
2

1

Critical Systems

Development with UML:

Methods and Tools
Jan Jürjens

Software & Systems Engineering

TU Munich, Germany

juerjens@in.tum.de

http://www.jurjens.de/jan
Jan Jürjens, TU Munich: Critical Systems Development with UML 2

Personal introduction + history

Me: Leading the Competence Center for IT-Security at

Software & Systems Engineering, TU Munich

• Extensive collaboration with industry (BMW,

HypoVereinsbank, T-Systems, Deutsche Bank,

Siemens, Infineon, Allianz, …)

• PhD in Computer Science from Oxford Univ.,

Masters in Mathematics from Bremen Univ.

• Numerous publications incl. 1 book on the subject

This tutorial: part of series of 30 tutorials at

international conferences. Continuously improved

(please fill in feedback forms).

Jan Jürjens, TU Munich: Critical Systems Development with UML 3

Critical Systems Development

High quality development of critical

systems (dependable, security-

critical, real-time,...) is difficult.

Many systems developed, deployed,

used that do not satisfy their

criticality requirements, sometimes

with spectacular failures.

Jan Jürjens, TU Munich: Critical Systems Development with UML 4

Quality vs. cost

Systems on which human life and

commercial assets depend need careful

development.

Systems operating under possible

system failure or attack need to be

free from weaknesses.

Correctness in conflict with cost.

Thorough methods of system design

not used if too expensive.

Jan Jürjens, TU Munich: Critical Systems Development with UML 5

Model-based Development

Goal: easen transition

from human ideas to

executed systems.

Increase quality with

bounded time-to-

market and cost.

Requirements

Models

Code

Jan Jürjens, TU Munich: Critical Systems Development with UML 6

Model-based Development

Requirements

Models

Code

Requirements

Models

Code

Verify

Codegen. Testgen.

Combined strategy:

• Verify models against

requirements

• Generate code from

models where
reasonable

• Write code and

generate test-

sequences otherwise.

2

2

Jan Jürjens, TU Munich: Critical Systems Development with UML 7

Using UML

UML: unprecedented opportunity for
high-quality and cost- and time-efficient
critical systems development:

• De-facto standard in industrial modeling:
large number of developers trained in UML.

• Relatively precisely defined (given the user
community).

• Many tools (drawing specifications,
simulation, …).

Jan Jürjens, TU Munich: Critical Systems Development with UML 8

Challenges

• Adapt UML to critical system
application domains.

• Correct use of UML in the application
domains.

• Conflict between flexibility and unambiguity
in the meaning of a notation.

• Improving tool-support for critical systems
development with UML (analysis, …).

Jan Jürjens, TU Munich: Critical Systems Development with UML 9

UML for CSD: Goals

Extensions for critical systems development.

• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

critical systems engineering as checklist

• make available to developers not specialized

in critical systems
• consider critical requirements from early

design phases, in system context

• make certification cost-effective

Jan Jürjens, TU Munich: Critical Systems Development with UML 10

The CSDUML profiles

Recurring critical requirements,
failure/adversary scenarios, concepts
offered as stereotypes with tags on
component-level.

Use associated constraints to evaluate
specifications and indicate possible
weaknesses.

Ensures that UML specification provides
desired level of critical requirements.

Link to code via test-sequence generation.

Jan Jürjens, TU Munich: Critical Systems Development with UML 11

This tutorial

Background knowledge on using UML for

critical systems development.
• UML basics, including extension mechanisms.

• Extensions of UML (UMLsafe, UMLsec, ...)

• UML as a formal design technique.

• Model-based testing.

• Tools.

• Case studies.

Concentrate on safety and security.

Generalize to other application domains.

Jan Jürjens, TU Munich: Critical Systems Development with UML 12

Before we start …

More material than useful to cover within the

given time frame.

Make selection based on your background /

interests:

• UML background (no, beginner, advanced)

• working background (industrial, academic)

• application domain interest (security,

safety)

2

3

Jan Jürjens, TU Munich: Critical Systems Development with UML 13

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 14

UML

Unified Modeling Language (UML):

• visual modelling for OO systems

• different views on a system

• high degree of abstraction possible

• de-facto industry standard (OMG)

• standard extension mechanisms

Jan Jürjens, TU Munich: Critical Systems Development with UML 15

A glimpse at UML

Jan Jürjens, TU Munich: Critical Systems Development with UML 16

Used fragment of UML

Use case diagram: discuss requirements of the
system

Class diagram: data structure of the system

Statechart diagram: dynamic component behaviour

Activity diagram: flow of control between components

Sequence diagram: interaction by message exchange

Deployment diagram: physical environment

Package/Subsystem: collect diagrams for system part

Current: UML 1.5 (released Mar 2003)

Jan Jürjens, TU Munich: Critical Systems Development with UML 17

UML run-through: Class diagrams

Class structure of system.

Classes with attributes and operations/signals;
relationships between classes.

Jan Jürjens, TU Munich: Critical Systems Development with UML 18

UML run-through: Statecharts

Dynamic behaviour of individual component.

Input events cause state change and output

actions.

2

4

Jan Jürjens, TU Munich: Critical Systems Development with UML 19

UML run–through: Activity diagrams

Specify the control flow between components within

the system, at higher degree of abstraction than

statecharts and sequence diagrams.

C:Card L:LSAM I:Issuer

c l

i

entry/nt:=0 entry/n:=0

nt:=nt+1
entry/

n:=n+1
entry/

Transitions

States

Objects

Synchronization
bar

[nt<limit] [n<limit]

Swimlanes

Jan Jürjens, TU Munich: Critical Systems Development with UML 20

Describe interaction between objects or

components via message exchange.

UML run-through: Sequence Diagrams

Jan Jürjens, TU Munich: Critical Systems Development with UML 21

UML run-through: Deployment diagrams

Describe the physical layer on which the

system is to be implemented.

Jan Jürjens, TU Munich: Critical Systems Development with UML 22

UML run-through: Package

May be used to organize model

elements into groups.

Jan Jürjens, TU Munich: Critical Systems Development with UML 23

UML extension mechanisms

Stereotype: specialize model element
using ≪label≫.

Tagged value: attach {tag=value} pair to

stereotyped element.

Constraint: refine semantics of

stereotyped element.

Profile: gather above information.

Jan Jürjens, TU Munich: Critical Systems Development with UML 24

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

2

5

Jan Jürjens, TU Munich: Critical Systems Development with UML 25

Security: Problems

„Blind“ use of mechanisms:

• Security often compro-

mised by circumventing

(rather than breaking)

them.

• Assumptions on system

context, physical environment.

• „Trust us, we use SSL !“ doesn‘t work

Jan Jürjens, TU Munich: Critical Systems Development with UML 26

Basic Security Requirements I

Secrecy

Information

Information

Integrity

Information

Availability

Jan Jürjens, TU Munich: Critical Systems Development with UML 27

Basic Security Requirements II

Information

Authenticity

Sender

Sender

Nonrepudiability

Informa-

tion

Jan Jürjens, TU Munich: Critical Systems Development with UML 28

Requirements on UML extension for security I

Mandatory requirements:

• Provide basic security requirements such as

secrecy and integrity.

• Allow considering different threat scenarios

depending on adversary strengths.

• Allow including important security concepts
(e.g. tamper-resistant hardware).

• Allow incorporating security mechanisms

(e.g. access control).

Jan Jürjens, TU Munich: Critical Systems Development with UML 29

Requirements on UML extension for security II

• Provide security primitives (e.g.
(a)symmetric encryption).

• Allow considering underlying physical
security.

• Allow addressing security management
(e.g. secure workflow).

Optional requirements: Include domain-specific
security knowledge (Java, smart cards,
CORBA, ...).

Jan Jürjens, TU Munich: Critical Systems Development with UML 30

UMLsec: general ideas

Activity diagram: secure control flow,
coordination

Class diagram: exchange of data
preserves security levels

Sequence diagram: security-critical interaction

Statechart diagram: security preserved
within object

Deployment diagram: physical security
requirements

Package: holistic view on security

2

6

Jan Jürjens, TU Munich: Critical Systems Development with UML 31

UMLsec profile (excerpt)

access control using

guard objects

guarded objects acc.

through guards.

Subsystemguarded

access

enforce fair

exchange

after start eventually

reach stop

start,

stop

packagefair exchange

basic datasec

requirements

provides secrecy,

integrity

subsystemdata

security

information flowprevents down-flowhighsubsystemno down-flow

structural interaction

data security

call, send respect

data security

subsystemsecure

dependency

assumes secrecydependencysecrecy

enforces secure

communication links

dependency security

matched by links

subsystemsecure links

Internet connectionlinkInternet

DescriptionConstraintsTagsBase classStereotype

Jan Jürjens, TU Munich: Critical Systems Development with UML 32

≪Internet≫, ≪encrypted≫, …

Kinds of communication links resp. system

nodes.

For adversary type A, stereotype s, have set

Threats (s)
�

{delete, read, insert, access}

of actions that adversaries are capable of.

Default attacker:
Internet

encrypted

LAN

smart card

{delete, read, insert}

{delete}��Threats ()Stereotype

A

default

Jan Jürjens, TU Munich: Critical Systems Development with UML 33

Requirements with use case diagrams

Capture security requirements

in use case diagrams.

Constraint: need to appear in

corresponding activity diagram.

Sales application

Business

sells goods

Customer

buys goods

«fair exchange»

Jan Jürjens, TU Munich: Critical Systems Development with UML 34

Example ≪fair exchange≫

Customer buys a good
from a business.

Fair exchange means:
after payment,
customer is

eventually either
delivered good or
able to reclaim
payment.

Reclaim

Deliver

«fair exchange»Purchase

Request good

BusinessCustomer

Wait until
delivery due

Pay

undelivered

Pick up

{start={Pay}} {stop={Reclaim,Pick up}}

delivered

Jan Jürjens, TU Munich: Critical Systems Development with UML 35

≪fair exchange≫

Ensures generic fair exchange condition.

Constraint: after a {start} state in activity

diagram is reached, eventually reach

{stop} state.

(Cannot be ensured for systems that an

attacker can stop completely.)

Jan Jürjens, TU Munich: Critical Systems Development with UML 36

Example ≪secure links≫

Given default adversary type, is ≪secure links≫

provided ?

«secure links»

server machineclient machine
get_password

browser

client apps
access control

web server

Remote access

«call»

«Internet»

«secrecy»

2

7

Jan Jürjens, TU Munich: Critical Systems Development with UML 37

≪secure links≫

Ensures that physical layer meets security

requirements on communication.

Constraint: for each dependency d with stereotype
s � {≪secrecy≫, ≪integrity≫} between

components on nodes n�m, have a
communication link l between

n and m with stereotype t such that

• if s = ≪secrecy≫: have read � Threats (t).

• if s = ≪integrity≫: have insert � Threats (t).

A

A

Jan Jürjens, TU Munich: Critical Systems Development with UML 38

Example ≪secure links≫

Given default adversary type, constraint
for stereotype ≪secure links≫ violated:

According to the Threatsdefault(Internet)
scenario, ≪Internet≫ link does not provide

secrecy against default adversary.

«secure links»

server machineclient machine
get_password

browser

client apps
access control

web server

Remote access

«call»

«Internet»

«secrecy»

Jan Jürjens, TU Munich: Critical Systems Development with UML 39

Example ≪secure dependency≫

≪secure dependency≫ provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}

Jan Jürjens, TU Munich: Critical Systems Development with UML 40

≪secure dependency≫

Ensure that ≪call≫ and ≪send≫

dependencies between components respect

security requirements on communicated data

given by tags {secrecy}, {integrity}.

Constraint: for ≪call≫ or ≪send≫ dependency

from C to D (and similarly for {integrity}):

• Msg in D is {secrecy} in C if and only if also in D.

• If msg in D is {secrecy} in C, dependency

stereotyped ≪secrecy≫.

Jan Jürjens, TU Munich: Critical Systems Development with UML 41

Example ≪secure dependency≫

Violates ≪secure dependency≫: Random

generator and ≪call≫ dependency do not give

security level for random() to key generator.

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}

Jan Jürjens, TU Munich: Critical Systems Development with UML 42

Example ≪no down-flow≫

≪no down–flow≫ provided ?

2

8

Jan Jürjens, TU Munich: Critical Systems Development with UML 43

≪no down–flow≫

Enforce secure information flow.

Constraint:

Value of any data specified in {secrecy}

may influence only the values of data

also specified in {secrecy}.

Formalize by referring to formal

behavioural semantics.

Jan Jürjens, TU Munich: Critical Systems Development with UML 44

Example ≪no down-flow≫

≪no down–flow≫ violated: partial information on

input of secret wm() returned by non-secret rx().

Jan Jürjens, TU Munich: Critical Systems Development with UML 45

Example ≪data security≫

Variant of TLS
(INFOCOM`99).

≪data security≫

against default
adversary
provided ?

Jan Jürjens, TU Munich: Critical Systems Development with UML 46

≪data security≫

Security requirements of data marked
≪critical≫ enforced against threat

scenario from deployment diagram.

Constraints:

Secrecy of {secrecy} data preserved.

Integrity of {integrity} data preserved.

Jan Jürjens, TU Munich: Critical Systems Development with UML 47

Example ≪data security≫

Variant of TLS
(INFOCOM`99).

Violates {secrecy}
of s
against default
adversary.

Jan Jürjens, TU Munich: Critical Systems Development with UML 48

Example ≪guarded access≫

Provides ≪guarded access≫:

Access to MicSi protected by MicGd.

2

9

Jan Jürjens, TU Munich: Critical Systems Development with UML 49

≪guarded access≫

Ensures that in Java, ≪guarded≫ classes

only accessed through {guard} classes.

Constraints:

• References of ≪guarded≫ objects

remain secret.

• Each ≪guarded≫ class has {guard}

class.

Jan Jürjens, TU Munich: Critical Systems Development with UML 50

Does UMLsec meet requirements?

Security requirements: ≪secrecy≫,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example ≪smart card≫.

Security mechanisms: E.g. ≪guarded access≫.

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.

Jan Jürjens, TU Munich: Critical Systems Development with UML 51

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 52

Tool-support: Concepts

Meaning of diagrams stated informally in (OMG

2003).

Ambiguities problem for

• tool support

• establishing behavioral properties (safety,

security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

Jan Jürjens, TU Munich: Critical Systems Development with UML 53

Formal semantics for UML: How

Diagrams in context (using subsystems).

Model actions and internal activities explicitly.

Message exchange between objects or

components (incl. event dispatching).

For UMLsec/safe: include adversary/failure

model arising from threat scenario in

deployment diagram.

Use Abstract State Machines (pseudo-code).

Jan Jürjens, TU Munich: Critical Systems Development with UML 54

Tool-supported analysis

Choose drawing tool for UML

specifications

Analyze specifications via XMI (XML

Metadata Interchange)

skip compar.

2

10

Jan Jürjens, TU Munich: Critical Systems Development with UML 55

Tool-supported analysis

Commercial modelling tools: so far mainly
syntactic checks and code-generation.

Goal: more sophisticated analysis; connection
to verification tools.

Several possibilities:

• General purpose language with integrated XML
parser (Perl, …)

• Special purpose XML parsing language (XSLT, …)

• Data Binding (Castor; XMI: e.g. MDR)

Jan Jürjens, TU Munich: Critical Systems Development with UML 56

Data-binding with MDR

MDR: MetaData Repository,

Netbeans library (www.netbeans.org)

Extracts data from XMI file into Java

Objects, following UML 1.4 meta-model.

Access data via methods.

Advantage: No need to worry about XML.

Jan Jürjens, TU Munich: Critical Systems Development with UML 57

Framework for CSDUML tools: viki

Implements functionality

– MDR wrapper

– File handling

– Properties management

– Tool management

Exposes interfaces

– IVikiFramework

– IMdrWrapper

– IAppSettings

Jan Jürjens, TU Munich: Critical Systems Development with UML 58

viki Tool

• Works in GUI and/or Text mode

• Implements interfaces

– IVikiToolCommandLine

• Text output only

– IVikiToolGui

• Output to JPanel + menu, buttons, etc

• Exposes set of commands

– Automatically imported by the framework

Jan Jürjens, TU Munich: Critical Systems Development with UML 59

Implementing tools

Exposes a set of commands.

Has its internal state (preserved between command

calls).

Every single command is not interactive (read user input

only at the beginning).

Framework and analysis tools accessible and available

at http://www4.in.tum.de/~umlsec .

Upload UML model (as .xmi file) on website. Analyse

model for included criticality requirements. Download

report and UML model with highlighted weaknesses.

Jan Jürjens, TU Munich: Critical Systems Development with UML 60

2

11

Jan Jürjens, TU Munich: Critical Systems Development with UML 61

Connection with analysis tool

Industrial CASE tool with UML-like notation:

AUTOFOCUS (http://autofocus.

informatik.tu-muenchen.de)

• Simulation

• Validation (Consistency, Testing, Model Checking)

• Code Generation (e.g. Java, C, Ada)

• Connection to Matlab

Connect UML tool to underlying analysis

engine.

Jan Jürjens, TU Munich: Critical Systems Development with UML 62

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 63

Security Analysis

Specify protocol participants as processes

following Dolev, Yao 1982: In addition to

expected participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public
network,

• injects messages that it can produce into the

public network

Jan Jürjens, TU Munich: Critical Systems Development with UML 64

Security Analysis

Model classes of adversaries.

May attack different parts of the system

according to threat scenarios.

Example: insider attacker may intercept

communication links in LAN.

To evaluate security of specification,

simulate jointly with adversary model.

Jan Jürjens, TU Munich: Critical Systems Development with UML 65

Security Analysis II

Keys are symbols, crypto-algorithms are

abstract operations.

• Can only decrypt with right keys.

• Can only compose with available

messages.

• Cannot perform statistical attacks.

Jan Jürjens, TU Munich: Critical Systems Development with UML 66

Expressions

Exp: term algebra generated by Var Keys Data and

• _ :: _ (concatenation) and empty expression �,
• { _ } _ (encryption)

• Dec () (decryption)

• Sign () (signing)

• Ext_() (extracting from signature)

• Hash(_) (hashing)

by factoring out the equations and

(for K Keys).

U U

∈

2

12

Jan Jürjens, TU Munich: Critical Systems Development with UML 67

Abstract adversary

memory
logic

A B

a
d
v
e

rs
a
ry

* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

Jan Jürjens, TU Munich: Critical Systems Development with UML 68

Adversary: Simulation

A BAdversary

m(x)

Adversary

knowledge:
k-1, y,

m(x)

x

return({z}k)

[arg
b,1,1

= x]

{z}k, z

return({y::x}z)

Jan Jürjens, TU Munich: Critical Systems Development with UML 69

Abstract adversary

Specify set of initial knowledge of an

adversary of type A. Let be the

Exp-subalgebra generated by and

the expressions received after n+1st

iteration of the protocol.

Definition (Dolev, Yao 1982).

S keeps secrecy of M against attackers

of type A if there is no n with M .∈

Jan Jürjens, TU Munich: Critical Systems Development with UML 70

Example: secrecy

A B
{m}

K
::K

A B
{m}

K

Against attacker who can read messages:

• Security of {m}K::K not preserved

• Security of {m}K preserved

Jan Jürjens, TU Munich: Critical Systems Development with UML 71

Example: secrecy

A B

{K}
PubB

{m}
K

• Security of m is not preserved against an

attacker who can delete and insert messages

• Security of m is preserved against an attacker

who can listen, but not alter the link

Jan Jürjens, TU Munich: Critical Systems Development with UML 72

Security analysis in first-order logic

Idea: approximate set of possible data

values flowing through system from

above.

Predicate knows(E) meaning that the

adversary may get to know E during the

execution of the protocol.

For any secret s, check whether can

derive knows(s) (using Prolog, Setheo).

2

13

Jan Jürjens, TU Munich: Critical Systems Development with UML 73

First-order logic: basic rules

For initial adversary knowledge (K0): Define

knows(E) for any E initially known to the

adversary (protocol-specific).

For evolving knowledge (Kn) define

∀ E1,E2.(knows(E1)∧ knows(E2) ⇒
knows(E1::E2) ∧ knows({E1}E2) ∧

knows(DecE2(E1)) ∧ knows(SignE2 (E1)) ∧

knows(ExtE2 (E1)))

∀ E.(knows(E) ⇒

knows(head(E)) ∧ knows(tail(E)))

Jan Jürjens, TU Munich: Critical Systems Development with UML 74

Example: Proposed Variant of TLS (SSL)

Apostolopoulos, Peris, Saha; IEEE Infocom 1999

Goal: send secret s protected by session key Kj.

Jan Jürjens, TU Munich: Critical Systems Development with UML 75

TLS Variant: Physical view

Deployment diagram.

Jan Jürjens, TU Munich: Critical Systems Development with UML 76

TLS Variant: Structural view

Class diagram

Jan Jürjens, TU Munich: Critical Systems Development with UML 77

TLS Variant: Coordination view

Activity diagram.
Jan Jürjens, TU Munich: Critical Systems Development with UML 78

TLS Variant: Interaction view

Sequence diagram.

2

14

Jan Jürjens, TU Munich: Critical Systems Development with UML 79

Security protocols into 1st order logic

Sequence diagram: Each line of form

[cond(argi,…,argj)] � exp(argi,…,argj)

(where arg1,… are all messages exchanged during

one protocol run) is translated to:

∀ expi. (knows(exp1) ∧ … ∧ knows(expn) ∧

cond(exp1,…,expn) ⇒
knows(exp(exp1,…,expn)))

Adversary knowledge set approximated from above:

abstract from senders, receivers, message order, …

� Find all attacks, may have false positives.

Jan Jürjens, TU Munich: Critical Systems Development with UML 80

TLS Variant: Translation

knows(Ni) ∧ …
∧ ∀ exp… . (knows(expS,1,3) ∧ knows(expS,1,2)

∧ snd(ExtexpS,1,2(expS,1,3)) = expS,1,2

� knows(“arguments of resp method”)
∧ …

Jan Jürjens, TU Munich: Critical Systems Development with UML 81

Surprise

Add knows(KA)∧ knows(KA
-1) (general

previous knowledge of own keys).

Then can derive knows(s) (!).

That is: C||S does not preserve secrecy of

s against adversaries whose initial

knowledge contains KA, KA
-1.

Man-in-the-middle attack.

Jan Jürjens, TU Munich: Critical Systems Development with UML 82

The attack

Jan Jürjens, TU Munich: Critical Systems Development with UML 83

The fix

Jan Jürjens, TU Munich: Critical Systems Development with UML 84

Security proof

Theorem. C||S preserves the secrecy of s

against adversaries with “reasonable”

previous knowledge.

2

15

Jan Jürjens, TU Munich: Critical Systems Development with UML 85

Secure channel abstractions

So far, usually concentrated on specific

properties of protocols in isolation.

Need to refine security properties so protocol is

still secure in system context. Surprisingly
problematic.

Motivates research towards providing secure

channel abstractions to use security protocols

securely in the system context.

Jan Jürjens, TU Munich: Critical Systems Development with UML 86

Secure channel: approach

• Define a secure channel abstraction.

• Define concrete secure channel (protocol).

• Show simulates the abstraction.

Give conditions under which it is secure to

substitute channel abstractions by concrete

protocols.

Jan Jürjens, TU Munich: Critical Systems Development with UML 87

Secure channel abstraction

„Ideal“ of a secure channel:

Take S⊗ R as secure channel abstraction.

Trivially secure in absence of adversaries.

Jan Jürjens, TU Munich: Critical Systems Development with UML 88

Concrete secure channel

Simple security protocol: encrypt under

exchanged session key

Jan Jürjens, TU Munich: Critical Systems Development with UML 89

Concrete secure channel II

Jan Jürjens, TU Munich: Critical Systems Development with UML 90

Faithful representation ?

Is S‘⊗ R‘ equivalent to S⊗ R in presence

of adversary ? No: delay possible. But:

Theorem. S‘⊗ R‘ equivalent to S⊗ R in

presence of adversary with „reasonable“

previous knowledge.

Theorem. S‘⊗ R‘ preserves secrecy of d

against such adversaries.

2

16

Jan Jürjens, TU Munich: Critical Systems Development with UML 91

Demo

Jan Jürjens, TU Munich: Critical Systems Development with UML 92

Java Security

Originally (JDK 1.0): sandbox.

Too simplistic and restrictive.

JDK 1.2/1.3: more fine-grained security control,

signing, sealing, guarding objects, . . .)

BUT: complex, thus use is error-prone.

Jan Jürjens, TU Munich: Critical Systems Development with UML 93

Java Security policies

Permission entries consist of:

• protection domains (i. e. URL's and keys)

• target resource (e.g. files on local machine)

• corresponding permissions (e.g. read, write,
execute)

Jan Jürjens, TU Munich: Critical Systems Development with UML 94

Signed and Sealed Objects

Need to protect integrity of objects used as

authentication tokens or transported across

JVMs.

A SignedObject contains an object and its

signature.

Similarly, need confidentiality.

A SealedObject is an encrypted object.

Jan Jürjens, TU Munich: Critical Systems Development with UML 95

Guarded Objects

java.security.GuardedObject protects access

to other objects.

• access controlled by getObject method

• invokes checkGuard method on the
java.security.Guard that is guarding access

• If allowed: return
reference. Otherwise:
SecurityException

Jan Jürjens, TU Munich: Critical Systems Development with UML 96

Problem: Complexity

• Granting of permission depends on execution context.

• Access control decisions may rely on multiple threads.

• A thread may involve several protection domains.

• Have method doPrivileged() overriding execution
context.

• Guarded objects defer access control to run-time.

• Authentication in presence of adversaries can be subtle.

• Indirect granting of access with capabilities (keys).

Difficult to see which objects are granted permission.

use UMLsec

→

⇒

2

17

Jan Jürjens, TU Munich: Critical Systems Development with UML 97

Design Process

(1) Formulate access control requirements for
sensitive objects.

(2) Give guard objects with appropriate access
control checks.

(3) Check that guard objects protect objects
sufficiently.

(4) Check that access control is consistent with
functionality.

(5) Check mobile objects are sufficiently
protected.

Jan Jürjens, TU Munich: Critical Systems Development with UML 98

Reasoning

Theorem.

Suppose access to resource according to

Guard object specifications granted only to
objects signed with K.

Suppose all components keep secrecy of K.

Then only objects signed with K are granted

access.

Jan Jürjens, TU Munich: Critical Systems Development with UML 99

Example: Financial Application

Internet bank, Bankeasy, and financial advisor, Finance, offer

services to local user. Applets need certain Privileges (step1).
• Applets from and signed by bank read and write financial data

between 1 pm and 2 pm.

• Applets from and signed by Finance use micropayment key five times
a week.

Jan Jürjens, TU Munich: Critical Systems Development with UML 100

Financial Application: Class diagram

Sign and seal objects sent over Internet for

Integrity and confidentiality.

GuardedObjects control access.

Jan Jürjens, TU Munich: Critical Systems Development with UML 101

Financial Application: Guard objects (step 2)

timeslot true between
1pm and 2pm.

weeklimit true until

access granted five

times; inc ThisWeek

increments counter.

Jan Jürjens, TU Munich: Critical Systems Development with UML 102

Financial Application: Validation

Guard objects give sufficient protection (step 3).

Proposition. UML specification for guard objects only
grants permissions implied by access permission
requirements.

Access control consistent with functionality (step 4).
Includes:

Proposition. Suppose applet in current execution
context originates from and signed by Finance. Use
of micropayment key requested (and less than five
times before). Then permission granted.

Mobile objects sufficiently protected (step 5), since
objects sent over Internet are signed and sealed.

2

18

Jan Jürjens, TU Munich: Critical Systems Development with UML 103

CORBA access control

Object invocation access policy controls access

of a client to a certain object via a certain

method.
Realized by ORB and Security Service.

Use access decision functions to decide

whether access permitted. Depends on

• called operation,
• privileges of the principals in whose account

the client acts,

• control attributes of the target object.

Jan Jürjens, TU Munich: Critical Systems Development with UML 104

Example: CORBA access control with UMLsec

Jan Jürjens, TU Munich: Critical Systems Development with UML 105

Further Applications

• Analysis of multi-layer security protocol
for web application of German bank

• Analysis of SAP access control
configurations for German bank

• Biometric authentication protocol for
German Telekom

• Automotive telematic application for
German car manufacturer

• …

Jan Jürjens, TU Munich: Critical Systems Development with UML 106

Rules of prudent security engineering

Saltzer, Schroeder (1975):

Design principles for security-critical

systems.

Check how to enforce these with UMLsec.

Jan Jürjens, TU Munich: Critical Systems Development with UML 107

Economy of mechanism

Keep the design as simple and small as

possible.

Often systems made complicated to make them

(look) secure.

Method for reassurance may reduce this

temptation.

Payoffs from formal evaluation may increase
incentive for following the rule.

Jan Jürjens, TU Munich: Critical Systems Development with UML 108

Fail-safe defaults

Base access decisions on permission rather

than exclusion.

Example: secure

log-keeping for
audit control in

Common

Electronic Purse

Specifications
(CEPS).

2

19

Jan Jürjens, TU Munich: Critical Systems Development with UML 109

Complete mediation

Every access to every object must be checked

for authority.

E.g. in Java: use guarded
objects. Use UMLsec to

ensure proper use of

guards.

More feasibly, mediation

wrt. a set of sensitive
objects.

Jan Jürjens, TU Munich: Critical Systems Development with UML 110

Open design

The design should not be secret.

Method of reassurance may help to

develop systems whose security does

not rely on the secrecy of its design.

Jan Jürjens, TU Munich: Critical Systems Development with UML 111

Separation of privilege

A protection mechanism that requires two

keys to unlock it is more robust and

flexible than one that allows access to

the presenter of only a single key.

Example: signature of two or more principals

required for privilege. Formulate requirements
with activity diagrams.

Verify behavioural specifications wrt. them.

Jan Jürjens, TU Munich: Critical Systems Development with UML 112

Least privilege

Every program and every user of the system

should operate using the least set of

privileges necessary to complete the job.

Least privilege: every proper diminishing of

privileges gives system not satisfying

functionality requirements.

Can make precise and check this.

Jan Jürjens, TU Munich: Critical Systems Development with UML 113

Least common mechanism

Minimize the amount of mechanism

common to more than one user and

depended on by all users.

Object-orientation:

• data encapsulation

• data sharing well-defined (keep at

necessary minimum).

Jan Jürjens, TU Munich: Critical Systems Development with UML 114

Psychological acceptability

Human interface must be designed for ease of
use, so that users routinely and automatically

apply the protection mechanisms correctly.

Wrt. development process: ease of use in

development of secure systems.

User side: e.g. performance evaluation

(acceptability of performance impact of
security).

2

20

Jan Jürjens, TU Munich: Critical Systems Development with UML 115

Discussion

No absolute rules, but warnings.

Violation of rules symptom of potential

trouble; review design to be sure that

trouble accounted for or unimportant.

Design principles reduce number and

seriousness of flaws.

Jan Jürjens, TU Munich: Critical Systems Development with UML 116

Security Patterns

Security patterns: use UML to encapsulate knowledge

of prudent security engineering.

Example:

Does not preserve security of account balance.

Jan Jürjens, TU Munich: Critical Systems Development with UML 117

Solution: Wrapper Pattern

Technically, pattern application is

transformation of specification.

Use wrapper pattern to ensure that no low

read after high write.

Can check this is secure (once and for all).

Jan Jürjens, TU Munich: Critical Systems Development with UML 118

Secure channel pattern: problem

To keep d secret, must be sent encrypted.

Jan Jürjens, TU Munich: Critical Systems Development with UML 119

Secure channel pattern: (simple) solution

Exchange certificate and send encrypted data
over Internet.

Jan Jürjens, TU Munich: Critical Systems Development with UML 120

Layered Security Protocols

• Protocol on higher layer uses services of

protocol on lower layer.

• Big question: security properties additive ?

• Desirable: secure channel abstraction.

client authenticity

confidentiality, integrity, server authenticity

confidentiality, … + client authenticity

= ?

2

21

Jan Jürjens, TU Munich: Critical Systems Development with UML 121

Here: Bank application

• Security analysis of web-based banking
application, to be put to commercial use
(clients fill out and sign digital order forms).

• In cooperation with major German bank.

• Layered security protocol
– first layer: SSL protocol.

– second layer: client authentication protocol

• Main security requirements:
– personal data confidential.

– orders not submitted in name of others.

Jan Jürjens, TU Munich: Critical Systems Development with UML 122

The Application II

• Two layer architecture.

• When user logs on, an SSL-connection is

established (first layer).

– Provides secrecy, integrity, server authentication

but no client authentication (this version).

• Custom-made protocol on top of SSL for

client authentication.

• Session key generated by SSL used to

encrypt messages on second layer.

Jan Jürjens, TU Munich: Critical Systems Development with UML 123

SSL Protocol

Provided security services:

• Secure data transmission.

– Integrity of data.

– Confidentiality of data.

• Authentication of the server against the client.

Verify using model-checker.

Jan Jürjens, TU Munich: Critical Systems Development with UML 124

Authentication protocol

Provided security service:

• Authentication of the client against the bank’s

server.

• Was not provided by SSL because the

underlying software did not support this
feature.

Jan Jürjens, TU Munich: Critical Systems Development with UML 125

Authentication protocol

A
u
th

e
n
ti
c
a
ti
o

n
T

ra
n
s
a
c
ti
o

n

Jan Jürjens, TU Munich: Critical Systems Development with UML 126

Layered Security Analysis

• Adjust adversary model to account for SSL

security properties.

• Justify that specialised adversary model

wrt. top-level protocol is as powerful as

generic adversary wrt. protocol

composition.

• Verify top-level protocol wrt. specialised

adversary.

• Implies verification of protocol composition.

2

22

Jan Jürjens, TU Munich: Critical Systems Development with UML 127

Verification of the Auth. protocol 1

• Authentication:

– It’s not possible for the adversary to

authenticate under a wrong identity against

the web server (verification: 2 hours 40
minutes).

• Transaction:

– It’s not possible for the adversary to get the

confidential client’s data (verification: 2

hours 50 minutes).

Jan Jürjens, TU Munich: Critical Systems Development with UML 128

Insight

Protocol layering indeed additive wrt.

security properties in this particular case.

Generalize to classes of protocols and

security requirements.

Jan Jürjens, TU Munich: Critical Systems Development with UML 129

Common Electronic Purse Specifications

Global electronic purse standard (90% of market).

Smart card contains account balance. Chip performs
cryptographic operations securing the transactions.

More fraud protection than credit cards (transaction-
bound authorisation).

Jan Jürjens, TU Munich: Critical Systems Development with UML 130

Load protocol

Unlinked, cash-based load transaction (on-line).

Load value onto card using cash at load device.

Load device contains Load Security Application
Module (LSAM): secure data processing and
storage.

Card account balance adjusted; transaction
data logged and sent to issuer for financial
settlement.

Uses symmetric cryptography.

Jan Jürjens, TU Munich: Critical Systems Development with UML 131

Load protocol

Jan Jürjens, TU Munich: Critical Systems Development with UML 132

Load protocol: Physical view

2

23

Jan Jürjens, TU Munich: Critical Systems Development with UML 133

Load protocol: Structural view

Jan Jürjens, TU Munich: Critical Systems Development with UML 134

Load protocol: Coordination view

Jan Jürjens, TU Munich: Critical Systems Development with UML 135

Load protocol: Interaction view

Jan Jürjens, TU Munich: Critical Systems Development with UML 136

Security Threat Model

Card, LSAM, issuer security module assumed
tamper-resistant.

Intercept communication links, replace
components.

Possible attack motivations:

• Cardholder: charge without pay

• Load acquirer: keep cardholder's money

• Card issuer: demand money from load
acquirer

May coincide or collude.

Jan Jürjens, TU Munich: Critical Systems Development with UML 137

Audit security

No direct communication between card and

cardholder. Manipulate load device display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions completed

without exception).

Jan Jürjens, TU Munich: Critical Systems Development with UML 138

Security conditions (informal)

Cardholder security If card appears to have
been loaded with m according to its logs,
cardholder can prove to card Issuer that a
load acquirer owes m to card issuer.

Load acquirer security Load acquirer has to pay
m to card issuer only if load acquirer has
received m from cardholder.

Card issuer security Sum of balances of
cardholder and load acquirer remains
unchanged by transaction.

2

24

Jan Jürjens, TU Munich: Critical Systems Development with UML 139

Load acquirer security

Suppose card issuer I possesses
mln=Signrn(cep::nt::lda::mn::s1::hcnt::hln::h2ln) and
card C possesses rln, where hln = Hash
(lda::cep::nt::rln).

Then after execution either of following hold:

• Llog(cep,lda,mn,nt) has been sent to l:LLog (so load
acquirer L has received and retains mn in cash) or

• Llog (cep, lda, 0, nt) has been sent to l : LLog (so L
returns mn to cardholder) and L has received rcnt

with hcnt=Hash(lda::cep::nt::rcnt) (negating mln).

"mln provides guarantee that load acquirer owes
transaction amount to card issuer" (CEPS)

Jan Jürjens, TU Munich: Critical Systems Development with UML 140

Flaw

Theorem. L does not provide load acquirer

security against adversaries of type

insider.

Modification: use asymmetric key in ,

include signature certifying .

Verify this version wrt. above conditions.

Jan Jürjens, TU Munich: Critical Systems Development with UML 141

Further applications

• Analysis of SAP access control

configurations

• Biometric authentication system of

German telecommunication company

• Automobile emergency application of
German car company

• Electronic signature architecture of
German insurance company

Jan Jürjens, TU Munich: Critical Systems Development with UML 142

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 143

Safety: Some Terminology

• Reliability: probability of a failure-free

functioning of a software component for a

specified period in a specified environment

• Safety: software execution without
contributing to hazards

• Failures: perceived deviation of output values

from expected values

• Faults: possible cause of failures in hardware,

code or other artefacts

Jan Jürjens, TU Munich: Critical Systems Development with UML 144

Safety

Safety-critical systems: five failure condition

categories: catastrophic, hazardous, major,

minor, no effect.

Corresponding safety levels A - E (DO-178B

standards in avionics).

Safety goals: via the maximum allowed failure

rate. For high degree of safety, testing not
sufficient (1 failure per 100,000 years).

2

25

Jan Jürjens, TU Munich: Critical Systems Development with UML 145

Fault-tolerance

Redundancy model determines which

level of redundancy provided.

Goal: no hazards in presence of single-

point failures.

In the following treatment:

• focus on safety-critical systems which in

particular have to be reliable

• focus on fault-tolerance aspects of safety

Jan Jürjens, TU Munich: Critical Systems Development with UML 146

Embedded Systems

In particular, embedded software increasingly
used in safety-critical systems (flexibility):

• Automotive

• Avionics

• Aeronautics

• Robotics, Telemedicine

• …

Our treatment of safety-critical systems in
particular applies to embedded systems.

Jan Jürjens, TU Munich: Critical Systems Development with UML 147

Faults vs. Failures

Faults: existing deficiencies of a given system
(e.g. hardware faults).

Failures: resulting deficient behaviour of the
system.

For example, a faulty communication line may
result in a communication failure.

Failures may be considered relative to system
requirements (e.g., in real-time system,
inacceptable communication delay can be
considered a „failure“).

Jan Jürjens, TU Munich: Critical Systems Development with UML 148

From UMLsec to UMLsafe

Safety = „Security against stupid adversaries“

Security = „Safety for paranoids“

Adversaries in security correspond to failures in

safety.

Replace adversary model in UMLsec by failure
model to get UMLsafe.

Jan Jürjens, TU Munich: Critical Systems Development with UML 149

Failure semantics modelling

For redundancy model R, stereotype

s�{≪crash/performance≫, ≪value≫}, have set

FailuresR(s)�{delay(t), loss(p), corrupt(q)}, with

interpretation:

• t: expected maximum time delay,

• p: probability that value not delivered within t,

• q: probability that value delivered in time

corrupted

(in each case incorporating redundancy).

Or use ≪risk≫ stereotype with {failure} tag.

Jan Jürjens, TU Munich: Critical Systems Development with UML 150

Example

Suppose redundancy model R uses controller

with redundancy 3 and the fastest result.

Then could take:

• delay(t): t delay of fastest controller,

• loss(p): p probability that fastest result not

delivered within t,

• corrupt(q): q probability that fastest result is

corrupted

(each wrt. the given failure semantics).

2

26

Jan Jürjens, TU Munich: Critical Systems Development with UML 151

≪guarantee≫

Describe guarantees required from

communication dependencies resp. system
components.

Tags: {goal} with value subset of

{immediate(t), eventual(p), correct(q)}, where

• t: expected maximum time delay,

• p: probability that value is delivered within t,

• q: probability that value delivered in time not

corrupted.

Jan Jürjens, TU Munich: Critical Systems Development with UML 152

Example ≪reliable links≫

Given redundancy model none, when is
≪reliable links≫ fulfilled ?

Jan Jürjens, TU Munich: Critical Systems Development with UML 153

≪reliable links≫

Physical layer should meet reliability requirements on

communication given redundancy model R.

Constraint: For dependency d stereotyped
≪guarantee≫ and each corresponding

communication link l with stereotype s:

• if {goal} has immediate(t) as value then
delay(t‘) ∈ FailuresR(s) implies t‘�t,

• if {goal} has eventual(p) as value then
loss(p‘) ∈ FailuresR(s) implies p‘�1-p, and

• if {goal} has correct(q) as value then
corruption(q‘) ∈ FailuresR(s) implies q‘�1-q.

Jan Jürjens, TU Munich: Critical Systems Development with UML 154

Example ≪reliable links≫

Given redundancy model none, ≪reliable links≫

fulfilled iff T ≥ expected delay according to

Failuresnone(≪crash/performance≫).

Jan Jürjens, TU Munich: Critical Systems Development with UML 155

Example ≪reliable dependency≫

Assuming immediate(t) ∈ goals(realtime),
≪reliable dependency≫ provided ?

«critical»Controller

{realtime={measure()}}

switch(): Bool

Sensor

«call»

measure(): Value

Sensor/controller
«safe dependency»

switch(): Bool

Jan Jürjens, TU Munich: Critical Systems Development with UML 156

≪reliable dependency≫

Communication dependencies should respect
safety requirements on ≪critical≫ data.

For each safety level {l} for ≪critical≫ data, have

goals(l)⊆{immediate(t), eventual(p), correct(q)}.
Constraint: for each dependency d from C to D

stereotyped ≪guarantee≫:

• Goals on data in D same as those in C.

• Goals on data in C that also appears in D met

by guarantees of d.

2

27

Jan Jürjens, TU Munich: Critical Systems Development with UML 157

Example ≪reliable dependency≫

Assuming immediate(t) ∈ goals(realtime), violates
≪reliable dependency≫, since Sensor and
dependency do not provide realtime goal
immediate(t) for measure() required by Controller.

«critical»Controller

{realtime={measure()}}

switch(): Bool

Sensor

«call»

measure(): Value

Sensor/controller
«safe dependency»

switch(): Bool

Jan Jürjens, TU Munich: Critical Systems Development with UML 158

Execution semantics

Behavioral interpretation of a UML subsystem:

(1) Takes input events.

(2) Events distributed from input and link

queues between subcomponents to
intended recipients where they are
processed.

(3) Output distributed to link or output queues.

(4) Failure model applied as follows.

Jan Jürjens, TU Munich: Critical Systems Development with UML 159

Failure models

lql
n: messages on link l delayed further n time units.

ph
n: probability of failure at nth iteration in history h.

For link l stereotyped s where loss(p)∈FailuresR(s),

• history may give lql
0:=∅; then append p to (ph

n)n∈N,

• or no change, then append 1-p.

For link l stereotyped s where corruption(q)∈FailuresR(s),
• history may give lql

0:={■}; then append q,

• or no change; append 1-q.

For link l stereotyped s with delay(t)∈FailuresR(s), and
lql

0≠∅, history may give lql
n:=lql

0 for n�t; append 1/t .

Then for each n, lql
n:=lql

n+1.

Jan Jürjens, TU Munich: Critical Systems Development with UML 160

≪safe behaviour≫

Ensures that system behavior in presence of failure
model provides required safety {goals}:

For any execution trace h, any transmission of a value
along a communication dependency stereotyped
≪guarantee≫, the following constraints should
hold, given the safety goal:

• eventual(p): With probability at least p, …

• immediate(t): … every value is delivered after at
most t time steps.

• correct(q): Probability that a delivered value is
corrupted during transmission is at most 1-q.

Jan Jürjens, TU Munich: Critical Systems Development with UML 161

Example ≪containment≫

Containment satisfied ?

«containment»

WheelsOutWheelsIn

fuel(x:Data):Data

wheelsin(true)

wheelsin(false)

wheelsin(x:Bool)

{safe={fuel}}Fuel controller

Fuel control

fuel(x:Data):Data

wheelsin(x:Bool)

fuel(x)/return(d.x)fuel(x)/return(c.x)

wheelsin(true) wheelsin(false)

Jan Jürjens, TU Munich: Critical Systems Development with UML 162

≪containment≫

Prevent indirect corruption of data.

Constraint:

Value of any data element d may only be
influenced by data whose requirements
attached to ≪critical≫ imply those of d.

Make precise by referring to execution
semantics (view of history associated
with safety level).

2

28

Jan Jürjens, TU Munich: Critical Systems Development with UML 163

Example ≪containment≫

Violates containment because a {safe} value

depends on un{safe} value.

Can check this mechanically.

«containment»

WheelsOutWheelsIn

fuel(x:Data):Data

wheelsin(true)

wheelsin(false)

wheelsin(x:Bool)

{safe={fuel}}Fuel controller

Fuel control

fuel(x:Data):Data

wheelsin(x:Bool)

fuel(x)/return(d.x)fuel(x)/return(c.x)

wheelsin(true) wheelsin(false)

Jan Jürjens, TU Munich: Critical Systems Development with UML 164

Other checks

Have other consistency checks such as

• Is the software‘s response to out-of-

range values specified for every input ?

• If input arrives when it shouldn't, is a

response specified ?

…and other safety checks from the

literature.

Jan Jürjens, TU Munich: Critical Systems Development with UML 165

IEC 61508 (1)

IEC 61508: Functional safety of

electrical/electronic/programmable

electronic safety-related systems

Strategy: derive safety requirements from

a hazard and risk analysis and to design

the system to meet those safety

requirements, taking all possible causes

of failure into account.

Jan Jürjens, TU Munich: Critical Systems Development with UML 166

IEC 61508 (2)

• Concept: An understanding of the system and its
environment is developed.

• Overall scope definition: The boundaries of the system and
its environment are determined, and the scope of the hazard
and risk analysis is specified.

• Hazard and risk analysis: Hazards and hazardous events of
the system, the event sequences leading to the hazardous
events, and the risks associated with the hazardous events
are determined.

• Overall safety requirements: The specification for the overall
safety requirements is developed in order to achieve the
required functional safety.

• Safety requirements allocation: The safety functions
contained in the overall safety requirements specification are
allocated to the safety-related system, and a safety integrity
level is allocated to each safety function.

Jan Jürjens, TU Munich: Critical Systems Development with UML 167

IEC 61508 (3)

• Overall operation and maintenance planning: A plan is
developed for operating and maintaining the system, and the
required functional safety is ensured to be maintained during
operation and maintenance.

• Overall safety validation planning: A plan for the overall
safety validation of the system is developed.

• Overall installation and commissioning planning: Plans,
ensuring that the required functional safety is achieved, are
developed for the installation and commissioning of the
system.

• Safety-related systems, E/E/PES: The E/E/PES safety-
related system is created conforming to the safety
requirements specification.

• Safety-related systems, other technology: Other technology
safety-related systems are created to meet the requirements
specified for such systems (outside scope of the standard).

Jan Jürjens, TU Munich: Critical Systems Development with UML 168

IEC 61508 (4)

• External risk reduction facilities: External risk reduction
facilities are created to meet the requirements specified for
such facilities (outside scope of the standard).

• Overall installation and commissioning: The E/E/PES safety-
related system is installed and commissioned.

• Overall safety validation: The E/E/PES safety-related system
is validated to meet the overall safety requirements
specification.

• Overall operation, maintenance and repair: The system is
operated, maintained and repaired in order to ensure that the
required functional safety is maintained.

• Overall modification and retrofit: The functional safety of the
system is ensured to be appropriate both during and after
modification and retrofit.

2

29

Jan Jürjens, TU Munich: Critical Systems Development with UML 169

IEC 61508 (5)

• Decommissioning or disposal: The functional safety

of the system is ensured to be appropriate during

and after decommissioning or disposing of the

system.

Jan Jürjens, TU Munich: Critical Systems Development with UML 170

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 171

Some new concepts in UML 2.0

UML extended with concepts from UML

RT (Selic, Rumbaugh 1998).

Focus on software architecture.

New: capsules, ports, connectors.

Jan Jürjens, TU Munich: Critical Systems Development with UML 172

Capsules, ports, connectors

Capsules: architectural objects interacting
through signal-based boundary objects (ports).

Port: object implementing interface of capsule.
Associated with a protocol defining flow of
information.

Connector: abstract signal-based communication
channels between ports.

Functionality of capsule realized by associated
state machine.

Jan Jürjens, TU Munich: Critical Systems Development with UML 173

Example

From Selic, Rumbaugh 1998.

Jan Jürjens, TU Munich: Critical Systems Development with UML 174

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

2

30

Jan Jürjens, TU Munich: Critical Systems Development with UML 175

Tool-support: Test-generation

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements

Jan Jürjens, TU Munich: Critical Systems Development with UML 176

Conformance testing

Classical approach in model-based test-

generation (much literature).

Can be superfluous when using code-

generation [except to check your code-

generator, but probably once and for all]

Works independently of criticality

requirements.

Jan Jürjens, TU Munich: Critical Systems Development with UML 177

Conformance testing: Problems

• Complete test-coverage usually infeasible.

Need to somehow select test-cases.

• Can only test code against what is

contained in the behavioral model. Usually,

model is more abstract than code. So may

have „blind spots“ in the code.

For both reasons, may miss critical test-

cases.

Jan Jürjens, TU Munich: Critical Systems Development with UML 178

Criticality testing

Shortcoming of classical model-based

test-generation (conformance testing)

motivates „criticality testing“ (e.g.,

papers by Jürjens, Wimmel at PSI’01,

ASE’01, ICFEM’02).

Goal: model-based test-generation

adequate for (security-, safety-) critical

systems.

Jan Jürjens, TU Munich: Critical Systems Development with UML 179

Criticality testing: Strategies

Strategies:

• Ensure test-case selection from behavioral

models does not miss critical cases: Select

according to information on criticality
(„internal“ criticality testing).

• Test code against possible environment

interaction generated from external parts of

the model (e.g. deployment diagram with

information on physical environment).

Jan Jürjens, TU Munich: Critical Systems Development with UML 180

Internal Criticality Testing

Need behavioral semantics of used

specification language (precise enough to be

understood by a tool).

Here: semantics for simplified fragment of UML
in „pseudo-code“ (ASMs).

Select test-cases according to criticality

annotations in the class diagrams.

Test-cases: critical selections of intended

behavior of the system.

2

31

Jan Jürjens, TU Munich: Critical Systems Development with UML 181

External Criticality Testing

Generate test-sequences representing the

environment behaviour from the

criticality information in the deployment

diagrams.

Jan Jürjens, TU Munich: Critical Systems Development with UML 182

Some resources

Book: Jan Jürjens, Secure Systems
Development with UML, Springer-
Verlag, 2004

Tutorials: Sept.: SAFECOMP (Potsdam),
ASE (Linz).

Summer School Lecture: FOSAD
(Bertinoro, Italy, Sept.)

Workshop: CSDUML@UML04

More information (papers, slides, tool etc.):
http://www4.in.tum.de/~juerjens/csdumltut
(user Participant, password Iwasthere)

Jan Jürjens, TU Munich: Critical Systems Development with UML 183

Finally

We are always interested in industrial

challenges for our tools, methods,

and ideas to solve practical problems.

More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Thanks for your attention !

Jan Jürjens, TU Munich: Critical Systems Development with UML 184

BREAK !

Note:

We are always interested in industrial

challenges for our tools, methods,

and ideas to solve practical problems.

More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Jan Jürjens, TU Munich: Critical Systems Development with UML 185

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 186

2

32

Jan Jürjens, TU Munich: Critical Systems Development with UML 187

UML Drawing Tools

Wide range of existing tools.

Consider some, selected under following criteria

(Shabalin 2002):

• Support for all (UMLsec/safe-) relevant

diagram types.

• Support for custom UML extensions.

• Availability (test version, etc).

• Prevalence on the market.

Jan Jürjens, TU Munich: Critical Systems Development with UML 188

Selected Tools

• Rational Rose. Developed by major participant

in development of UML; market leader.

• Visio for Enterprise Architect. Part of Microsoft

Developer Studio .NET.

• Together. Often referenced as one of the best
UML tools.

• ArgoUML. Open Source Project, therefore

interesting for academic community.

Commercial variant Poseidon.

Jan Jürjens, TU Munich: Critical Systems Development with UML 189

Comparison

Evaluated features:

Support for custom UML extensions.

• Model export; standards support; tool
interoperability.

• Ability to enforce model rules, detect errors,
etc.

• User interface quality.

• Possibility to use the tool for free for academic
institutions.

Jan Jürjens, TU Munich: Critical Systems Development with UML 190

Rational Rose (Rational Software Corporation)

One of the oldest on the market.

+ Free academic license.

+ Widely used in the industry.

+ Export to different XMI versions.

- Insufficient support for UML extensions (custom

stereotypes yes; tags and constraints no).

- Limited support for checking syntactic correctness.

- Very inconvenient user interface. Bad layout control.

- Lack of compatibility between versions and with other

Rational products for UML modelling.

Jan Jürjens, TU Munich: Critical Systems Development with UML 191

Together from TogetherSoft

Widely used in the development community. Very

good round-trip engineering between the UML

model and the code.

+ Free academic license.

+ Written in Java, therefore platform-independent.

+ Nice, intuitive user interface.

+ Export to different XMI versions; recommendations

which for which tool.

- Insufficient support for UML extensions (custom

stereotypes yes; tags and constraints no).

Jan Jürjens, TU Munich: Critical Systems Development with UML 192

Visio from Microsoft Corporation

Has recently been extended with UML editing support

+ Good user interface

+ Full support for UML extensions

+ Very good correspondence to UML standard.
Checks dynamically for syntactic correctness;
suggestions for fixing errors

- No free academic license

- Proprietary, undocumented file format;
very limited XMI export

- No round-trip engineering support.
No way back after code generation

2

33

Jan Jürjens, TU Munich: Critical Systems Development with UML 193

Choice: ArgoUML / Poseidon

ArgoUML: Open Source Project. Commercial

extension Poseidon (Gentleware), same
internal data format

+ Open Source

+ Written in Java, therefore
platform-independent

+ XMI default model format

+ Poseidon: solid mature product with good
UML specification support

Jan Jürjens, TU Munich: Critical Systems Development with UML 194

Jan Jürjens, TU Munich: Critical Systems Development with UML 195

MDR Standards

• MOF (Meta Object Facility)

Abstract format for describing metamodels

• XMI (XML Metadata Interchange)

Defines XML format for a MOF metamodel

• JMI (Java Metadata Interface)

Defines mapping from MOF to Java

Jan Jürjens, TU Munich: Critical Systems Development with UML 196

MDR Services

• Load and Store a MOF Metamodel
(XMI format)

• Instantiate and Populate a Metamodel

(XMI format)

• Generate a JMI (Java Metadata Interface)

Definition for a Metamodel

• Access a Metamodel Instance

Jan Jürjens, TU Munich: Critical Systems Development with UML 197

UML Processing

MDR
MOF

[UML 1.4] UML 1.4

MyUml

MyApp

3: g
enerate

JMI

1: 01-02-15.xml (UML 1.4 Metamodel)

2: instantiate

4: MyUml.xm i

Jan Jürjens, TU Munich: Critical Systems Development with UML 198

MOF Architecture

• Meta-Metamodel (M3)

– defined by OMG

• Metamodels (M2)

– user-defined

– e.g. UML 1.5, MOF, CWM

– can be created with uml2mof

• Business Model (M1)

– instances of Metamodels

– e.g. UML class diagram

• Information (M0)

– instance of model

– e.g. implementation of UML
modelled classes in Java

2

34

Jan Jürjens, TU Munich: Critical Systems Development with UML 199

MOF (Meta Object Facility)

OMG Standard for Metamodeling

(Bob Marley, 1975) (Bonn)

- Running Program
Data

Person, House, City

- UML model
Model

Class, Attribute, Dependency

- UML (as language), CWM
Metamodel

MetaClass, MetaAssociation

- MOF Model

Meta-

Metamodel

skip details

Jan Jürjens, TU Munich: Critical Systems Development with UML 200

JMI: MOF Interfaces

• IDL mapping for
manipulating Metadata
– API for manipulating

information contained in
an instance of a
Metamodel

– MOF is MOF compliant!
– Metamodels can be

manipulated by this IDL
mapping

– JMI is MOF to Java
mapping

– JMI has same
functionality

• Reflective APIs

– manipulation of

complex information

– can be used without

generating the IDL

mapping

– MDR has

implemented these

interfaces

Jan Jürjens, TU Munich: Critical Systems Development with UML 201

MDR Repository: Loading Models

• Metamodel is
instance of another
Metamodel

• Loading Model =

Loading Metamodel

• Needed Objects:

– MDRepository

– MofPackage

– XMISaxReaderImpl

• Java Code-Snippet:
MDRepository rep;

UmlPackage uml;

// Objekte erzeugen:

rep =

MDRManager.getDefault().getDefaultRepository()

;

reader =

(XMISaxReaderImpl)Lookup.getDefault().lookup(

XmiReader.class);

// loading extent:

uml = (UmlPackage)rep.getExtent(„name“);

// creating Extent:

uml = (UmlPackage)rep.createExtent(„name“);

// loading XMI:

reader.read(„url“, MofPackage);,

Jan Jürjens, TU Munich: Critical Systems Development with UML 202

• Requires open
Repository and
Package

• Requires JMI

Interfaces

• Example: Loading
UML Class:

Iterator it =

uml.getCore().getUmlClass(

).refAllOfClass().iterator

();

while (it.hasNext()) {

UmlClass uc =

(umlClass)it.next();

// .. do anything with

UmlClass ..

}

MDR Repository: Reading Data

Jan Jürjens, TU Munich: Critical Systems Development with UML 203

• Part of Netbeans IDE

• Browse Repositories

• Create Instances

• Load XMI Data

• Generate JMI
Interfaces

• Shows
– Extents

– Metamodels

– Instances

Netbeans MDR Explorer

Jan Jürjens, TU Munich: Critical Systems Development with UML 204

2

35

Jan Jürjens, TU Munich: Critical Systems Development with UML 205

Roadmap

Prologue

UML

UMLsec

Security Analysis

UMLsafe

Towards UML 2.0

Model-based Testing

Tools

Jan Jürjens, TU Munich: Critical Systems Development with UML 206

Security Protocols

System distributed over untrusted networks.

„Adversary“ intercepts, modifies, deletes,
inserts messages.

Cryptography provides security.

Cryptographic Protocol: Exchange of messages

for distributing session keys, authenticating

principals etc. using cryptographic algorithms

Jan Jürjens, TU Munich: Critical Systems Development with UML 207

Security Protocols: Problems

Many protocols have vulnerabilities or subtleties

for various reasons

• weak cryptography

• core message exchange

• interfaces, prologues, epilogues

• deployment

• implementation bugs

Jan Jürjens, TU Munich: Critical Systems Development with UML 208

Using UML

Goal: transport results from formal methods to

security practice

Enable developers (not trained in formal

methods) to

• check correctness of hand-made security
protocols

• deploy protocols correctly in system context

• allow to analyze larger system parts beyond

protocols

Jan Jürjens, TU Munich: Critical Systems Development with UML 209

Formal semantics for UML: Why

Meaning of diagrams stated imprecisely in

(OMG 2001).

Ambiguities problem for

• tool support

• establishing behavioral properties (e.g.

security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

Jan Jürjens, TU Munich: Critical Systems Development with UML 210

Formal semantics for UML: How

Diagrams in context (using subsystems).

Model actions and internal activities explicitly.

Message exchange between objects or
components (incl. event dispatching).

For UMLsec: include adversary arising from

threat scenario in deployment diagram.

Use Abstract State Machines (pseudo-code).

2

36

Jan Jürjens, TU Munich: Critical Systems Development with UML 211

Security Analysis

Specify protocol participants as processes

following Dolev, Yao 1982: In addition to

expected participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public
network,

• injects messages that it can produce into the

public network

Jan Jürjens, TU Munich: Critical Systems Development with UML 212

Security Analysis

Model classes of adversaries.

May attack different parts of the system

according to threat scenarios.

Example: insider attacker may intercept

communication links in LAN.

To evaluate security of specification,

simulate jointly with adversary model.

Jan Jürjens, TU Munich: Critical Systems Development with UML 213

Security Analysis II

Keys are symbols, crypto-algorithms are

abstract operations.

• Can only decrypt with right keys.

• Can only compose with available

messages.

• Cannot perform statistical attacks.

Jan Jürjens, TU Munich: Critical Systems Development with UML 214

Expressions

Exp: term algebra generated by Var Keys Data and

• _ :: _ (concatenation) and empty expression �,
• { _ } _ (encryption)

• Dec () (decryption)

• Sign () (signing)

• Ext_() (extracting from signature)

• Hash(_) (hashing)

by factoring out the equations and

(for K Keys).

U U

∈

Jan Jürjens, TU Munich: Critical Systems Development with UML 215

Abstract adversary

memory
logic

A B

a
d
v
e

rs
a
ry

* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

Jan Jürjens, TU Munich: Critical Systems Development with UML 216

Adversary: Simulation

A BAdversary

m(x)

Adversary

knowledge:
k-1, y,

m(x)

x

return({z}k)

[arg
b,1,1

= x]

{z}k, z

return({y::x}z)

2

37

Jan Jürjens, TU Munich: Critical Systems Development with UML 217

Abstract adversary

Specify set of initial knowledge of an

adversary of type A. Let be the

Exp-subalgebra generated by and

the expressions received after n+1st

iteration of the protocol.

Definition (Dolev, Yao 1982).

S keeps secrecy of M against attackers

of type A if there is no n with M .∈

Jan Jürjens, TU Munich: Critical Systems Development with UML 218

Example: secrecy

A B
{m}

K
::K

A B
{m}

K

Against attacker who can read messages:

• Security of {m}K::K not preserved

• Security of {m}K preserved

Jan Jürjens, TU Munich: Critical Systems Development with UML 219

Example: secrecy

A B

{K}
PubB

{m}
K

• Security of m is not preserved against an

attacker who can delete and insert messages

• Security of m is preserved against an attacker

who can listen, but not alter the link

Jan Jürjens, TU Munich: Critical Systems Development with UML 220

Security analysis in first-order logic

Idea: approximate set of possible data

values flowing through system from

above.

Predicate knows(E) meaning that the

adversary may get to know E during the

execution of the protocol.

For any secret s, check whether can

derive knows(s) (using Prolog, Setheo).

Jan Jürjens, TU Munich: Critical Systems Development with UML 221

First-order logic: basic rules

For initial adversary knowledge (K0): Define

knows(E) for any E initially known to the

adversary (protocol-specific).

For evolving knowledge (Kn) define

∀ E1,E2.(knows(E1)∧ knows(E2) ⇒
knows(E1::E2) ∧ knows({E1}E2) ∧

knows(DecE2(E1)) ∧ knows(SignE2 (E1)) ∧

knows(ExtE2 (E1)))

∀ E.(knows(E) ⇒

knows(head(E)) ∧ knows(tail(E)))

Jan Jürjens, TU Munich: Critical Systems Development with UML 222

Example: Proposed Variant of TLS (SSL)

Apostolopoulos, Peris, Saha; IEEE Infocom 1999

Goal: send secret s protected by session key Kj.

2

38

Jan Jürjens, TU Munich: Critical Systems Development with UML 223

TLS Variant: Physical view

Deployment diagram.

Jan Jürjens, TU Munich: Critical Systems Development with UML 224

TLS Variant: Structural view

Class diagram

Jan Jürjens, TU Munich: Critical Systems Development with UML 225

TLS Variant: Coordination view

Activity diagram.
Jan Jürjens, TU Munich: Critical Systems Development with UML 226

TLS Variant: Interaction view

Sequence diagram.

Jan Jürjens, TU Munich: Critical Systems Development with UML 227

Security protocols into 1st order logic

Sequence diagram: Each line of form

[cond(argi,…,argj)] � exp(argi,…,argj)

(where arg1,… are all messages exchanged during

one protocol run) is translated to:

∀ expi. (knows(exp1) ∧ … ∧ knows(expn) ∧

cond(exp1,…,expn) ⇒
knows(exp(exp1,…,expn)))

Adversary knowledge set approximated from above:

abstract from senders, receivers, message order, …

� Find all attacks, may have false positives.

Jan Jürjens, TU Munich: Critical Systems Development with UML 228

TLS Variant: Translation

knows(Ni) ∧ …
∧ ∀ exp… . (knows(expS,1,3) ∧ knows(expS,1,2)

∧ snd(ExtexpS,1,2(expS,1,3)) = expS,1,2

� knows(“arguments of resp method”)
∧ …

2

39

Jan Jürjens, TU Munich: Critical Systems Development with UML 229

Surprise

Add knows(KA)∧ knows(KA
-1) (general

previous knowledge of own keys).

Then can derive knows(s) (!).

That is: C||S does not preserve secrecy of

s against adversaries whose initial

knowledge contains KA, KA
-1.

Man-in-the-middle attack.

Jan Jürjens, TU Munich: Critical Systems Development with UML 230

The attack

Jan Jürjens, TU Munich: Critical Systems Development with UML 231

The fix

Jan Jürjens, TU Munich: Critical Systems Development with UML 232

Security proof

Theorem. C||S preserves the secrecy of s

against adversaries whose initial knowledge

K satisfies the following.

Jan Jürjens, TU Munich: Critical Systems Development with UML 233

Secure channel abstractions

So far, usually concentrated on specific

properties of protocols in isolation.

Need to refine security properties so protocol is

still secure in system context. Surprisingly
problematic.

Motivates research towards providing secure

channel abstractions to use security protocols

securely in the system context.

Jan Jürjens, TU Munich: Critical Systems Development with UML 234

Secure channel: approach

• Define a secure channel abstraction.

• Define concrete secure channel (protocol).

• Show simulates the abstraction.

Give conditions under which it is secure to

substitute channel abstractions by concrete

protocols.

2

40

Jan Jürjens, TU Munich: Critical Systems Development with UML 235

Secure channel abstraction

„Ideal“ of a secure channel:

Take S⊗ℑR for ℑ:={send,receive} as secure
channel abstraction. Trivially secure in
absence of adversaries.

Jan Jürjens, TU Munich: Critical Systems Development with UML 236

Concrete secure channel

Simple security protocol: encrypt under

exchanged session key

Jan Jürjens, TU Munich: Critical Systems Development with UML 237

Concrete secure channel II

Jan Jürjens, TU Munich: Critical Systems Development with UML 238

Bisimulation

A binary relation R on processes is a
bisimulation iff () implies that for all

actions α,

• if →α then exists →α with and

• if →α then exists →α with .

, are bisimilar if there exists a bisimulation

R with .

QP R

Q'P' RP

P'P Q'P' R

Q Q'

Q Q'

P'

QP R
P Q

Jan Jürjens, TU Munich: Critical Systems Development with UML 239

Faithful representation ?

Is (R‘||S‘)⊗ℑ bisimilar to S⊗ℑR ?

No: delay possible. But:

Theorem. Suppose does not contain the

messages send, receive nor any value in
{K(S)-1,K(R)-1}∪ {Kn,{x::n}Kn:x∈ Exp∧ n∈NNNN} nor

SignK(R)
-1(K‘::n) unless K‘=Kn. Then

(R‘||S‘)⊗ℑ is bisimilar to (S⊗ℑR)⊗ b.

Theorem. (R‘||S‘) preserves secrecy of d
against such A.

A

A

A A

