Cost-Benefit Trade-Off Analysis using BBN for Aspect-Oriented Risk-Driven Development

Siv Hilde Houmb
Department of Computer Science
Norwegian University of Science and Technology
Sem Selands Vei 7-9, NO-7034 Trondheim, Norway
sivhoumb@idi.ntnu.no

Geri Georg, Robert France, and James Bieman
Software Assurance Laboratory
Department of Computer Science, Colorado State University
601 S. Howes St., Fort Collins, CO 80523-1873
(georg/france/bieman)@CS.colostate.edu

Jan Jürjens
Systems Engineering, TU Munich
Boltzmannstr. 3, 85748 München/Garching, Germany
juerjens@in.tum.de

Abstract

Security critical systems must perform at the required security level, make effective use of available resources, and meet end-users expectations. Balancing these needs, and at the same time fulfilling budget and time-to-market constraints, requires developers to design and evaluate alternative security treatment strategies. In this paper, we present a development framework that utilizes Bayesian Belief Networks (BBN) and Aspect-Oriented Modeling (AOM) for a cost-benefit trade-off analysis of treatment strategies. AOM allows developers to model pervasive security treatments separately from other system functionality. This ease the trade-off by making it possible to swap treatment strategies in and out when computing Return of Security Investments (RoSI). The trade-off analysis is implemented using BBN, and RoSI is computed by estimating a set of variables describing properties of a treatment strategy. RoSI for each treatment strategy is then used as input to choice of design.

Keywords: Trade-off analysis, Bayesian Belief Network (BBN), Aspect-Oriented Modeling (AOM), and Risk-Driven Development (RDD).

1 Introduction

In risk-driven development (RDD) security risks are identified, evaluated, and treated as an integrated part of the development. The Aspect-Oriented Risk-Driven Development (AORDD) framework addresses the choice of security treatment strategy using a cost-benefit trade-off analysis. The quality of a treatment strategy is measured in terms of Return of Security Investments (RoSI). RoSI is the value of loss reduction to money invested on security treatments.

The cost-benefit trade-off analysis is implemented using Bayesian Belief Networks (BBN). To be able to ease the evaluation of treatment strategies we make use of Aspect Oriented Modeling (AOM). AOM separates security concerns from core functionality using aspects. Each treatment strategy is modeled as an aspect model, and then composed with the primary model. Trade-off is done using a set of variables that estimate the properties of each treatment strategy, which are annotated in the composed model. Estimates are then fed into the BBN topology. The trade-off analysis provides decision-support for design choices, and follows a two step procedure; 1) evaluate security risks against the security risk acceptance criteria, and 2) trade-off design alternatives by computing and comparing RoSI of treatment strategies.

In the following we give a brief description of the
AORDD framework and the BBN methodology. We then present the BBN topology followed by an example to demonstrate its use. The paper is organized as follows. Section 2 describes the AORDD framework, and Section 3 gives a brief introduction to the BBN methodology. In Section 4 we present the BBN topology for the trade-off analysis and discuss how to manage security risks using the AORDD cost-benefit trade-off analysis. Section 5 gives a small example to demonstrate the approach, while Section 6 discusses future work.

2 AORDD Framework

The AORDD framework combines risk-driven development (RDD) [27] with aspect-oriented modeling (AOM) [9]. The framework consists of the AORDD iterative development process [11], a security treatment aspect repository, an estimation repository, rules for how to annotate UML models with information used for estimation, rules for how to transfer information from the annotated UML models into the BBN topology, and a BBN-based cost-benefit trade-off analysis.

Separation of concerns is important when making design trade-off decisions. We model each security treatment strategy as an aspect, perform security verification [16] of the aspect model, compose the aspect with the primary model, and perform functional verification to ensure that the functionality of the primary model is intact. Security verification analyzes the fulfillment of the security requirements, in this case the ability of the security treatment strategy to withstand the identified misuse. An example of security verification is provided in Section 5. This is done for all treatment strategies. We then choose an appropriate estimation set from the estimation repository. The estimation set depends on the variables used in the trade-off analysis. In the example provided in Section 5, we describe treatment effect using the variables maintenance, cost, and security level. The estimation set is then applied on the composed model and given as input to the BBN topology.

2.1 The AORDD cost-benefit trade-off analysis

The trade-off analysis consists of two phases: 1) evaluate security risks against the security risk acceptance criteria, and 2) trade-off design alternatives by computing and comparing RoSI of treatment strategies. Figure 1 gives an overview of the inputs and outputs of the two-phase trade-off analysis. The first phase takes a set of identified misuses of the system and their associated risk levels as input, and evaluates them against a set of security risk acceptance criteria. Misuses can be intentional system attacks or simple erroneous system usage. The associated risk levels indicate the damage that can occur to the system as a result of the misuse. Risks can vary from a degradation of supplied system services to economic loss due to assets being compromised. Risk levels is determined by combining the impact and frequency of the misuse. Security risk acceptance criteria partition these security risk levels into those risks that must be treated, and those risks that can be discarded from further consideration.

The result of the first phase of trade-off analysis is a list of misuses in need of treatment. An example of security risk acceptance criteria used to partition risk levels is that all risks with levels greater than or equal to security risk level "HIGH" must be treated. In this context treated means reducing the risk level to lower than "HIGH". Such criteria should be provided either by system decision-makers, the business security policy, or similar information sources. Note that in this example, all security risks lower than "HIGH" are disregarded.

The input to the second phase of trade-off analysis is the list of misuses in need of treatment and their associated alternative security treatment strategies. The evaluation is based on different sets of priorities, standards, laws and regulations, and in particular business strategies and policies. RoSI for a particular treatment strategy is derived by evaluating the effect and the cost of each treatment strategy against the impact (loss or gain) and frequency of the misuse. The trade-off analysis is implemented using BBN.

![Figure 1. Overview of the two-phase trade-off analysis](image-url)
3 Bayesian Belief Networks (BBN)

BBN have proven to be an powerful technique for reasoning under uncertainty, and have been successfully applied when assessing the safety of systems [5], [6], [7], [25], and [8]. The BBN methodology is based on Bayes rule, and was introduced in the 1980s by Pearl [23] and Lauritzen and Spiegelhalter [18]. HUGIN [13] is the leading tool supporting BBN.

Bayes rule calculates conditional probabilities. Given the two variables X and Y, the probability P for the variable X given the variable Y can be calculated from: P(X|Y)=P(Y|X)*P(X)/P(Y). By allowing Xi to be a complete set of mutually exclusive instances of X, Bayes formula can be extended to calculate the conditional probability of Xi given Y.

A BBN is a connected and directed graph consisting of a set of nodes and a set of directed arcs (or links) describing the relations between the nodes. Nodes are defined as stochastic or decision variables, and multiple variables may be used to determine the state of a node. Each state of each node is expressed using probability density functions. Probability density expresses our confidence in the various outcomes of the set of variables connected to a node, and depends conditionally on the status of the parent nodes at the incoming edges. We have three type of nodes: target node(s), intermediate nodes, and observable nodes. Target nodes are nodes about which the objective of the network is to make an assessment. An example of such a node is “RoSI”. Intermediate nodes are nodes for which we have limited information or beliefs. The associated variables are hidden variables. Typically hidden variables represent aspects that increase or decrease the belief in the target node, RoSI, such as “acceptance level” and “security level”. Observable nodes are nodes that can be directly observed or in other ways obtained. Examples of observable nodes for acceptance level are “priorities” and “security acceptance criteria”.

Application of the BBN method consist of three tasks:

- construction of BBN topology,
- elicitation of probabilities to nodes and edges, and
- making computations.

For further information on BBN, and in particular the application of BBN for software safety assessment see Gran [10].

4 The BBN topology for computing RoSI

Figure 2 depicts the top level BBN for phase 2 of the AORDD trade-off analysis. The node “RoSI is the target node of the network. The nodes priorities (PRI), budget (BU), business goals (BG), law and regulations (LR), security risk acceptance criteria (SAC), and policies (POL) are observable nodes, nodes that represent information and evidence that can be directly observed or in other ways obtained. The nodes acceptance level (AL) and security level (SL) are intermediate nodes and requires inputs from observable nodes. The node SL receives information and evidence from the three input nodes: static security level (CC EAL), dynamic security level (OS DL), and treatment level (TL). Each of these nodes are decomposed into BBN subnets and receive information and evidence from their respective subnets. Figure 2 depicts the top-level BBN for computing RoSI.

Recall that a target node gives the objective of the assessment, in this case RoSI of a security treatment strategy. In BBN there are two sets of variables: stochastic and decision variables [14]. The decision variables represent decisions that need to be made. The stochastic variables represent the set of information on which a decision is based. We use nine stochastic variables to compute RoSI: treatment cost (TC), misuse cost (MC), confidentiality (Conf), integrity (Integr), availability (Avail), non-repudiation (NonR), accountability (Accnt), authenticity (Auth), and reliability (Relia). Variables can be in a set of states. In the current version of the BBN topology all variables have three associated states: low, medium, and high. Table 1 presents the variables and states of the nodes in the top-level BBN.

Note that many of the nodes has overlapping variables. Variables with the same name represent the same type of information in different settings. The node PRI determines the priorities for the trade-off given as an ordered sequence of the variables for BU, BG, LR, SAC, and POL. The strictest sequence of states of the variables costlimit (the strictest of the two variables BU_costlimit and BG_costlimit), Conf, Integr, Avail, NonR, Accnt, Auth, and Relia is then inserted into the intermediate node SL. The state of the variables of the AL node is then evaluated against the states of the variables of the intermediate node security level (SL) as depict in Figure 2. We use the same set of variables for the intermediate nodes SL and AL as we do for the target note RoSI. The only difference is the names used for the cost variable, which are differentiated to be able to distinguish types of cost.

Furthermore, the intermediate node SL receives information from the three intermediate nodes CC EAL, OS DL, and TL, representing static security level, dynamic security level, and treatment level respectively. Figure 3 depict the subnet for the node CC EAL. The subnet reflects the structure of part 3, the security assurance requirements, of the security standard ISO 15408: Common Criteria for Information Technology Security Evaluation [3]. These requirements describes different general and security specific
properties of the development, and targets the evaluation of a system against seven Evaluation Assurance Level (EAL). The assurance criteria represent general guidelines for development of security critical systems, and follows the same structure as the safety standard Do-178B: Software Considerations in Airborne Systems and Equipment Certification [24] for which the BBN topology for safety assessment of software based systems developed by Gran [10] (see Section 3). Evaluation according to Common Criteria is done using the documentation provided during the development and targets the requirement, design, and implementation phase of the AORDD process [11]. By including the assurance class AMA, maintenance of assurance, the BBN topology does also cover the maintenance phase [11].

Figure 4 depict the subnet for the node OS DL. The subnet targets the Australian risk management standard AS/NZS 4360:2004 [2], as well as addressing the concept of operational security as described by Littlewood et al. [19], Madan et al. [20], Jonsson and Olofsson[15], Orttalo [22], and Wang et al. [28]. AS/NZS 4360:2004 consist of five sub-processes covering risk assessment and two risk management sub-processes. The cost-benefit trade-off analysis covers the risk treatment and the management sub-processes. The remaining four sub-processes is addressed by the security risk assessment activity of the AORDD process [11].

The observable nodes mean effort to misuse, METM, and mean time to misuse, MTTM, targets operational security level. METM and MTTM addresses one particular misuse, which is described by the nodes misuse scenario, MUSE, misuse frequency, FREQ, and misuse impact, IMP.

Figure 5 depict the sub net for the node TL. The subnet targets treatment level and consists of the observable nodes effect of treatment strategy, TE, and cost of treatment strategy, TC. The node TE has a set of associated stochastic variables, while TC describes treatment cost. Due to space restrictions we only look into the treatment level subnet in the example given in the next section.
The e-Commerce platform ACTIVE was developed by the EU EP-27046-ACTIVE project [1]. ACTIVE is a standard e-Commerce system offering a set of services to users. To access any of the services in ACTIVE users must either login as a registered user or a visitor. Logging into the system presents a security risk if the login actions are not properly protected. One potential misuse to login is man-in-the-middle attacks. During this kind of attack, user names and passwords can be intercepted by an attacker, and used later to impersonate a valid user.

The security attributes integrity and confidentiality are both compromised in this type of attack, so mechanisms that address integrity and confidentiality are potential security risk treatment strategies. We demonstrate the use of two such mechanisms, a variant of transport layer security (TLS) [16], and secure remote password (SRP) [26] to mitigate the misuse. We model these two treatment strategies using aspect models in order to verify their mitigation of the misuse as well as analyze their effect as input to cost-benefit trade-off analysis in AORDD. By using aspect models we can easily swap strategies in and out and feed results into the BBN topology.

Each aspect model goes through security verification before being evaluated of the trade-off analysis. In this case each aspect model is used as part of the input to the treatment level subnet shown in Figure 5. To measure treatment effect, TE, we use two stochastic variables; treatment maintenance, _M_, and treatment security level, _SL_. The probability distribution for the three security level states; low, medium, and high is determined by verification of the security treatment using an automated theorem prover (see J"urjens [16]). We do not discuss maintenance metrics further in this paper, since the main aim is to demonstrate that feeding difference values into the BBN topology gives different outputs.

We can establish that a security protocol such as the
TLS variant here in fact satisfies its security requirements by making use of automated tool support which analyzes UML diagrams using automated theorem provers [17]. More specifically, we use the automated theorem prover e-SETHEO for verifying security protocols as a “black box”: A TPTP input file is presented to the theorem prover and an output is observed. No internal properties of or information from e-SETHEO is used. This means that e-SETHEO can be used interchangeably with any other ATP accepting TPTP as an input format (such as SPASS, Vampire and Waldmeister) when it may seem fit.

With respect to the security verification, the results of the theorem prover have to be interpreted as follows: If the conjecture stating that an adversary may get to know the secret can be derived from the axioms which formalize the adversary model and the protocol specification, this means that there may be an attack against the protocol. We then use an attack generation machine programmed in Prolog to construct the attack. If the conjecture cannot be derived from the axioms, this constitutes a proof that the protocol is secure with respect to the security requirement formalized as the negation of the conjecture, because the logical derivation is sound and complete with respect to semantic validity for first-order logic. Note that since first-order logic in general is undecidable, it can happen that the ATP is not able to decide whether a given conjecture can be derived from a given set of axioms.

With respect to the TLS variant, e-SETHEO gives back the result that the conjecture knows(secret) cannot be derived from the axioms formalizing the protocol. Note that this result, which was delivered within 5 seconds, means that there actually exists no such derivation, not just that the theorem prover is not able to find it. This means in particular that an attacker cannot gain the secret knowledge anymore.

If the security verification showed that the aspect model fulfills the requirements the aspect model is composed with the primary model using composition rules before doing trade-off. Figure 6 shows the composed model of TLS with the ACTIVE login sequence.

Login starts with the user’s web browser requesting a login page from the e-commerce web server. The server responds with a login page, an init message is sent, with a nonce (a non-repeating sequence value), the user’s public key, and a self-signed certificate containing the user name and user’s public key. The logic for the TLS handshake continues as described by Jürjens [16].

5.1 Cost-benefit trade-off analysis

For each treatment strategy we need to estimate treatment effect, TE, and treatment cost, TC. This is done using a selection of estimation sets from the estimation repository in the AORDD framework. The set used depends on the type of system and the development phase.

Recall from Section 3 that the BBN methodology consists of construction of the BBN topology, elicitation of probabilities to nodes and edges, and making computations. In section 4 we described the BBN topology, which is a general topology for computing RoSI for the cost-benefit trade-off analysis. The elicitation of probabilities and computations is, however, target of evaluation-specific and needs to be assessed in each case. Probability distribution functions (pdf) may be continuous functions or discrete values. In this example we use discrete values since this makes it conceptually easier for experts to assess, as well as making the computations much simpler.

5.2 Elicitation of probabilities

As an example of elicitation of probabilities we use a specialization of the TL subnet directly connected to the target node RoSI as depicted in Figure 7. We use three discrete stochastic variables to describe each treatment strategy; maintenance (M), security level (SL), and cost (C). Since we are only evaluating two treatment strategies we include variables for both mechanisms in the same network. In Figure 7 we have six stochastic variables; SRP_M, SRP_C, and SRP_SL representing maintenance, cost, and security level for SRP and TLS_M, TLS_C, and TLS_SL representing maintenance, cost, and security level for TLS.

To perform a trade-off analysis we need decision variables. Figure 7 includes three decision variables, the ROSI_SRP, ROSI_TLS, and RoSI. The decision variables are shown as rectangles. Their values are calculated using the observed states of the stochastic variables. The stochastic variables are shown as ovals. The diamonds in Figure 7 are utilities, and describe the interrelationships between the stochastic variables (in the cases of U2 and U3), or the interrelationships between the decision variables (in the case of U1). Utilities describe the resulting value of a decision variable given any combination of state values for the variables connected to it. Thus, the utility U2 specifies the value of ROSI_SRP, given any combination of states of the variables SRP_M, SRP_C, and SRP_SL. Similarly, the utility U1 specifies the value of RoSI given any combination of values of the decision variables ROSI_SRP and ROSI_TLS.

In our example, the utilities are simple lookup tables, but they can be defined using more sophisticated decision logic if desired, e.g. if one variable is to be given more weight than another. Figure 7 shows each of the stochastic variables, and the preliminary probability distributions for their associated states. These probability distribution functions are called prior distributions.

During elicitation of probabilities we feed the prior distributions into the BBN topology. In our example we as-
Figure 6. e-Commerce login sequence composed with TLS aspect

Figure 7. Variables and states for the specialized TL subnet

sume that expert judgment is collected and aggregated with empirical data prior to elicitation of probabilities. Several authors have discussed both aggregation techniques and expert judgment collection strategies [21], [4], and [12]. For simplicity we set the prior distribution for all observable variables to 0.33, meaning that all states of all variables are assigned the same prior distribution and have the same influence on the outcome. This gives for all variables, \(P(X = \text{low}) = 0.33 \), \(P(X = \text{medium}) = 0.33 \), and \(P(X = \text{high}) = 0.33 \). The function \(\phi(Y|X) \) (see Section 3) expresses the belief one has in, for example, the RoS! level of SRP if one knew the cost of SRP, represented by the variable SRP_C. This information is expressed in a dependency matrix as given in Table 2.

5.3 Computation with the BBNs

The BBN computation is done by first inserting observations in the observable nodes, and then use the rules for probability calculation backward and forward along the edges, from the observable nodes, through the intermediate nodes to the target node. Forward calculation is straightforward, while backward computation is more complicated. Backward calculation is solved using Bayes methodology (see Jensen [14] for details). Manual computation on large BBN topologies is not tractable, so we make use of the BBN tool HUGIN [13]. Note that the amount of information collected before a decision is made depends on the type of decision, the resources available, time frame, and budget, meaning that one should not spend more resources on collecting
information than the value of the decision.

Figure 8 shows the result of the computation after observations are given as input to the BBN topology. Actual states of each of the stochastic variables are shown on the left side in the figure. In this case the SRP.C variable is in the high state, the SRP.M variable is in the medium state, and the SRP.SL variable is in the low state. Utilities U2 and U3 are used to determine the states of the decision variables ROSI.SRP and ROSI.TLS. In this example, the combination of states of the SRP variables means that the ROSI.SRP decision variable is twice as likely to be in the medium state as the high state, and it is one and one-half times as likely to be in the medium state as the low state. The ROSI.TLS decision variable is twice as likely to be in the high state as the medium state, and one and one-half times as likely to be in the low state as the medium state. Utility U1 takes these distributions and calculates the state of the RoSI decision variable. The result shows that the TLS treatment is one and one-half times more effective than the SRP treatment.

Figure 9 shows changes in the observations entered propagates and change the result of the BBN computation. As in Figure 8, the values for the states of each of the stochastic variables are shown on the left side in the figure. The same utilities are used to calculate the states of the decision variables. In this figure, the states of SRP.M, SRP.SL, and TLS.SL have been changed from the values given in Figure 8. The result is that the decision variable ROSI.SRP is one and one-half times as likely to be in the high state as either the medium or low states. The ROSI.TLS variable is one and one-half times as likely to be in the low state as the medium state and a half time as likely to be in the low state as the high state. As for the previous example the U1 utility is used to compute the state of the decision variable RoSI. In this case the result shows that the SRP treatment is a half time more effective than the TLS treatment.

6 Conclusion and further work

This paper has briefly described the AORDD framework and focused on the cost-benefit trade-off analysis of AORDD. The cost-benefit trade-off analysis is implemented using BBN. The BBN topology covers the security level of a system described as the combination of its static security level, its dynamic security level, and the treatment level of a specific security treatment. The security level is evaluated against an acceptance level comprised of the budget, security acceptance criteria, law and regulations, business goals, and policies. The main goal of the trade-off analysis is to compute RoSI of each treatment strategy, which is used as input to design decisions.

The BBN methodology consists of three steps; (1) construction of the BBN topology, (2) elicitation of probabilities to nodes and edges, and (3) making computations. Elicitation of probabilities is done using available empirical or observable information sources combined with subjective expert judgment, while computations are done using the algorithm provided by HUGIN for conditional probabilities. To demonstrate the approach we used two sets of fictive observations for the treatment effect and treatment cost variables of two different treatment strategies. This is done to demonstrate that different observations gives different results. During development of systems, these values are obtained from experience within the company, general experience factories, in addition to using the stakeholders and participants in the development project as experts. This is a human intensive activity and represents our beliefs. Even though we use actual observed information, the relations between the nodes are in most cases determined by domain experts. One can do experiments to verify the structure of the BBN topology, but in practice this is rarely done. The BBN topology is rather updated over time to reflect experience gained during use.

The result of the cost-benefit trade-off analysis is highly dependent on the observation and evidence entered, as well as the variables used and the relation between them. Please note that even though the BBN topology automate part of the design decisions, BBN is merely a representation of the combination of prior experience in the domain to be assessed and human interpretation of what is important variables. This means that both different structure of the BBN topology and different estimation sets used as input to the topology may give different results. We have not addressed estimation of variables in this paper due to space restrictions, but will address this issue in further work. Estimation sets are domain-, abstraction level-, viewpoint-, and development phase-specific.

<table>
<thead>
<tr>
<th>SRP.C</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSI.SRP</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Low</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>High</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2. Dependency matrix on the belief one has in the RoSI level of SRP given the cost of SRP
References

