jürjens, TU Munich: Critical Systems Development 61

UMLsec profile (excerpt)

access control using
guard objects

guarded objects acc.
through guards.

Subsystemguarded
access

enforce fair
exchange

after start eventually
reach stop

start,
stop

packagefair exchange

basic datasec
requirements

provides secrecy,
integrity

subsystemdata
security

information flowprevents down-flowhighsubsystemno down-flow

structural interaction
data security

call, send respect
data security

subsystemsecure
dependency

assumes secrecydependencysecrecy

enforces secure
communication links

dependency security
matched by links

subsystemsecure links

Internet connectionlinkInternet

DescriptionConstraintsTagsBase classStereotype

Jan Jürjens, TU Munich: Critical Systems Development 62

¿InternetÀ, ¿encryptedÀ, …

Kinds of communication links resp. system
nodes.

For adversary type A, stereotype s, have set
Threats (s) ? {delete, read, insert, access}
of actions that adversaries are capable of.

Default attacker:
Internet
encrypted
LAN
smart card

{delete, read, insert}
{delete}
Ø

Ø

Threats ()Stereotype

A

default

Jan Jürjens, TU Munich: Critical Systems Development 63

Requirements with use case diagrams

Capture security requirements
in use case diagrams.

Constraint: need to appear in
corresponding activity diagram.

Jan Jürjens, TU Munich: Critical Systems Development 64

¿fair exchangeÀ

Ensures generic fair exchange condition.

Constraint: after a {buy} state in activity
diagram is reached, eventually reach
{sell} state.

(Cannot be ensured for systems that an
attacker can stop completely.)

Jan Jürjens, TU Munich: Critical Systems Development 65

Example ¿fair exchangeÀ

Customer buys a good
from a business.

Fair exchange means:
after payment,
customer is
eventually either
delivered good or
able to reclaim
payment.

Jan Jürjens, TU Munich: Critical Systems Development 66

¿secure linksÀ

Ensures that physical layer meets security
requirements on communication.

Constraint: for each dependency d with stereotype
s ? {¿secrecyÀ, ¿integrityÀ} between
components on nodes n? m, have a
communication link l between
n and m with stereotype t such that

• if s = ¿secrecyÀ: have read ? Threats (t).

• if s = ¿integrityÀ: have insert ? Threats (t).
A

A

Jan Jürjens, TU Munich: Critical Systems Development 67

Example ¿secure linksÀ

Given default adversary type, is ¿secure linksÀ
provided ?

Jan Jürjens, TU Munich: Critical Systems Development 68

Example ¿secure linksÀ

Given default adversary type, constraint
for stereotype ¿secure linksÀ violated:
According to the Threatsdefault(Internet)
scenario, ¿InternetÀ link does not provide
secrecy against default adversary.

Jan Jürjens, TU Munich: Critical Systems Development 69

¿secure dependencyÀ

Ensure that ¿callÀ and ¿sendÀ
dependencies between components respect
security requirements on communicated data
given by tags {secrecy}, {integrity}.

Constraint: for ¿callÀ or ¿sendÀ dependency
from C to D (and similarly for {secrecy}):

• Msg in D is {secrecy} in C if and only if also in D.
• If msg in D is {secrecy} in C, dependency

stereotyped ¿secrecyÀ.

Jan Jürjens, TU Munich: Critical Systems Development 70

Example ¿secure dependencyÀ

¿secure dependencyÀ provided ?

Jan Jürjens, TU Munich: Critical Systems Development 71

Example ¿secure dependencyÀ

Violates ¿secure dependencyÀ: Random
generator and ¿callÀ dependency do not give
security level for random() to key generator.

Jan Jürjens, TU Munich: Critical Systems Development 72

¿no down–flowÀ

Enforce secure information flow.
Constraint:

Value of any data specified in {secrecy}
may influence only the values of data
also specified in {secrecy}.

Formalize by referring to formal
behavioural semantics.

Jan Jürjens, TU Munich: Critical Systems Development 73

Example ¿no down-flowÀ

¿no down–flowÀ provided ?

Jan Jürjens, TU Munich: Critical Systems Development 74

Example ¿no down-flowÀ

¿no down–flowÀ violated: partial information on
input of high wm() returned by non-high rx().

Jan Jürjens, TU Munich: Critical Systems Development 75

¿data securityÀ

Security requirements of data marked
¿criticalÀ enforced against threat
scenario from deployment diagram.

Constraints:

Secrecy of {secrecy} data preserved.

Integrity of {integrity} data preserved.

Jan Jürjens, TU Munich: Critical Systems Development 76

Example ¿data securityÀ

Variant of TLS
(INFOCOM`99).

¿data securityÀ
against default
adversary
provided ?

Jan Jürjens, TU Munich: Critical Systems Development 77

Example ¿data securityÀ

Variant of TLS
(INFOCOM`99).

Violates {secrecy}
of s
against default
adversary.

Jan Jürjens, TU Munich: Critical Systems Development 78

¿guarded accessÀ

Ensures that in Java, ¿guardedÀ classes
only accessed through {guard} classes.

Constraints:

• References of ¿guardedÀ objects
remain secret.

• Each ¿guardedÀ class has {guard}
class.

Jan Jürjens, TU Munich: Critical Systems Development 79

Example ¿guarded accessÀ

Provides ¿guarded accessÀ:
Access to MicSi protected by MicGd.

Jan Jürjens, TU Munich: Critical Systems Development 80

Does UMLsec meet requirements?
Security requirements: ¿secrecyÀ,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example ¿smart cardÀ.

Security mechanisms: E.g. ¿guarded accessÀ.

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.

Jan Jürjens, TU Munich: Critical Systems Development 81

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 82

Security Protocols

System distributed over untrusted networks.
„Adversary“ intercepts, modifies, deletes,

inserts messages.
Cryptography provides security.
Cryptographic Protocol: Exchange of messages

for distributing session keys, authenticating
principals etc. using cryptographic algorithms

Jan Jürjens, TU Munich: Critical Systems Development 83

Security Protocols: Problems

Many protocols have vulnerabilities or subtleties
for various reasons

• weak cryptography
• core message exchange
• interfaces, prologues, epilogues
• deployment
• implementation bugs

Jan Jürjens, TU Munich: Critical Systems Development 84

Using UML

Goal: transport results from formal methods to
security practice

Enable developers (not trained in formal
methods) to

• check correctness of hand-made security
protocols

• deploy protocols correctly in system context
• allow to analyze larger system parts beyond

protocols

Jan Jürjens, TU Munich: Critical Systems Development 85

Security Analysis

Specify protocol participants as processes
following Dolev, Yao 1982: In addition to
expected participants, model attacker who:

• may participate in some protocol runs,
• knows some data in advance,
• may intercept messages on the public

network,
• injects messages that it can produce into the

public network

Jan Jürjens, TU Munich: Critical Systems Development 86

Security Analysis

Model classes of adversaries.

May attack different parts of the system
according to threat scenarios.

Example: insider attacker may intercept
communication links in LAN.

To evaluate security of specification,
simulate jointly with adversary model.

Jan Jürjens, TU Munich: Critical Systems Development 87

Security Analysis II

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.

Jan Jürjens, TU Munich: Critical Systems Development 88

Specification language

Formal semantics for (even restricted) parts of
UML too complicated to present in this talk.

To convey ideas, use simple calculus whose
main properties relevant here are similar to
UML statechart/sequence diagram behaviour.

• in particular: asynchronous communication
(no refusal by receiver)

• include cryptographic primitives

Jan Jürjens, TU Munich: Critical Systems Development 89

Expressions

Exp: term algebra generated by
Var? Keys? Data and

• _::_ (concatenation),
• { _ }_ (encryption)
• Dec_() (decryption)
• Sign_() (signing)
• Ext_() (extracting from signature)
by factoring out the equations DecK

-1({E}K)=E
and ExtK(SignK

-1(E))=E (for K?Keys).

Jan Jürjens, TU Munich: Critical Systems Development 90

Programs

(exp2 Exp; bexp Boolean expression over
(Exp,=)).

Iteration by CCS-style guarded recursive
equations:

iteri(pi):=p0.iteri(pi+1)

Next: Structural Operational Semantics

Jan Jürjens, TU Munich: Critical Systems Development 91

Jan Jürjens, TU Munich: Critical Systems Development 92

Interaction

(plus symmetric).
Message buffers q, interface I.
Write I for I

[].

Jan Jürjens, TU Munich: Critical Systems Development 93

Interaction via untrusted network

Adversary may be able to access
messages on network: read, delete,
insert
è Messages via adversary

Analyze PA where A is a non-
deterministic process modeling the
adversary.

Jan Jürjens, TU Munich: Critical Systems Development 94

Abstract adversary

Specify set of initial knowledge of an
adversary of type A.

To test secrecy of M Exp\ against
attacker type A: Execute S with most
powerful attacker of type A according to
threat scenario from deployment diagram.

M kept secret by S if M never output in clear
(Dolev, Yao 1982).

∈

Jan Jürjens, TU Munich: Critical Systems Development 95

Abstract adversary

memory
logic

A B

ad
ve

rs
ar

y
* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

Jan Jürjens, TU Munich: Critical Systems Development 96

Secrecy

p preserves the secrecy of M2Exp from
adversaries with initial knowledge K if
exists no adversary A such that PA
outputs s in clear.

„Extensional“ definition. Intuitive but
cumbersome.

Jan Jürjens, TU Munich: Critical Systems Development 97

Example: secrecy

Component sending {m}K::K Exp over Internet
does not preserve secrecy of m or K against
default attackers the Internet. Component
sending (only) {m}K does.

Suppose component receives key K encrypted
with its public key, sends back {m}K.
Does not preserve secrecy of m against
attackers eavesdropping on and inserting
messages on the link, but against attackers
unable to insert messages.

è

∈

Jan Jürjens, TU Munich: Critical Systems Development 98

Example: secrecy

does not preserve secrecy
of m or K (against adversaries with arbitrary
initial knowledge) but preserves
secrecy of m against adversaries without m or
K in initial knowledge.

does not preserve
secrecy of m against adversaries with non-
empty initial knowledge.

Jan Jürjens, TU Munich: Critical Systems Development 99

Example: secrecy

A B
{m}K::K

A B
{m}K

Jan Jürjens, TU Munich: Critical Systems Development 100

Example: secrecy

A B
{K}PubB

{m}K

• Security of m is not preserved against an
attacker who can delete and insert messages

• Security of m is preserved against an attacker
who can listen, but not alter the link

Jan Jürjens, TU Munich: Critical Systems Development 101

Abstract adversary (alternative)

Define: Suppose is the Exp-
subalgebra generated by and the
expressions received after n+1st
iteration of the protocol.

Theorem.
S keeps secrecy of M against attackers
of type A if there is no n with M .∈

Jan Jürjens, TU Munich: Critical Systems Development 102

Control Flow Analysis for Security

Idea: approximate set of possible data values
flowing through system from above.

Gives secrecy following Dolev-Yao definition.
Cf. eg. Bodei, Degano, 2xNielson 2002.
Here: start by concentrating on possible sets of

adversary knowledge.
Next: Adversary knowledge analysis

Jan Jürjens, TU Munich: Critical Systems Development 103

Jan Jürjens, TU Munich: Critical Systems Development 104

Approximation

If exists A with initial knowledge K such
that PA outputs s

then
exists S such that S ² K;p;K‘ with s2K‘.
Not conversely (pessimistic

approximation).

Jan Jürjens, TU Munich: Critical Systems Development 105

Example: Proposed Variant of TLS (SSL)

Apostolopoulos, Peris, Saha; IEEE Infocom 1999
Goal: send secret s protected by session key Kj.

Jan Jürjens, TU Munich: Critical Systems Development 106

TLS Variant: Physical view

Deployment diagram.

Jan Jürjens, TU Munich: Critical Systems Development 107

TLS Variant: Structural view

Class diagram

Jan Jürjens, TU Munich: Critical Systems Development 108

TLS Variant: Coordination view

Activity diagram.

Jan Jürjens, TU Munich: Critical Systems Development 109

TLS Variant: Interaction view

Sequence diagram.

Jan Jürjens, TU Munich: Critical Systems Development 110

TLS variant specification

Jan Jürjens, TU Munich: Critical Systems Development 111

The flaw

Surprise: C||S does not preserve secrecy of s
against adversaries whose initial knowledge
contains KA, KA

-1.

Man-in-the-middle attack.

Jan Jürjens, TU Munich: Critical Systems Development 112

The attack

Jan Jürjens, TU Munich: Critical Systems Development 113

The fix

Jan Jürjens, TU Munich: Critical Systems Development 114

Modified TLS variant

Jan Jürjens, TU Munich: Critical Systems Development 115

Security proof

Theorem. C||S preserves the secrecy of s
against adversaries whose initial knowledge
K satisfies the following.

Jan Jürjens, TU Munich: Critical Systems Development 116

Abstracting from Adversary Knowledge ?

Would like to say
• s protected by K in p
• K protected by KS

-1 in p
• K linked to N by KS

-1 in p or
• occurrence of K as fresh as N in p,

guaranteed by KS
-1

• …

Jan Jürjens, TU Munich: Critical Systems Development 117

Abstracting from Adversary Knowledge ?

Formalize „s protected by K in p“ as
8 S, K. (S ² K;p;K‘ Æ s2K‘) K2K).

Define function L to associate data with such
formulas.

Get statements S,L ² p.

Give syntactic characterization (e.g. S,L ² p for
where L(s) is the above

formula) ?

Jan Jürjens, TU Munich: Critical Systems Development 118

Secure channel abstractions

So far, usually concentrated on specific
properties of protocols in isolation.

Need to refine security properties so protocol is
still secure in system context. Surprisingly
problematic.

Motivates research towards providing secure
channel abstractions to use security protocols
securely in the system context.

Jan Jürjens, TU Munich: Critical Systems Development 119

Secure channel: approach

• Define a secure channel abstraction.
• Define concrete secure channel (protocol).
• Show simulates the abstraction.

Give conditions under which it is secure to
substitute channel abstractions by concrete
protocols.

Jan Jürjens, TU Munich: Critical Systems Development 120

Secure channel abstraction

„Ideal“ of a secure channel:

Take SIR for I:={send,receive} as secure
channel abstraction. Trivially secure in
absence of adversaries.

Jan Jürjens, TU Munich: Critical Systems Development 121

Concrete secure channel

Simple security protocol: encrypt under
exchanged session key

Jan Jürjens, TU Munich: Critical Systems Development 122

Concrete secure channel II

Jan Jürjens, TU Munich: Critical Systems Development 123

Bisimulation

A binary relation R on processes is a
bisimulation iff (P RQ) implies that for all
actions α,

• if P!αP‘ then exists Q!αQ‘ with P‘RQ‘ and
• if Q!αQ‘ then exists P!αP‘ with P‘RQ‘.

P, Q are bisimilar if there exists a bisimulation
R with PRQ.

Jan Jürjens, TU Munich: Critical Systems Development 124

Faithful representation ?
Is (R‘||S‘)IA bisimilar to SIR ?

No: delay possible. But:
Theorem. Suppose A does not contain the

messages send, receive nor any value in
{K(S)-1,K(R)-1}[{Kn,{x::n}Kn:x2 ExpÆ n2N} nor
SignK(R)

-1(K‘::n) unless K‘=Kn. Then
(R‘||S‘)IA is bisimilar to (SIR)Ab.

Theorem. (R‘||S‘) preserves secrecy of d
against such A.

Jan Jürjens, TU Munich: Critical Systems Development 125

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 126

Rules of prudent security engineering

Saltzer, Schroeder (1975):

Design principles for security-critical

systems.

Check how to enforce these with UMLsec.

Jan Jürjens, TU Munich: Critical Systems Development 127

Economy of mechanism

Keep the design as simple and small as
possible.

Often systems made complicated to make them
(look) secure.

Method for reassurance may reduce this
temptation.

Payoffs from formal evaluation may increase
incentive for following the rule.

Jan Jürjens, TU Munich: Critical Systems Development 128

Fail-safe defaults
Base access decisions on permission rather

than exclusion.

Example: secure
log-keeping for
audit control in
Common
Electronic Purse
Specifications
(CEPS).

Jan Jürjens, TU Munich: Critical Systems Development 129

Complete mediation

Every access to every object must be checked
for authority.

E.g. in Java: use guarded
objects. Use UMLsec to
ensure proper use of
guards.
More feasibly, mediation
wrt. a set of sensitive
objects.

Jan Jürjens, TU Munich: Critical Systems Development 130

Open design

The design should not be secret.

Method of reassurance may help to

develop systems whose security does

not rely on the secrecy of its design.

Jan Jürjens, TU Munich: Critical Systems Development 131

Separation of privilege

A protection mechanism that requires two
keys to unlock it is more robust and
flexible than one that allows access to
the presenter of only a single key.

Example: signature of two or more principals
required for privilege. Formulate requirements
with activity diagrams.

Verify behavioural specifications wrt. them.

Jan Jürjens, TU Munich: Critical Systems Development 132

Least privilege

Every program and every user of the system
should operate using the least set of
privileges necessary to complete the job.

Least privilege: every proper diminishing of
privileges gives system not satisfying
functionality requirements.

Can make precise and check this.

Jan Jürjens, TU Munich: Critical Systems Development 133

Least common mechanism

Minimize the amount of mechanism
common to more than one user and
depended on by all users.

Object-orientation:
• data encapsulation
• data sharing well-defined (keep at

necessary minimum).

Jan Jürjens, TU Munich: Critical Systems Development 134

Psychological acceptability

Human interface must be designed for ease of
use, so that users routinely and automatically
apply the protection mechanisms correctly.

Wrt. development process: ease of use in
development of secure systems.

User side: e.g. performance evaluation
(acceptability of performance impact of
security).

Jan Jürjens, TU Munich: Critical Systems Development 135

Discussion

No absolute rules, but warnings.

Violation of rules symptom of potential
trouble; review design to be sure that
trouble accounted for or unimportant.

Design principles reduce number and
seriousness of flaws.

Jan Jürjens, TU Munich: Critical Systems Development 136

Security Patterns

Security patterns: use UML to encapsulate knowledge
of prudent security engineering.

Example:

Does not preserve security of account balance.

Jan Jürjens, TU Munich: Critical Systems Development 137

Solution: Wrapper Pattern

Technically, pattern application is
transformation of specification.

Use wrapper pattern to ensure that no low
read after high write.
Can check this is secure (once and for all).

Jan Jürjens, TU Munich: Critical Systems Development 138

Secure channel pattern: problem

To keep d secret, must be sent encrypted.

Jan Jürjens, TU Munich: Critical Systems Development 139

Secure channel pattern: (simple) solution

Exchange certificate and send encrypted data
over Internet.

Jan Jürjens, TU Munich: Critical Systems Development 140

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 141

Common Electronic Purse Specifications

Global electronic purse standard (90% of market).
Smart card contains account balance. Chip performs

cryptographic operations securing the transactions.
More fraud protection than credit cards (transaction-

bound authorisation).

Jan Jürjens, TU Munich: Critical Systems Development 142

Load protocol
Unlinked, cash-based load transaction (on-line).

Load value onto card using cash at load device.

Load device contains Load Security Application
Module (LSAM): secure data processing and
storage.

Card account balance adjusted; transaction
data logged and sent to issuer for financial
settlement.

Uses symmetric cryptography.

Jan Jürjens, TU Munich: Critical Systems Development 143

Load protocol

Jan Jürjens, TU Munich: Critical Systems Development 144

Load protocol: Physical view

Jan Jürjens, TU Munich: Critical Systems Development 145

Load protocol: Structural view

Jan Jürjens, TU Munich: Critical Systems Development 146

Load protocol: Coordination view

Jan Jürjens, TU Munich: Critical Systems Development 147

Load protocol: Interaction view

Jan Jürjens, TU Munich: Critical Systems Development 148

Security Threat Model
Card, LSAM, issuer security module assumed

tamper-resistant.
Intercept communication links, replace

components.
Possible attack motivations:
• Cardholder: charge without pay
• Load acquirer: keep cardholder's money
• Card issuer: demand money from load

acquirer
May coincide or collude.

Jan Jürjens, TU Munich: Critical Systems Development 149

Audit security

No direct communication between card and
cardholder. Manipulate load device display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions completed
without exception).

Jan Jürjens, TU Munich: Critical Systems Development 150

Security conditions (informal)
Cardholder security If card appears to have

been loaded with m according to its logs,
cardholder can prove to card Issuer that a
load acquirer owes m to card issuer.

Load acquirer security Load acquirer has to pay
m to card issuer only if load acquirer has
received m from cardholder.

Card issuer security Sum of balances of
cardholder and load acquirer remains
unchanged by transaction.

Jan Jürjens, TU Munich: Critical Systems Development 151

Load acquirer security
Suppose card issuer I possesses

mln=Signrn(cep::nt::lda::mn::s1::hcnt::hln::h2ln) and
card C possesses rln, where hln = Hash
(lda::cep::nt::rln).

Then after execution either of following hold:
• Llog(cep,lda,mn,nt) has been sent to l:LLog (so load

acquirer L has received and retains mn in cash) or
• Llog (cep, lda, 0, nt) has been sent to l : LLog (so L

returns mn to cardholder) and L has received rcnt

with hcnt=Hash(lda::cep::nt::rcnt) (negating mln).
"mln provides guarantee that load acquirer owes

transaction amount to card issuer" (CEPS)

Jan Jürjens, TU Munich: Critical Systems Development 152

Flaw

Theorem. L does not provide load acquirer
security against adversaries of type
insider with

Modification: use asymmetric key in ,
include signature certifying .

Verify this version wrt. above conditions.

Jan Jürjens, TU Munich: Critical Systems Development 153

Further applications

• Analysis of multi-layer security protocol
for web application of major German
bank

• Tool for Analysis of SAP access control
configuration

• Risk analysis of critical business
processes for Basel II / KontraG

• …

Jan Jürjens, TU Munich: Critical Systems Development 154

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 155

Java Security

Originally (JDK 1.0): sandbox.

Too simplistic and restrictive.

JDK 1.2/1.3: more fine-grained security control,
signing, sealing, guarding objects, . . .)

BUT: complex, thus use is error-prone.

Jan Jürjens, TU Munich: Critical Systems Development 156

Java Security policies

Permission entries consist of:

• protection domains (i. e. URL's and keys)
• target resource (e.g. files on local machine)
• corresponding permissions (e.g. read, write,

execute)

Jan Jürjens, TU Munich: Critical Systems Development 157

Signed and Sealed Objects

Need to protect integrity of objects used as
authentication tokens or transported across
JVMs.

A SignedObject contains an object and its
signature.

Similarly, need confidentiality.

A SealedObject is an encrypted object.

Jan Jürjens, TU Munich: Critical Systems Development 158

Guarded Objects

java.security.GuardedObject protects access
to other objects.
• access controlled by getObject method
• invokes checkGuard method on the

java.security.Guard that is guarding access
• If allowed: return

reference. Otherwise:
SecurityException

Jan Jürjens, TU Munich: Critical Systems Development 159

Problem: Complexity
• Granting of permission depends on execution context.
• Access control decisions may rely on multiple threads.
• A thread may involve several protection domains.
• Have method doPrivileged() overriding execution

context.
• Guarded objects defer access control to run-time.
• Authentication in presence of adversaries can be subtle.
• Indirect granting of access with capabilities (keys).

Difficult to see which objects are granted permission.
use UMLsec

→

⇒

Jan Jürjens, TU Munich: Critical Systems Development 160

Design Process
(1) Formulate access control requirements for

sensitive objects.
(2) Give guard objects with appropriate access

control checks.
(3) Check that guard objects protect objects

sufficiently.
(4) Check that access control is consistent with

functionality.
(5) Check mobile objects are sufficiently

protected.

Jan Jürjens, TU Munich: Critical Systems Development 161

Reasoning

Theorem.
Suppose access to resource according to

Guard object specifications granted only to
objects signed with K.

Suppose all components keep secrecy of K.

Then only objects signed with K are granted
access.

Jan Jürjens, TU Munich: Critical Systems Development 162

Example: Financial Application

Internet bank, Bankeasy, and financial advisor, Finance, offer
services to local user. Applets need certain Privileges (step1).
• Applets from and signed by bank read and write financial data

between 1 pm and 2 pm.
• Applets from and signed by Finance use micropayment key five times

a week.

Jan Jürjens, TU Munich: Critical Systems Development 163

Financial Application: Class diagram

Sign and seal objects sent over Internet for
Integrity and confidentiality.

GuardedObjects control access.

Jan Jürjens, TU Munich: Critical Systems Development 164

Financial Application: Guard objects (step 2)

timeslot true between
1pm and 2pm.

weeklimit true until
access granted five
times; inc ThisWeek
increments counter.

Jan Jürjens, TU Munich: Critical Systems Development 165

Financial Application: Validation
Guard objects give sufficient protection (step 3).

Proposition. UML specification for guard objects only
grants permissions implied by access permission
requirements.

Access control consistent with functionality (step 4).
Includes:

Proposition. Suppose applet in current execution
context originates from and signed by Finance. Use
of micropayment key requested (and less than five
times before). Then permission granted.

Mobile objects sufficiently protected (step 5), since
objects sent over Internet are signed and sealed.

Jan Jürjens, TU Munich: Critical Systems Development 166

CORBA access control

Object invocation access policy controls access
of a client to a certain object via a certain
method.

Realized by ORB and Security Service.
Use access decision functions to decide

whether access permitted. Depends on
• called operation,
• privileges of the principals in whose account

the client acts,
• control attributes of the target object.

Jan Jürjens, TU Munich: Critical Systems Development 167

Example: CORBA access control with UMLsec

Jan Jürjens, TU Munich: Critical Systems Development 168

Further Applications

• Analysis of multi-layer security protocol
for web application of major German bank

• Analysis of SAP access control
configurations for major German bank

• Risk analysis of critical business
processes (for Basel II / KontraG)

• …

Jan Jürjens, TU Munich: Critical Systems Development 169

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 170

Tool-support: Concepts

Meaning of diagrams stated informally in (OMG
2003).

Ambiguities problem for
• tool support
• establishing behavioral properties (safety,

security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

Jan Jürjens, TU Munich: Critical Systems Development 171

Formal semantics for UML: How

Diagrams in context (using subsystems).
Model actions and internal activities explicitly.

Message exchange between objects or
components (incl. event dispatching).

For UMLsec/safe: include adversary/failure
model arising from threat scenario in
deployment diagram.

Use Abstract State Machines (pseudo-code).

Jan Jürjens, TU Munich: Critical Systems Development 172

Tool-supported analysis

Choose drawing tool for UML
specifications

Analyze specifications via XMI (XML
Metadata Interchange)

skip compar.

Jan Jürjens, TU Munich: Critical Systems Development 173

UML Drawing Tools

Wide range of existing tools.

Consider some, selected under following criteria
(Shabalin 2002):

• Support for all (UMLsec/safe-) relevant
diagram types.

• Support for custom UML extensions.
• Availability (test version, etc).
• Prevalence on the market.

Jan Jürjens, TU Munich: Critical Systems Development 174

Selected Tools

• Rational Rose. Developed by major participant
in development of UML; market leader.

• Visio for Enterprise Architect. Part of Microsoft
Developer Studio .NET.

• Together. Often referenced as one of the best
UML tools.

• ArgoUML. Open Source Project, therefore
interesting for academic community.
Commercial variant Poseidon.

Jan Jürjens, TU Munich: Critical Systems Development 175

Comparison

Evaluated features:
Support for custom UML extensions.
• Model export; standards support; tool

interoperability.
• Ability to enforce model rules, detect errors,

etc.
• User interface quality.
• Possibility to use the tool for free for academic

institutions.

Jan Jürjens, TU Munich: Critical Systems Development 176

Rational Rose (Rational Software Corporation)

One of the oldest on the market.
+ Free academic license.
+ Widely used in the industry.
+ Export to different XMI versions.
 Insufficient support for UML extensions (custom

stereotypes yes; tags and constraints no).
- Limited support for checking syntactic correctness.
- Very inconvenient user interface. Bad layout control.
- Lack of compatibility between versions and with other
Rational products for UML modelling.

Jan Jürjens, TU Munich: Critical Systems Development 177

Together from TogetherSoft

Widely used in the development community. Very
good round-trip engineering between the UML
model and the code.

+ Free academic license.
+ Written in Java, therefore platform-independent.
+ Nice, intuitive user interface.
+ Export to different XMI versions; recommendations

which for which tool.
- Insufficient support for UML extensions (custom

stereotypes yes; tags and constraints no).

Jan Jürjens, TU Munich: Critical Systems Development 178

Visio from Microsoft Corporation

Has recently been extended with UML editing support

+ Good user interface
+ Full support for UML extensions
+ Very good correspondence to UML standard.

Checks dynamically for syntactic correctness;
suggestions for fixing errors

- No free academic license
- Proprietary, undocumented file format;

very limited XMI export
- No round-trip engineering support.

No way back after code generation

Jan Jürjens, TU Munich: Critical Systems Development 179

Choice: ArgoUML / Poseidon

ArgoUML: Open Source Project. Commercial
extension Poseidon (Gentleware), same
internal data format

+ Open Source
+ Written in Java, therefore

platform-independent
+ XMI default model format
+ Poseidon: solid mature product with good

UML specification support

Jan Jürjens, TU Munich: Critical Systems Development 180

Tool-supported analysis
Commercial modelling tools: so far mainly

syntactic checks and code-generation.

Goal: more sophisticated analysis; connection
to verification tools.

Several possibilities:

• General purpose language with integrated XML
parser (Perl, …)

• Special purpose XML parsing language (XSLT, …)

• Data Binding (Castor; XMI: e.g. MDR)

Jan Jürjens, TU Munich: Critical Systems Development 181

Data-binding with MDR

MDR: MetaData Repository,
Netbeans library (www.netbeans.org)

Extracts data from XMI file into Java
Objects, following UML 1.4 meta-model.

Access data via methods.

Advantage: No need to worry about XML.

Jan Jürjens, TU Munich: Critical Systems Development 182

MDR Standards

• MOF (Meta Object Facility)
Abstract format for describing metamodels

• XMI (XML Metadata Interchange)
Defines XML format for a MOF metamodel

• JMI (Java Metadata Interface)
Defines mapping from MOF to Java

Jan Jürjens, TU Munich: Critical Systems Development 183

MDR Services

• Load and Store a MOF Metamodel
(XMI format)

• Instantiate and Populate a Metamodel
(XMI format)

• Generate a JMI (Java Metadata Interface)
Definition for a Metamodel

• Access a Metamodel Instance

Jan Jürjens, TU Munich: Critical Systems Development 184

UML Processing

MDRMOF
[UML 1.4] UML 1.4

MyUml

MyApp

3: generate

JMI

1: 01-02-15 .xml (UML 1.4 M etamodel)

2: instantiate

4: MyUml.xmi

Jan Jürjens, TU Munich: Critical Systems Development 185

MOF Architecture
• Meta-Metamodel (M3)

– defined by OMG
• Metamodels (M2)

– user-defined
– e.g. UML 1.5, MOF, CWM
– can be created with uml2mof

• Business Model (M1)
– instances of Metamodels
– e.g. UML class diagram

• Information (M0)
– instance of model
– e.g. implementation of UML

modelled classes in Java

Jan Jürjens, TU Munich: Critical Systems Development 186

MOF (Meta Object Facility)

OMG Standard for Metamodeling

(Bob Marley, 1975) (Bonn)
- Running Program

Data

Person, House, City
- UML modelModel

Class, Attribute, Dependency
- UML (as language), CWMMetamodel

MetaClass, MetaAssociation
- MOF Model

Meta-
Metamodel

skip details

Jan Jürjens, TU Munich: Critical Systems Development 187

JMI: MOF Interfaces
• IDL mapping for

manipulating Metadata
– API for manipulating

information contained in
an instance of a
Metamodel

– MOF is MOF compliant!
– Metamodels can be

manipulated by this IDL
mapping

– JMI is MOF to Java
mapping

– JMI has same
functionality

• Reflective APIs
– manipulation of

complex information
– can be used without

generating the IDL
mapping

– MDR has
implemented these
interfaces

Jan Jürjens, TU Munich: Critical Systems Development 188

MDR Repository: Loading Models
• Metamodel is

instance of another
Metamodel

• Loading Model =
Loading Metamodel

• Needed Objects:
– MDRepository
– MofPackage
– XMISaxReaderImpl

• Java Code-Snippet:
MDRepository rep;
UmlPackage uml;
// Objekte erzeugen:
rep =

MDRManager.getDefault().getDefaultRepository()
;

reader =
(XMISaxReaderImpl)Lookup.getDefault().lookup(

XmiReader.class);

// loading extent:
uml = (UmlPackage)rep.getExtent(„name“);

// creating Extent:
uml = (UmlPackage)rep.createExtent(„name“);

// loading XMI:
reader.read(„url“, MofPackage);,

Jan Jürjens, TU Munich: Critical Systems Development 189

• Requires open
Repository and
Package

• Requires JMI
Interfaces

• Example: Loading
UML Class:

Iterator it =
uml.getCore().getUmlClass(
).refAllOfClass().iterator
();

while (it.hasNext()) {
UmlClass uc =
(umlClass)it.next();

// .. do anything with
UmlClass ..

}

MDR Repository: Reading Data

Jan Jürjens, TU Munich: Critical Systems Development 190

• Part of Netbeans IDE
• Browse Repositories
• Create Instances
• Load XMI Data
• Generate JMI

Interfaces
• Shows

– Extents
– Metamodels
– Instances

Netbeans MDR Explorer

Jan Jürjens, TU Munich: Critical Systems Development 191

Jan Jürjens, TU Munich: Critical Systems Development 192

Tool

Currently implementing web-interface (see
http://www4.in.tum.de/~umlsec and
demo after this presentation).

Upload UML model (as .xmi file) on
website. Tool analysis model for
included criticality requirements.
Download report and UML model with
highlighted weaknesses.

Jan Jürjens, TU Munich: Critical Systems Development 193

Connection with analysis tool

Industrial CASE tool with UML-like notation:
AUTOFOCUS (http://autofocus.
informatik.tu-muenchen.de)

• Simulation
• Validation (Consistency, Testing, Model Checking)
• Code Generation (e.g. Java, C, Ada)
• Connection to Matlab

Connect UML tool to underlying analysis
engine.

Jan Jürjens, TU Munich: Critical Systems Development 194

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 195

Tool-support: Test-generation

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements

Jan Jürjens, TU Munich: Critical Systems Development 196

Conformance testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, but probably once and for all]

Works independently of criticality
requirements.

Jan Jürjens, TU Munich: Critical Systems Development 197

Conformance testing: Problems

• Complete test-coverage usually infeasible.
Need to somehow select test-cases.

• Can only test code against what is
contained in the behavioral model. Usually,
model is more abstract than code. So may
have „blind spots“ in the code.

For both reasons, may miss critical test-
cases.

Jan Jürjens, TU Munich: Critical Systems Development 198

Criticality testing

Shortcoming of classical model-based
test-generation (conformance testing)
motivates „criticality testing“ (e.g.,
papers by Jürjens, Wimmel at PSI’01,
ASE’01, ICFEM’02).

Goal: model-based test-generation
adequate for (security-, safety-) critical
systems.

Jan Jürjens, TU Munich: Critical Systems Development 199

Criticality testing: Strategies

Strategies:
• Ensure test-case selection from behavioral

models does not miss critical cases: Select
according to information on criticality
(„internal“ criticality testing).

• Test code against possible environment
interaction generated from external parts of
the model (e.g. deployment diagram with
information on physical environment).

Jan Jürjens, TU Munich: Critical Systems Development 200

Internal Criticality Testing

Need behavioral semantics of used
specification language (precise enough to be
understood by a tool).

Here: semantics for simplified fragment of UML
in „pseudo-code“ (ASMs).

Select test-cases according to criticality
annotations in the class diagrams.

Test-cases: critical selections of intended
behavior of the system.

Jan Jürjens, TU Munich: Critical Systems Development 201

External Criticality Testing

Generate test-sequences representing the
environment behaviour from the criticality
information in the deployment diagrams.

[For more details on criticality testing: can
include talks mentioned above here.]

Jan Jürjens, TU Munich: Critical Systems Development 202

Some resources
Book: Jan Jürjens, Secure Systems Development with

UML, Springer-Verlag, due 2003

Follow-on Tutorials: Sept: FORTE (BERLIN); Oct:
Informatik (Frankfurt), ASE (Montreal), SNDP
(Lübeck), LADC (Sao Paulo); Nov: WWW/Internet
(Algarve), FMOODS (Paris), ICSTEST-E (Bilbao) …

Special SoSyM issue on Critical Systems Development
with UML

CSDUML’03 @ UML’03 conference (Oct. in SFO)

More information (slides, tool etc.):
http://www4.in.tum.de/~juerjens/csdumltut
(user Participant, password Iwasthere)

Jan Jürjens, TU Munich: Critical Systems Development 203

Finally

We are always interested in industrial
challenges for our tools, methods,
and ideas to solve practical problems.
More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Thanks for your attention !

Jan Jürjens, TU Munich: Critical Systems Development 204

BREAK !

Note:

We are always interested in industrial
challenges for our tools, methods,
and ideas to solve practical problems.
More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Jan Jürjens, TU Munich: Critical Systems Development 205

Roadmap
Prologue
UML
UMLsafe
Security-critical systems
UMLsec: The profile
Security analysis

Security patterns
UMLsec case studies
Java security, CORBAsec
Tools
Model-based Testing

Jan Jürjens, TU Munich: Critical Systems Development 206

Backup

Jan Jürjens, TU Munich: Critical Systems Development 207

IEC 61508 (1)

IEC 61508: Functional safety of
electrical/electronic/programmable
electronic safety-related systems

Strategy: derive safety requirements from
a hazard and risk analysis and to design
the system to meet those safety
requirements, taking all possible causes
of failure into account.

Jan Jürjens, TU Munich: Critical Systems Development 208

IEC 61508 (2)
• Concept: An understanding of the system and its

environment is developed.
• Overall scope definition: The boundaries of the system and

its environment are determined, and the scope of the hazard
and risk analysis is specified.

• Hazard and risk analysis: Hazards and hazardous events of
the system, the event sequences leading to the hazardous
events, and the risks associated with the hazardous events
are determined.

• Overall safety requirements: The specification for the overall
safety requirements is developed in order to achieve the
required functional safety.

• Safety requirements allocation: The safety functions
contained in the overall safety requirements specification are
allocated to the safety-related system, and a safety integrity
level is allocated to each safety function.

Jan Jürjens, TU Munich: Critical Systems Development 209

IEC 61508 (3)
• Overall operation and maintenance planning: A plan is

developed for operating and maintaining the system, and the
required functional safety is ensured to be maintained during
operation and maintenance.

• Overall safety validation planning: A plan for the overall
safety validation of the system is developed.

• Overall installation and commissioning planning: Plans,
ensuring that the required functional safety is achieved, are
developed for the installation and commissioning of the
system.

• Safety-related systems, E/E/PES: The E/E/PES safety-
related system is created conforming to the safety
requirements specification.

• Safety-related systems, other technology: Other technology
safety-related systems are created to meet the requirements
specified for such systems (outside scope of the standard).

Jan Jürjens, TU Munich: Critical Systems Development 210

IEC 61508 (4)
• External risk reduction facilities: External risk reduction

facilities are created to meet the requirements specified for
such facilities (outside scope of the standard).

• Overall installation and commissioning: The E/E/PES safety-
related system is installed and commissioned.

• Overall safety validation: The E/E/PES safety-related system
is validated to meet the overall safety requirements
specification.

• Overall operation, maintenance and repair: The system is
operated, maintained and repaired in order to ensure that the
required functional safety is maintained.

• Overall modification and retrofit: The functional safety of the
system is ensured to be appropriate both during and after
modification and retrofit.

Jan Jürjens, TU Munich: Critical Systems Development 211

IEC 61508 (5)
• Decommissioning or disposal: The functional safety

of the system is ensured to be appropriate during
and after decommissioning or disposing of the
system.

