
A Foundation for Tool-Supported Critical Systems Development with UML

Jan Jürjens∗and Pasha Shabalin
Software & Systems Engineering, TU München, Germany

juerjens@in.tum.de, shabalin@in.tum.de

Abstract

High quality development of critical systems poses seri-
ous challenges. Formal methods have been proposed to ad-
dress them, but their use in industry is not as wide-spread
as originally hoped. We thus propose to use the Uni£ed
Modeling Language (UML), the de-facto industry standard
speci£cation language, as a notation together with a for-
mally based tool-support for critical systems development.

We introduce UML Machines, which is a formal notation
designed to re¤ect properties of the UML execution seman-
tics relevant to criticality requirements. We use it to de£ne a
foundation that puts models for the different diagrams into
context and gives a precise meaning to mechanisms such as
message-passing between objects or components speci£ed
in different diagrams, while offering the possibility to ana-
lyze criticality requirements.

We present tool-support for this approach developed at
the TU München, which facilitates transfer of the method-
ology to industrial contexts.

Keywords. UML, critical systems, formal models of
object-oriented design, speci£cation, veri£cation, secure
computing, tool support.

1. Introduction

High quality development of critical systems (be it real-
time, security-critical or dependable systems) is dif£cult.
Many such systems are developed, deployed, and used that
do not satisfy their criticality requirements, sometimes with
spectacular failures. However, critical systems on whose
correct functioning human life and substantial commercial
assets depend on need to be developed especially carefully.

Unfortunately, in critical systems development, correct-
ness is often in con¤ict with cost. Where thorough methods
of system design pose high costs through personnel training
and use, they are all too often avoided. The Uni£ed Mod-
eling Language (UML) [8] offers an unprecedented oppor-

∗http://www4.in.tum.de/̃ juerjens . Supported within the Verisoft
Project of the German Ministry for Education and Research.

tunity for high-quality critical systems development that is
feasible in an industrial context:

• As the de-facto standard in industrial modeling, a large
number of developers is trained in UML.

• Compared to previous notations with a user commu-
nity of comparable size, UML is relatively precisely
de£ned.

Nevertheless, the UML semantics is given only in prose
form [8], leaving room for ambiguities. However, to pro-
vide advanced tool-support (for example, automated check-
ing of behavioral properties of a UML speci£cation) to as-
sist application of our approach in industry, we need a math-
ematically precise semantics for UML.

There has been a substantial amount of work towards
providing a formal semantics for UML diagrams (includ-
ing [3, 6, 17, 10, 5]; speci£cally, [1] gives a Statechart se-
mantics using Abstract State Machines which was a starting
point for the current work). However, most work only pro-
vides models for single UML diagrams in isolation. When
trying to give a precise mathematical meaning to whole
UML speci£cations, one needs to be able to combine the
formal models for the different kinds of diagrams. In this
paper, we provide a formal framework to support this using
UML Machines.

Our approach is based on Abstract State Machines
(ASMs) [2] where states are represented by algebras. We
use ASMs to present our semantics because this notation,
essentially a more formal pseudo-code, seems to be rel-
atively accessible. For a given proof tool (for example
the model-checker Spin, Prolog, or the automatic theorem
prover Setheo), we translate the semantics into the rele-
vant input notation (such as Promela, Horn formulas, or the
TPTP notation, resp.). We feel that this approach using an
intermediate representation in ASMs may be more ¤exible
and universally usable than directly using a notation closer
to a given input notation.

For our purpose, we use an extension of ASMs with
UML-type communication mechanisms called UML Ma-
chines, inspired by the Algebraic State Machines from [4].
Also, we de£ne the concept of UML Machine System

(UMS) that allows one to build up speci£cations in a mod-
ular way (corresponding to the use of UML subsystems).
We use this to de£ne a semantics for a simpli£ed fragment
of UML supporting the combined use of different kinds of
UML diagrams including actions, activities, and message-
passing between different diagrams, and which allows one
to easily include different adversary and failure models to
analyze speci£cations for criticality requirements.

Furthermore, we present work by the UMLsec group at
TU München aimed at the development of automated tools
for analyzing UML models for criticality requirements, to
facilitate technology transfer to industry.

The work presented here builds on previous work includ-
ing [11] but extends to diagram types not treated in [11]
(such as sequence diagrams) and to the development of tool-
supported for automated veri£cation.

Outline In Sect. 2, we recall the necessary de£nitions and
introduce the notion of UML Machine used for our seman-
tics. We show how several UML Machines can be com-
posed into a UML Machine System (UMS). In Sect. 3, we
sketch how we use our framework for a simpli£ed formal
semantics of UML combining different diagrams types at
the example of UML Sequence Diagrams. We show results
of our work towards tool support for the methodology in
Sect. 4. We end with pointers to related work, a conclusion
and indication of future work.

2. UML Machines and UML Machine Systems

UML Machines are based on the Abstract State Ma-
chines notion. We recall central concepts here, for a formal
de£nition see [2]. They are inspired by the Algebraic State
Machines from [4].

Abstract State Machines A state A is a non-empty set
X containing distinct elements true, false, and undef to-
gether with a set Voc(A) of function names with interpreta-
tions in the base set X . An Abstract State Machine (ASM)
consists of an initial state and an update rule, where the
variable assignment of the initial state sends each variable to
the value undef . An ASM is executed by iteratively £ring
the update rule. Thereby, its current state is updated; that
is, the interpretations of its functions are rede£ned in terms
of the previous interpretations. The syntax and informal se-
mantics of update rules is given inductively as follows (the
formal semantics can be found in [2]):

skip : causes no change.

f(s̄):=t : updates f at the tuple s̄ to map to the element t.

if g then R else S : If g holds, the rule R is executed,
otherwise S.

do− in− parallel R1, . . . , Rk enddo : Ri execute si-
multaneously, if for any two update rules f(s̄) := t

and f(s̄) := t′, we have t = t′; otherwise the execu-
tion stops.

seq R S endseq : R and S are executed sequentially.

loop v through list X R(v) : iteratively execute R(x)
for all x ∈ X .

case v of x1 : do R1 . . . xn : do Rn else S : exe-
cute by case distinction.

Extending ASMs to UML Machines We de£ne UML
Machines, an extension of ASMs with a UML-like commu-
nication mechanism that uses buffers. We will use UML
Machines to specify components of a system that inter-
act by exchanging messages from a set Events which are
dispatched from resp. received in multi-set buffers (output
queues resp. input queues).

De£nition 1 A UML Machine (A, inQuA, outQuA)
is given by an ASM A and two multi-set names
inQuA, outQuA ∈ Voc(A) such that the rules in A

change inQuA only by removing and outQuA only by
adding elements.

The set names inQuA, outQuA model the input buffer
and the output buffer of the UML Machine A. We assume
that at the initial state of the UML Machine, they always
have the value ∅.

The behavior of a UML Machine (A, inQuA, outQuA)
is captured in the following de£nition, where a multi-set
of input resp. output values represents the input resp. out-
put during a time interval of a given £nite length. Possible
non-determinism in the UML Machine rules leads to sets of
output sequences.

Let toinQuA(X)
def
= inQuA := inQuA] X . Given

a UML Machine (A, inQuA, outQuA), and a sequence ~I

of multi-sets, consider the UML Machine Behav(A(~I))

with the vocabulary Voc(Behav(A(~I)))
def
= Voc(A) ∪

{outlist(A)}, and the rule Behav(A(~I)) given in Fig. 1.

Rule Behav(A(~I))

loop I through list ~I

toinQuA(I)
Exec(A)
outlist(A) := outlist(A).outQuA

outQuA := ∅

Figure 1. Behavior of a UML Machine

For any given run r ∈ Run(Behav(A(~I))) of the UML
Machine Behav(A(~I)), after completion of r, outlist(A)
contains a sequence of multi-sets of values outlist(A)

r.

De£nition 2 The input/output behavior of a UML Machine
(A, inQuA, outQuA) is a function JAK() from £nite se-
quences of multi-sets of values to sets of sequences of multi-

sets of values de£ned by JAK(~I)
def
= {outlist(A)

r
: r ∈

Run(Behav(A(~I))).

Intuitively, given a sequence ~I of multi-sets of input val-
ues, the rule Behav(A(~I)) computes the set of possible se-
quences of multi-sets of output values by iteratively adding
each multi-set in ~I to inQuA, calling A, and recording the
multi-set of output values from outQuA in outlist(A).

We would like to build up UML speci£cations in a mod-
ular way, by combining a set of UML Machines together
with communication links connecting them to form a new
formal speci£cation. To achieve this, we de£ne the notion
of a UML Machine System (UMS). Our approach allows
a rather ¤exible treatment of the communication since the
UMS main loop (Fig. 2) can be modi£ed as necessary. For
example, our explicit way of modeling the communication
links and the messages exchanged over them allows mod-
eling exterior in¤uence on the communication within a sys-
tem (such as attacks on insecure connections, or quality-of-
service aspects of network).

De£nition 3 An UML Machine System (UMS) A =
(NameA,CompA,SchedA, LinksA,MsgsA) is given by

• a name NameA ∈ UMNames,

• a £nite set CompA of UML Machines called compo-
nents

• a UML Machine SchedA, the scheduler that may call
the components as subroutines,

• a set LinksA of two-element sets l ⊆ CompA, the com-
munication links between them, and

• a set of messages MsgsA ⊆ MsgNm that the UML
Machine System is ready to receive.

The set MsgNm consists of £nite sequences of names
n1.n2.nk where n1,. . . , nk−2 are names of UMSs,
nk−1 is a name of a UML Machine, and nk is the lo-
cal name of the message. We de£ne the set Events of
events to consist of terms of the form msg(exp1, . . . , expn)
where msg ∈ MsgNm is an n-ary message name and
exp1, . . . , expn ∈ Exp are expressions, the parameters or
arguments of the event (for a given set of expressions Exp).

We recursively de£ne the behavior of any UMS A as
a UML Machine 〈A〉. For any UML Machine A, we de-

£ne 〈A〉
def
= A. Given a UMS A, the UML Machine

Rule 〈A〉
seq

forall S with S ∈ CompA do

inQu〈S〉 := inQu〈S〉]
{{tail(e) : e ∈ (inQu〈A〉%MsgsA)]
⊎

l∈linksS
linkQu〈A〉(l) ∧ head(e) = S }}

inQu〈A〉 := ∅
〈SchedA〉
forall l with l ∈ LinksA do

linkQu〈A〉(l) := {{e ∈ outQu〈S〉 :
S ∈ CompA ∧ l = {head(e), Ai} }}

outQu〈A〉 := outQu〈A〉]
⊎

S∈CompA
{{tail(e) :

e ∈ outQuS ∧ head(e) = 〈A〉 }}
forall S with S ∈ CompA do

outQu〈S〉 := ∅
endseq

Figure 2. Main loop of a UML Machine System

〈A〉 models the joint execution of the components of A
and their communication by exchanging messages over the
links. The execution rule for〈A〉 is given in Fig. 2 (where

linksS
def
= {{A,B} ∈ LinksA : A = S} is the set of links

connected to S).

3. Formal Semantics for a Fragment of UML

We sketch our approach to de£ning a formal seman-
tics for UML models on the example of Sequence Dia-
grams. Further UML Diagrams are formalized similarly
[11] (where also more details about this approach can be
found).

In UML, messages can be synchronous (meaning that
the sender of the message passes the thread of control to the
receiver and receives it back together with the return mes-
sage) or asynchronous (meaning that the thread of control is
split in two, one each for the sender and the receiver). Ac-
cordingly, we partition the set of message names MsgNm

into sets of operations Op, signals Sig, and return mes-
sages Ret. Because of the space restrictions, here we only
give a formalization of the asynchronous communication.

In our model, every object or subsystem O has associated
multi-sets inQuO and outQuO (event queues). We model
sending a message msg = op(exp1, . . . , expn) ∈ Events

from an object S to an object R as follows:

(1) The object S places the message R.msg into its multi-
set outQuS .

(2) The dispatching component distributes the messages
from out-queues to the intended in-queues (while re-

moving the message head); in particular, R.msg is re-
moved from outQuS and msg added to inQuR.

(3) The object R removes msg from its in-queue and pro-
cesses its content.

This way of modeling communication allows for a very
¤exible treatment; for example, we can modify the UMS
main loop (Fig. 2) to take account of knowledge on the un-
derlying communication layer (such as security or perfor-
mance issues).

Objects may execute actions. We write Action for the
set of actions which are expressions of the following forms:

Send action: send(sig(a1, . . . , an)) for an n-ary signal
sig ∈ Sig and argument ai ∈ Exp.

Void action: nil

For any action a, we de£ne the expression
ActionRule(a) (where A is the UML machine in
which ActionRule(a) is executed).

ActionRule(send(e)) ≡
(

outQuA := outQuA] {{e }}
)

ActionRule(nil) ≡ skip

The set of Boolean expressions BoolExp is the set
of £rst-order logical formulae with equality statements be-
tween elements of Exp as atomic formulae.

3.1. Sequence diagrams

To demonstrate how behavioral diagrams can be in-
cluded in our framework for de£ning a formal semantics
for UML, we exemplarily consider a (again simpli£ed and
restricted) fragment of sequence diagrams.

For readability, the pre£x obj on the messages sent to an
object obj which is contained in a sequence diagram may
be omitted in that diagram (since it is implicit).

Abstract syntax of sequence diagrams A sequence dia-
gram D = (Obj(D), Links(D)) is given by

• a set Obj(D) of pairs (O,C) where O is an object
of class C whose interaction with other objects is de-
scribed in D and

• a sequence Links(D) consisting of elements of the
form l = (source(l), guard(l),msg(l), target(l))
where

– source(l) ∈ Obj(D) is the source object of the
link,

– guard(l) ∈ BoolExp is a Boolean expression
(the guard of the link),

– msg(l) ∈ Events is the message of the link, and

– target(l) ∈ Obj(D) is the target object of the
link.

Behavioral semantics We £x a sequence diagram

Smodeling the objects in Obj(S)
def
=

⋃

D∈S Obj(D) and
an object O ∈ Obj(S). Further we assume that the set
Var contains elements argO,l,n for each O ∈ Obj(S)
and numbers l and n, representing the nth argument of
the operation that is supposed to be the lth operation
received by O according to the set of sequence diagrams
S, and de£ne argsO,l = [argO,l,1, . . . , argO,l,k] (where
the operation is assumed to have k arguments). Then
we give the behavior of O as de£ned in S as a UML
machine (JS.OKSD, {inQuJS.OKSD}, {outQuJS.OKSD ,

finishedJS.OKSD}). The rule of the UML machine
JD.OKSD is given in Fig. 3.

Rule Exec(D .O)
if cncts = [] then finishedD.O := true

else

if source(head(cncts)) = O ∧ guard(head(cncts))
then

ActionRuleSD(msg(head(cncts)));
if target(head(cncts)) 6= O then

cncts := tail(cncts);
if target(head(cncts)) = O then

choose e with e ∈ inQuO∧
msgnm(msg(head(cncts))) = msgnm(e) do

inQuO := inQuO \ {{e }} ;
argsD,lnum := Args(e);
lnum := lnum+ 1;
if msgnm(e) ∈ Op then

sender(msgnm(e)) :=
sndr(e).sender(msgnm(e));

cncts := tail(cncts)

Figure 3. UML machine for sequence diagram

Given a sequence~l of links and an object O, de£ne ~lºO to
be the subsequence~l of those elements l with source(l) = O

or target(l) = O.

3.2. Reasoning about model properties

The UML Machines framework allows formally inspect-
ing the UML Model for certain properties. In case of a
security-critical system, these can be for example ”data se-
curity” (indicating that certain data item shall not leak out
of a system component). The desirable security properties

can be introduced in the model using UML extension (see
[12] for details) and further the whole model can be checked
for consistency, whether the required properties are met by
the design.

To investigate security properties of a system, it is ex-
tended with a subsystem modeling behavior of a potential
adversary. The notion of UMS allows its natural modeling.
We can create speci£c types of adversaries that attack dif-
ferent parts of the system in a speci£ed way. For example,
an attacker of type insider may be able to intercept the com-
munication links in a company-wide local area network. We
model the behavior of the adversary by de£ning a class of
UML Machines that can access the communication links of
the system in a speci£ed way. To evaluate the security of
the system with respect to the given type of adversary, we
consider the joint execution of the system with any UML
Machine in this class.

Security evaluation of speci£cations is done with respect
to a given type A of adversary. For this, in particular, one
has to specify a set Kp

A ⊆ Exp of previous knowledge of
the adversary type A. Also, Ka

A ⊆ Exp contains knowl-
edge that may arise from accessing components (see be-
low). We de£neK0

A = Ka
A∪K

p
A to be the initial knowledge

of any adversary of type A.
Given a UMS A we de£ne the set intA of (recursively)

contained components:

• for an UML Machine A, intA := {A} and

• for a UMS A, intA :=
⋃

B∈CompA
intB.

Similarly, for a UMS A we de£ne the set lksA of (recur-
sively) contained links:

• for an UML Machine A, lksA := ∅ and

• for a UMS A, lksA := LinksA ∪
⋃

B∈CompA
lksB.

To capture the capabilities of a possible attacker, we as-
sume that, given a UMSA, we have a function threatsAA(x)
that takes a component or link x ∈ intA ∪ lksA and a type
of adversary A and returns a set of strings threatsAA(x) ⊆
{delete, read, insert, access} under the following condi-
tions:

• for x ∈ intA, we have threatsAA(x) ⊆ {access},

• for x ∈ lksA, we have threatsAA(x) ⊆
{delete, read, insert}, and

• for l ∈ lksA with i ∈ l and threatsAA(i) = {access},
the equation threatsAA(l) = {delete, read, insert}
holds.

The idea is that threatsAA(x) speci£es the threat scenario
against a component or link x in the UML Machine Sys-
tem A that is associated with an adversary type A. On the

one hand, the threat scenario determines which data the ad-
versary can obtain by accessing components, on the other
hand, it determines, which actions the adversary is permit-
ted by the threat scenario to apply to the concerned links.
Thus each function threats() gives rise to the set of ac-
cessed data Ka

A mentioned above and a set of permitted ac-
tions permA:

• Ka
A consists of all expressions appearing in the speci-

£cation for any i ∈ intA with access ∈ threatsAA(i).

• permA consists of

– all actions deletel ≡ linkQuA(l) := ∅ for any
l ∈ lksA with delete ∈ threatsAA(l) (deletes all
elements from linkQuA(l)),

– all actions readl(m) ≡ m := linkQuA(l) for any
l ∈ lksA with read ∈ threatsAA(l) and any vari-
able name m (copies the content of linkQuA(l)
to the variable m), and

– all actions insertl(e) ≡ linkQuA(l) :=
linkQuA(l)]{{e }} for any l ∈ lksA with insert ∈
threatsAA(l) and any e ∈ K0

A (adds an element e

to linkQuA(l)).

Intuitively, permA consists of those actions that an adver-
sary of type A is capable of doing with respect to the multi-
set linkQuA(l) for any link l.

4. Tool support

To facilitate the application of our approach in industry,
automated tools for the analysis of UML models using the
suggested semantics are required. We describe a framework
that incorporates several such veri£ers currently developed
at the TU München.

Functionality We can group all the UML model features,
which can be veri£ed, into two major categories.

• Static features. Checkers for static features (for ex-
ample, a type-checking like enforcement of security
levels in class and deployment diagrams) can be im-
plemented directly.

• Dynamic features. Veri£cation of these properties re-
quires interfacing with a Model Checker. The relevant
elements of the UML speci£cation are translated into
the model-checker input language; the required model
properties are presented by Temporal Logic formulae.

At present there exist a veri£cation tool for the £rst group
of features, and implementation of the support for the Spin

Model Checker is in progress. The implemented function-
ality is publicly available through a webbased interface (see
http://www4.in.tum.de/csduml/interface/interface.html).

Accessing UML models On the technical level, the cen-
tral question is how to acquire and process UML models.
Most existing UML editing tools can store the model in a
XMI 1.2 (XML Metadata Interchange). However, process-
ing of a UML model directly on the XMI level leaves the
developer with a very abstract representation of the model.
Therefore libraries have been developed which provide rep-
resentation of a UML XMI £le on the abstraction level of
a UML model, and thus allow the developer to directly
operate with UML concepts (such as classes, statecharts,
stereotypes, etc.). We use the MDR (MetaData Repository)
project which is part of the Netbeans project [14], also used
by the freely available UML modeling tool Poseidon 1.6
Community Edition [7].

The MDR library implements a repository for any model
described by a MOF-compliant modeling language. The
Fig. 4 illustrates how the repository is used for working with
UML models.

MDRMOF
[UML 1.4] UML 1.4

MyUml

MyApp

3: g
enerate

JMI

1: 01-02-15.xml (UML 1.4 Metamodel)

2: instantiate

4: MyUml.xmi

Figure 4. Using the MDR Library

Initially the XMI description of the modeling language
is used to customize the MDR for working with a particular
model type, UML in this case (step 1). The XMI de£nition
of the UML 1.4 is published by the Object Management
Group (OMG) [16]. A storage customized for the given
model type is created (step 2). Additionally, based on the
XMI speci£cation of the modeling language, the MDR li-
brary creates the JMI (Java Metadata Interface) implemen-
tation for accessing the model (step 3). This allows the ap-
plication to manipulate the model directly on the conceptual
level of UML. The UML model is loaded into the repository

(step 4). Now it can be accessed through the supplied JMI
interfaces from a Java application. The model can be read,
modi£ed, and later saved into an XMI £le again.

Because of the additional abstraction level implemented
by the MDR library, using it in the UML framework
should facilitate upgrading to upcoming UML versions, and
promises the highest available standard compatibility.

Architecture By its design the UML framework provides
a common programming environment for the developers of
different veri£cation modules (tools). Thus a tool developer
concentrates on the veri£cation logic and not on the auxil-
iary tasks like handling input/output. An addition require-
ment was independent implementation of different pieces of
UML model veri£cation logic by different developers.

The Fig. 5 illustrates the architecture of the UML tool
framework which meets the listed requirements. We brie¤y
describe its functionality. The developer creates a model
and stores it in the UML 1.5 / XMI 1.2 £le format. The
£le is imported by the tool into the internal MDR reposi-
tory. The tool accesses the model through the JMI inter-
faces generated by the MDR library. The checker parses
the model and checks the constraints associated with the
stereotype. The results are delivered as a text report for the
developer describing found problems, and a modi£ed UML
model, where the stereotypes whose constraints are violated
are highlighted.

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Model Checker

MDR
JMI

Model
and

Temporal
Logic

properties

Counter -
Example

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Figure 5. UML tools suite

A further feature implemented in the UML framework,
which should facilitate practical application, is its availabil-

ity in different input/output environments. On any Java-
enabled platform, it can run in one of the three moduses:

• as a console application, either interactive or in batch
mode;

• as Java Servlet, exposing its functionality over the in-
ternet;

• as a GUI application with higher interactivity and pre-
sentation capabilities;

Accordingly to this requirement each integrated in the
UML framework tool must implement a common in-
terface IToolBase plus three media-dependent interfaces
IToolConsole, IToolWeb and IToolGui as illustrated on the
Fig. 6.

However the requirement to implement all three media-
dependent interfaces for a tool would mean a serious over-
head for the tool developer. To assist the developer in this
regard, the framework provides default implementations for
the IToolWeb and IToolGui interfaces, as illustrated on the
Fig. 7. These default wrappers use the implemented by the
tool IToolConsole interface and render the provided text
output in the HTML or scrolling text window format respec-
tively. Thus each plugged into the framework tool must im-
plement at least IToolBase and IToolConsole interfaces.
If the tool developers wants to exploit all capabilities of
the Web or GUI media, he has to implement the IToolWeb
and/or IToolGui interfaces, which give him more control
over the tool input and output. In the Gui mode the devel-
oper is then requested to provide an instance of the JPane
- derived class which hosts the complete UI of the tool and
has ability to customize menu and toolbar of the framework.
In the Web mode the developer can fully control the ren-
dered HTML document.

The UML framework uses the IToolBase interface to
retrieve general information about the tool, and one of the
three tool media-speci£c interfaces to call command pro-
vided by the tool and receive the output. The output is fur-
ther rendered by the framework on the current media.

Framework

Tool

IToolConsole

IToolWeb

IToolGui

ToolBase

FrameworkConsole
FrameworkWeb
FrameworkGui

IToolBase

Figure 6. Tool interfaces

MyUmlTool
IToolConsole

«framework»
DefaultGuiWrapper

«framework»
DefaultWebWrapper

IToolGui

IToolWeb

IToolBase

Figure 7. Default interface wrappers

Each tool exposes a set of commands which can be
executed through the function GetConsoleCommands,
GetWebCommands and GetGuiCommands of the cor-
responding interface. Thus the tool can provide different
functionality on different media, adopting to its speci£cs.

The tool can execute several commands consequently;
the internal state of the MDR repository and all tools is
preserved between command calls. The set of available
commands for each tool may vary depending on the execu-
tion history and current state. This allows to use the UML
framework for complex and interactive operations on the
UML model.

To achieve the media-independent operation of the tools
their parameter input, as well as their output, is handled by
the framework and not by the tools themselves. Each single
command during its execution de£nes the set of required
input parameters, receives the them from the framework.
On behalf of the tool, the UML framework collects the pa-
rameters from the user using the current input/output me-
dia (console, web, or GUI). Currently supported parameter
types are Integer, Double, String and File. Further types
can be easily integrated into the framework as necessary.

5. Related Work

There has been a considerable amount of work towards
a formal semantics for various parts of UML; a complete
overview has to be omitted. [6] discusses some fundamen-
tal issues concerning a formal foundation for UML. [17]
gives an approach using algebraic speci£cation. [3] uses a
framework based on stream-processing functions. [1] uses
ASMs for UML statecharts which was a starting point for
the current work. [5] uses the p-calculus to formalize UML
Activity Diagrams.

There are several existing tools for automatic veri£cation
of the UML models. The HUGO Project [19] checks behav-
ior described by a UML Collaboration diagram against a
transitional system comprising several communicating ob-
jects. The vUML Tool [13] analysis the behavior of a set
of interacting object, de£ned in the similar way. A related
approach to ours is also given by the CASE tool AUTO-
FOCUS [9] which uses a UML-like notation. However nei-
ther tool can be directly extended for our purpose. Firstly,
our approach allows formalisation and veri£cation of differ-
ent UML diagrams in combination. Secondly, our imple-
mentation explicitly models data types, which is necessary
for handling, for example, encryption primitives.

6. Conclusion and Future Work

We introduced a framework for formal critical systems
development using UML. We provided a formal semantics
for a fragment of UML using UML Machines which puts
diagrams into context. The semantics is particularly useful
to analyze the interaction between a system and its envi-
ronment and to analyze UML speci£cations in a modular
way. In particular, we explained how to use the semantics
to analyze UML speci£cations for criticality requirements,
by including an adversary or failure model. Our model-
based approach to critical systems development should be
seen as complementary to existing approaches, which are
often based on testing methodology (see for example [18]
in the context of UML).

We have demonstrated a framework for automated pro-
cessing of UML models, which facilitates technology trans-
fer to industry. In ongoing work, this framework is used to
connect various analysis engines (Model Checker, Prolog,
Theorem Prover) to support the automated analysis of criti-
cality requirements (in particular, behavioral properties).

Acknowledgements Collaboration with the other mem-
bers of the UMLsec group on creating tool-support for the
approach presented here is gratefully acknowledged.

References

[1] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dy-
namics of UML State Machines. In Y. Gurevich, P. Kutter,
M. Odersky, and L. Thiele, editors, Abstract State Machines.
Theory and Applications, volume 1912 of LNCS, pages 223–
241. Springer, 2000.

[2] E. Börger and R. Stärk. Abstract State Machines. Springer,
2003.

[3] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin.
Systems, views and models of UML. In M. Schader and
A. Korthaus, editors, The Uni£ed Modeling Language, Tech-
nical Aspects and Applications, pages 93–109. Physica Ver-
lag, Heidelberg, 1998.

[4] M. Broy and M. Wirsing. Algebraic state machines. In
T. Rus, editor, 8th International Conference on Algebraic
Methodology and Software Technology (AMAST 2000), vol-
ume 1816 of LNCS. Springer, 2000.

[5] Y. Dong and Z. ShenSheng. Using p - calculus to formalize
UML activity diagrams. In 10th IEEE International Con-
ference on Engineering of Computer-Based Systems (ECBS
2003), pages 47–54, Huntsville, AL, USA, 7-10 April 2003.
IEEE Computer Society.

[6] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as
a formal modeling notation. Computer Standards & Inter-
faces, 19:325–334, 1998.

[7] Gentleware. http://www.gentleware.com, 2003.
[8] O. M. Group. OMG Uni£ed Modeling Language Speci£-

cation v1.5: Revisions and recommendations, Mar. 2003.
Version 1.5. OMG Document formal/03-03-01.

[9] F. Huber, B. Schätz, A. Schmidt, and K. Spies. AutoFo-
cus: A tool for distributed systems speci£cation. In B. Jons-
son and J. Parrow, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, 4th International Symposium,
FTRTFT’96, volume 1135 of LNCS, pages 467–470, Upp-
sala, Sweden, Sept. 9–13 1996. Springer.

[10] J. Jürjens. A UML statecharts semantics with message-
passing. In Symposium of Applied Computing 2002, pages
1009–1013, Madrid, March 11–14 2002. ACM.

[11] J. Jürjens. Formal Semantics for Interacting UML subsys-
tems. In FMOODS 2002, pages 29–44. IFIP, Kluwer, 2002.

[12] J. Jürjens. Secure Systems Development with UML.
Springer, Mar. 2004. To be published.

[13] J. Lilius and I. Porres. Formalising UML state machines for
model checking. In R. France and B. Rumpe, editors, UML’
99, volume 1723 of LNCS, pages 430–445. Springer, 1999.

[14] Netbeans project. Open source. Available from
http://mdr.netbeans.org/, 2003.

[15] Novosoft NSUML project. Available from
http://nsuml.sourceforge.net/, 2003.

[16] Object Management Group. http://www.omg.org/, 2003.
[17] G. Reggio, E. Astesiano, C. Choppy, and H. Hußmann.

Analysing UML active classes and associated state ma-
chines – A lightweight formal approach. In T. Maibaum,
editor, Fundamental Approaches to Software Engineer-
ing (FASE2000), volume 1783 of LNCS, pages 127–146.
Springer, 2000.

[18] M. Riebisch, I. Philippow, and M. Götze. UML-based
statistical test case generation. In M. Aksit, M. Mezini,
and R. Unland, editors, Objects, Components, Architectures,
Services, and Applications for a Networked World (NetO-
bjectDays 2002), volume 2591 of Lecture Notes in Com-
puter Science, pages 394–411, Erfurt, Germany, October 7-
10 2003. Springer.

[19] T. Schäfer, A. Knapp, and S. Merz. Model checking
UML state machines and collaborations. In S. Stoller and
W. Visser, editors, Workshop on Software Model Checking,
volume 55 of ENTCS. Elsevier, 2001.

[20] UML Revision Task Force. OMG UML Speci£ca-
tion v. 1.4. OMG Document ad/01-09-67. Available at
http : //www.omg.org/uml, 2001.

