
Model-based Security Analysis for Mobile Communications∗

Jan Jürjens†

The Open University, UK

http://www.jurjens.de/jan

Jörg Schreck
O2 (Germany)

Joerg.Schreck@acm.org

Peter Bartmann
University of Augsburg, Germany

peter.bartmann@wiwi.uni-

augsburg.de

ABSTRACT
Mobile communication systems are increasingly used in com-
panies. In order to make these applications secure, the secu-
rity analysis has to be an integral part of the system design
and IT management process for such mobile communication
systems. This work presents the experiences and results
from the security analysis of a mobile system architecture
at a large German telecommunications company, by mak-
ing use of an approach to Model-based Security Engineering
that is based on the UML extension UMLsec. The focus
lies on the security mechanisms and security policies of the
mobile applications which were analyzed using the UMLsec
method and tools. Main results of the paper include a field
report on the employment of the UMLsec method in an in-
dustrial telecommunications context as well as indications
of its benefits and limitations.

Categories and Subject Descriptors: D.2.2 Software
Engineering: Design Tools and Techniques -Computer Aided
Software Engineering (CASE), D.2.4 Software Engineering:
Software/Program Verification

General Terms: Security.

Keywords: Mobile Telecommunication Systems, Security,
Model-based Software Engineering, UML, UMLsec.

1. INTRODUCTION
The use of mobile communication technologies has experi-

enced an explosive growth. However, this usage carries crit-
ical risks concerning information security that are particu-
larly significant for mobile systems, due both to the inherent
vulnerability of the devices and the significant complexity of
the architectures (as explained in Sect. 2). In order to ad-
dress these risks and enable secure mobile communication
∗Part of the work presented here was performed when the
first author was at TU Munich and the third author at O2

(Germany).
†Partly funded by the Royal Society through an interna-
tional joint project with TU Munich on model-based secu-
rity analysis of crypto-protocol implementations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

systems, the security analysis has to be embedded in the
development and management of the systems.

This work presents the results of the model-based secu-
rity analysis of parts of the corporate security architecture
and security policies for mobile communication systems at
the German telecommunications company O2 (Germany).
The security critical parts of the system were analyzed us-
ing UMLsec [4], a UML extension which allows the user to
embed security related information into the system design,
as well as to conduct security analyses on the model layer.
The goal of this work was to gain experiences in the use
of the UMLsec method in an industrial telecommunications
context and to show its benefits and limitations.

Empirical studies on the use of model-based development
in general have so far been limited. The challenges faced
by empirical software engineering in general are discussed in
[9], and specifically regarding model-based developments in
[10]. A report on using UMLsec in industrial development of
security-critical software can be found in [1]. Another case
study employing a method close to the UMLsec approach in
an industrial context is [3], reporting on a project with a ma-
jor German bank. [12] reports on a student project using
a security extension of the AutoFocus tool (that was de-
veloped jointly and in parallel with the UMLsec extension)
to develop a payment application. [2] reports on a case-
study using UMLsec regarding an intranet search machine
at BMW. An overview on other applications of model-based
security engineering in practice is given in [6]. A case-study
on using model-based approach to secure software engineer-
ing and management in telecommunication systems (and in
particular mobile communication systems) has to the extent
of our knowledge not been published so far. Although this
paper does not aim to be a complete or controlled empirical
study, we hope to contribute to filling this gap using our
report on the industrial case-study presented here.

The paper is structured as follows. In Sect. 2 we give some
background on the security challenges to software for mobile
systems in an industrial telecommunications environment.
In Sec. 3, we explain what the goals of the security analysis
were, we introduce the UMLsec based analysis methodology.
In Sect. 4, we present and discuss the results of the security
analysis at O2 (Germany) at the hand of some representative
fragments of the models that were constructed. In Sect. 5,
we discuss some lessons learned from the case study. We
end with a summary indicating further work.

2. SOFTWARE SECURITY CHALLENGES
IN MOBILE COMMUNICATIONS

We discuss the particular characteristics of mobile com-
munication systems regarding security requirements, and
how software engineering and software management pro-
cesses have to be adapted to the application domain of mo-
bile telecommunication systems in order to deal with the
resulting challenges.

2.1 Characteristics of Mobile Security
Mobile networks differ from fixed networks in many re-

spects. We give a rough overview over the most obvious dif-
ferences with respect to fixed networks which can be found
in almost every company. With the term mobile security,
we refer to all security aspects which are relevant for mobile
networks, many of which are also relevant for fixed networks.

2.1.1 Architecture
The most distinguishing aspect of mobile networks is their

architecture. Whereas static structures and homogeneous
components predominate fixed networks, the situation is
usually quite the opposite for mobile networks. In the fol-
lowing we discuss some representative aspects of this which
lead to significant complexity:

Different access media.
The type of access medium to the network depends not

only on the need of the network’s users but also on environ-
mental conditions such as costs or availability. Often, one
access medium alone is not sufficient because differences in
throughput, latency, cost, and availability justify having al-
ternatives. The access media evolved over time and comply
to different standards, such as:
WLAN: IEEE 802.11{a,b,e,g,h,i}, WEP, WPA{1,2}
Bluetooth: IEEE 802.15.1, Version 1.1, 1.2, 2.0
Infrared: IrDA (IrLAP, IrCOMM, IrOBEX, IrLAN)
Telephony: GSM, GPRS, UMTS.
Unfortunately, the different standards for one type of access
medium (e.g. WLAN) offer different security features and
must thus be considered separately. The standards may
be ”downwards compatible” and security features may be
treated as cumulative. Even within one standard, the secu-
rity considerations have to consider the different subsets of
the standard. This is the case, for instance, with the differ-
ent profiles that can be activated while using Bluetooth.

Variety of end user devices.
Another difference is the variety of end user devices which

take part in mobile networks. With respect to security con-
siderations, the most important criteria include:
Form factor: laptops, PDAs, cellphones, smartphones etc.
Operating system: Windows (XP, 2000), Windows Mo-
bile, Symbian OS, Palm OS, Linux, Blackberry etc.

Due to different operating systems and hardware capabil-
ities several security requirements (e.g., separation of duties
of different system users) are already fulfilled, can be added
to the system, or cannot be fulfilled due to restrictions of
the underlying system. This leads to various combinations
depending on the set of requirements essential for the given
usage scenario. Some of them are described in the following.

Different protection mechanisms.
As described above, different security requirements may

be applicable for different usage scenarios. Within those we
can identify a subset of requirements which are applicable

for almost each usage scenario. The following list shows the
most important and gives some explanation why they cannot
be treated in general for all possible archtitectures.

Authentication: The required grade of authentication
depends on the data and services to be protected. While
public information might be accessed without authentica-
tion, this is not acceptable for private data or services which
are offered to employees only. In addition to the differ-
ent levels which might require authentication (e.g., the end
user device, network connections, internal services) there are
also several grades of authentication (e.g., password, one-
time passwords, two-factor authentication, biometrical pro-
cedures) to choose from which increases the number of pos-
sible combinations that have to be checked.

Network security: Mobile devices usually offer very lim-
ited means to secure the network layer. A reason for this are
their limited resources which often do not allow for trans-
parent encryption (e.g., for a VPN tunnel) and the limited
availability of the necessary software for the chosen platform
(e.g., firewall, virus scanner).

Application security: Mobile devices which are not al-
ways connected cannot be secured like their counterparts
within a fixed network. E.g., the provision of patches, up-
date of signatures for virus scanners, and central processing
of log file entries can only performed the next time the device
is connected. Also well-established security measures are of-
ten not feasible on certain handhelds, e.g., due to their low
performance (such as an IPS running on a smartphone).

Secrecy: As stated above, the type of encryption of data
(e.g., transparent or after usage) depends on the perfor-
mance of the device. Moreover, the secrecy of the data is
also influenced by the physical capabilities of the device.
Some are able to use enhanced encryption techniques like
smartcards or biometric components while others are not.

Availability: As mentioned, developers of mobile sys-
tems often need to design secure architectures for different
access media and often also to include different access media
into one architecture. More complexity is added when only
one security concept must be developed with disregard to
the access media - which might change during the usage of
the system due to environmental conditions.

2.1.2 Usage
The above-mentioned differences are mainly due to tech-

nical restrictions. Beside these restrictions there are also
restrictions with origin in the users’ behavior when using
mobile networks. Some of them are sketched below:

Spontaneous usage: Beside users who take advantage of
mobile networks as a replacement of their office desk, there is
a high amount of nomadic users who have to adapt to differ-
ent environmental conditions or time constraints with only
very limited options several times a day, e.g., travelers at an
airport. In contrast to users in an office who are willing to
accept (once a day) a fixed procedure to gain (and suspend)
access to resources and services, these nomadic users usu-
ally do not accept login or logoff procedures which are not
negligible with respect to the usage period. Since the usage
periods are often quite short, the procedures for preparing
the service have to be much shorter. Unfortunately, this of-
ten leads to reduced acceptance of full-blown security checks
and therefore to a lower security standard.

Limitation of services: On the other hand, the reduced
usage period entails also a limited set of services which can
be used in it. As a consequence, users accept a reduced

amount of services compared to the ones they are offered
in an office environment. Often, it is sufficient to provide
access to emails, appointments, and addresses.

Always on / ABC: Users of mobile networks often want
to be connected always in order to receive the latest in-
formation and to have necessary information at their dis-
posal. Also, they want the best combination between re-
liability/throughput and price of the access media (ABC,

always best connected). This shows once again the necessity
to change the access medium within a session.

Average useful life: The average useful life of devices
used within mobile networks usually is much shorter than
that of components within fixed networks. As a rule of
thumb, the average useful life should not expected to be
longer than 18 months (in contrast to 36 months), although
one should note that a hard end-point on this can usually
not be defined. This entails that the respective architecture
has to be evaluated with each new generation of end devices
which leads to the double amount of assessment.

2.2 Implications for Software Engineering and
Management

Based on the discussion of the particular characteristics of
mobile telecommunication systems in particular wrt. secu-
rity requirements in the previous section, one can derive the
following characteristics that have to be taken into account
specifically when designing mobile communication architec-
tures:

• higher variety of access media
• higher variety of devices and operating systems
• less protection mechanims included by default
• spontaneous use of usually less services
• cost of additional software might exceed device cost
• biased compromise between security and usability
• reduced time for amortization and frequent redesign
• only few audits or certifications available.

Taking into account all different possible combinations of
the above mentioned criteria we are faced with an amount of
several thousands of different (possible) architectures which
must be analyzed and optimized for their proper implemen-
tation of security requirements in order to choose the most
effective, the cheapest, and the most comfortable. Each of
these architectures may in itself be quite complex and non-
trivial to analyze for the given security requirements.

The discussions above and in the last subsection make
clear that the necessity of analyzing all of these potentially
quite complex architectural alternatives against the security
requirements makes this task only feasible at a satisfactory
level of trustworthiness if it is supported by an systematic
and efficient process which makes use of automated security
analysis tools for the architectural options as far as possi-
ble. To perform this task at the given application at O2

(Germany), we therefore developed such a process, which is
explained in the following section and then applied in Sect. 4.

3. SECURITY ANALYSIS OF MOBILE COM-
MUNICATION ARCHITECTURES

3.1 Requirements on the Security Analysis
The main goal of a security analysis is a satisfactory level

of confidence that a given security policy or particular se-
curity requirements are fulfilled. We give some further re-
quirements on the security assessment process for mobile

communication architectures, motivated by the discussions
in the previous section, in particular by the high number of
architectural alternatives that may need to be analyzed:

Reproducability: The results need to be reproducable
for a given architecture without risk of misinterpretation.

Delegability: It is required that at least parts of the
analysis can be delegated to be feasible in practice.

Efficiency: The analysis must be performed in a given
time-frame with a defined expectation regarding thorough-
ness and scope. The necessary amount of work done by a
human security expert should be reducable by limiting the
scope of the analysis.

Parallelization: It must be possible that parts of the
analysis can be performed in parallel and independently.

Traceability: Results of the analysis must be traceable
and give guidance how negative results can be improved on.

Expressiveness: The results must carry enough infor-
mation to enable an overall risk analysis of a given architec-
ture.

To achieve these requirements, we decided to evaluate the
use of a security assessment process which includes the use
of models related to the given architectures and security re-
quirements, and of automated tools to analyze these models
against the given security requirements. To keep the amount
of additional training bounded, we chose an approach based
on the Unified Modeling Language (UML), and one of the
options available here is the security extension UMLsec of
the UML (to be introduced in the next subsection).

3.2 Security Analysis using UMLsec
Model-based Security Engineering (MBSE, [4, 5, 8]) pro-

vides a soundly based approach for developing security-criti-
cal software where recurring security requirements (such as
secrecy, integrity, authenticity and others) and security as-
sumptions on the system environment, can be specified ei-
ther within a UML specification, or within the source code as
annotations (cf. Fig. 1a). Various analysis plugins in the as-
sociated UMLsec tool framework [11] (Fig. 1b) generate logi-
cal formulas formalizing the execution semantics and the an-
notated security requirements. Automated theorem provers
and model checkers automatically establish whether the se-
curity requirements hold. If not, a Prolog-based tool auto-
matically generates an attack sequence violating the security
requirement which can be examined to determine and re-
move the weakness. Thus we encapsulate knowledge on pru-
dent security engineering and make it available to developers
who may not be security experts. Since the analysis that is
performed is too sophisticated to be done manually, it is also
valuable to security experts. Part of the MBSE approach
is the UML extension UMLsec for secure systems develop-
ment which allows the evaluation of UML specifications for
vulnerabilities using a formal semantics of a simplified frag-
ment of the UML. The UMLsec extension is given in form
of a UML profile using the standard UML extension mech-
anisms. Stereotypes are used together with tags to formu-
late the security requirements and assumptions. Constraints

give criteria that determine whether the requirements are
met by the system design, by referring to a precise seman-
tics of the used fragment of UML. The security-relevant in-
formation added using stereotypes includes security-relevant
information covering the following aspects:

• Security assumptions on the physical system level, for
example the stereotype 〈〈 encrypted 〉〉, when applied to

Automated
Theorem

Prover

UML editor

Java editor

Analyzer

Local
Code

Checker
Control
Flow
Graph

code Report
TextJava

Trace
Attack

data flow

"uses"

fmla
FOL

generator
Attack

prog.

model

Prolog

UMLsec
Code
with

Assert’s;
Tests

Assertion/Test
Generator

Security
Analyzer

Figure 1: a) Model-based Security Engineering; b) Model-based Security Tool Suite

a link in a UML deployment diagram, states that this
connection has to be encrypted.

• Security requirements on the logical level, for example
related to the secure handling and communication of
data, such as 〈〈 secrecy 〉〉 or 〈〈 integrity 〉〉.

• Security policies that system parts are required to obey,
such as 〈〈 fair exchange 〉〉 or 〈〈 data security 〉〉 (see Sect. 4
for explanations).

The UMLsec tool-support in Fig. 1b can then be used to
check the constraints associated with UMLsec stereotypes
mechanically, based on XMI output of the diagrams from the
UML drawing tool in use [11, 5]. There is also a framework
for implementing verification routines for the constraints as-
sociated with the UMLsec stereotypes. Thus advanced users
of the UMLsec approach can use this framework to imple-
ment verification routines for the constraints of self-defined
stereotypes. The semantics for the fragment of UML used
for UMLsec is defined in [4] using so-called UML Machines,
which is a kind of state machine with input/output interfaces
and UML-type communication mechanisms. On this basis,
important security requirements such as secrecy, integrity,
authenticity, and secure information flow are defined.

3.3 Modeling of Security Requirements
Starting from a given set of security requirements (i.e.,

the company‘s security policy) which focuses on mobile se-
curity, we conducted an analysis to identify the parts of the
UMLsec framework which are most suitable to model these
requirements and allow for a subsequent security analysis.

The main objectives for the selection of requirements,
parts of the frameworks, and modeling objects have been:

• focus on requirements which affect the architecture

• reduction of complexity by abstraction and generaliza-
tion

• reusability of the model

Therefore, the target of the modeling process and the re-
sulting models are:

• data

• data flows

• network objects and their connections

• services

• protection goals

• protection measures and devices

• processes.

As a result of this modeling process, we develop a model
focused on particular parts of a given security policy, which
is considered to be complete, consistent, rather stable, and
independent of the concrete architecture to be analyzed.

3.4 Analysis Process
In order to support the goals of the security analysis in

Sect. 3.1 we developed an analysis process which takes ad-
vantage of three different kinds of models. These models are
sketched in Fig. 2 and described as follows (see Sect. 4 for
examples):

Security Requirements Model: The creation of this
model is described in Sect. 3.3. To be able to specify the se-
curity requirements, this model may include architectural or
behavioral views of the system, but in a prescriptive rather
than descriptive way. This model satisfies all relevant secu-
rity requirements by construction.

Usage Model: The Usage Model is a less formalized
model (usually not using UMLsec) which describes the re-
quirements of a target architecture from a user’s point of
view.

Concretized Model: The Concretized Model describes
a concrete architecture by means of UMLsec. It is considered
to satisfy the requirements of the Usage Model.

The Concretized Model can be obtained by adapting the
architecture-independent Security Requirements Model un-
til it fits the Usage Model with respect to, for instance, re-
quired functionality or available protection measures.

Thus, we obtain an architecture-dependent Concretized
Model which usually differs from the Security Requirements
Model. By making use of different parts of the UMLsec
notation and tool-support (see Sect. 4 for examples) we can:

• identify gaps between these two models by applying
the framework to the Concretized Model

• document security requirements which are not met by
the Concretized Model

• improve the Concretized Model through iterations and
reassessment

By following this iterative process we are able to improve
a target architecture with respect to security requirements.
Due to the restrictions of the Usage Model and the factors
described in Sect. 2, it is advisable to follow such an iterative
approach in order to keep the protection measures that are

Figure 2: Models used in the Analysis Process

needed to satisfy a given security policy subject to a given
usage scenario minimal.

4. APPLICATION AT O2 (GERMANY)
We now explain how the process for model-based security

analysis explained above was used at an application at the
German telecommunications company O2 (Germany). We
illustrate this with a few representative examples.

Overall, we extracted 62 security requirements from the
security policy which we formalized for developing this model
by employing the following stereotypes respectively exten-
sions (see [4] for definitions and explanations):

• 〈〈 fair exchange 〉〉 and 〈〈 provable 〉〉 for 21 process-related
requirements, which are formalized within eight activ-
ity diagrams.

• 〈〈 secure links 〉〉 for 10 security requirements regarding
secrecy and integrity of data which have to meet on
the physical layer. All requirements are integrated in
one deployment diagram.

• Three requirements concerning role-based access con-
trol.

• An extension of UMLsec based on logical formulas for
formalizing 15 security requirements concerning net-
work services and dataflows which have to be regu-
lated by firewalls resp. tested for malware by anti-virus
software (see Sect. 4.3). The logical formulas which
formalize all of these requirements are based on one
network architecture model.

• For 13 requirements we were not able to find an ap-
propriate UMLsec representation.

In each of the examples presented in this section, we will
consider two kinds of UMLsec models: A model which rep-
resents the security requirements that should be realized ac-
cording to the company security policy (Security Require-
ments Model) and a model which represents an implemen-
tation of the Security Requirements Model, which may al-
ready be in place within the company, or which is intended
to be implemented (Concretized Model). One can then use
the UMLsec tools to compare the Concretized Model with

Figure 3: Security Requirements Model for virus
scan scenario as a UMLsec activity diagram

the Security Requirements Model to determine whether the
Concretized Model enforces all the security requirements
that should be in place according to the Security Require-
ments Model. In that sense, the Security Requirements
Model plays the role of a “blueprint” which demonstrably
enforces the security requirements given in the company se-
curity policy. Against that, the Concretized Model, which
represents the existing or planned implementation, has to
be compared.

4.1 Scenario 1: Virus Protection
For the first example we consider four security require-

ments concerning virus scans on a mobile device:
Requirement 1: If malware is found, the infected data

has to be cleaned up or to be deleted completely.
Requirement 2: Furthermore, all involved users have to

be informed about the malware that was found.
Requirement 3: The results of every virus scan have to

be logged.
Requirement 4: A log-file has to be stored on a central

storage device.
These requirements are described on a highly abstract

level. So, for example, they only formulate that infected
data has to be cleared up or to be deleted. They do not
specify a detailed way in which these measures have to be
accomplished. Thus the requirements listed above can be
formalized on a process-related level. Fig. 3 shows the Se-
curity Requirements Model representing these security re-
quirements in the notation of a UML activity diagram.

To complete the formalization of the security requirements,
the stereotype 〈〈 fair exchange 〉〉 is applied to the acticity di-
agram and the associated tags {start} and {stop} are de-
fined for each requirement separately:

• Tags for requirement 1:
{start} =”notice of malware found”,
{stop} =”clearing up of infected data”,

{stop} =”deletion of infected data”

• Tags for requirement 2:
{start} =”notice of malware found”,
{stop} =”message of malware found to involved users”

• Tags for requirement 3:
{start} =”virus scan”,
{stop} =”logging of virus scan”

• Tags for requirement 4:
{start} =”virus scan”,
{stop} =”storage of logging data”

The constraint for the stereotype 〈〈 fair exchange 〉〉 requires
that whenever a {start} state in the contained activity
diagram is reached, a {stop} state will also eventually be
reached (for a detailed description of UMLsec see [4]). For
example, if the {start} state ”notice of malware found” is
reached in the process shown in Fig. 3, the {stop} state
”clearing up of infected data” or the {stop} state ”deletion
of infected data” will subsequently be reached. There is no
sequence in which the {start} state is reached but after-
wards none of the {stop} states (and this can also be checked
automatically using the UMLsec tools). Thus the activity
diagram combined with the stereotype 〈〈 fair exchange 〉〉 and
the defined tags fulfill requirement 1, so they provide a Secu-
rity Requirements Model for the first security requirement.
Analogously, it can be shown that the other security require-
ments hold in the Security Requirements Model as well.

It is important to note that this Security Requirements
Model is only reasonable under some assumptions: The Se-
curity Requirements Model only requires the existence of the
process actions described above and the right embedding of
these actions in the whole process, but does not describe how
the particular actions itself have to work. So this security
model can only be applied to a real architecture in a use-
ful way when it is additionally ensured that these actions
(e.g., ”clearing up of infected data”) work accurately in a
real world context. That is, we do not analyze the quality of
these actions (e.g., the quality of an encryption algorithm),
but their correct usage.

As the next step, a Concretized Model has to be built
which can then be compared with the Security Require-
ments Model developed above. A Concretized Model is al-
ways based on a Usage Model as introduced in Sect. 3.4
which describes the software to be applied in the examined
infrastructure. In this example, we assume the usage of an
anti-virus software which provides functionality for deleting
found malware and for logging positive results of a virus
scan. Fig. 4 shows a simplified part of such a Concretized
Model which visualizes the process of scanning data for mal-
ware on a mobile device.

Before analyzing this Concretized Model, the stereotype
〈〈 fair exchange 〉〉 and the tags defined for the security model
are applied to the associated activity diagram. By using the
appropriate analysis plugin ”UMLsec Static Check I” in the
UMLsec tool framework [11], this Concretized Model can
then be tested separately for each security requirement for-
malized in the Security Requirements Model above. The re-
sults of the analysis using the plugin ”UMLsec Static Check
I” show that the first requirements hold in the Concretized
Model: In every possible sequence of the process the state
”deletion of infected data” will be reached after the state
”notice of malware found” is reached. Analogously, the Con-
cretized Model fulfills the second requirement. In contrast,

Figure 4: Activity diagram for Concretized Model

the third and fourth requirements do not hold in the Con-
cretized Model. If no malware is found, the process does not
reach the state ”logging of virus scan”, and the state ”stor-
age of logging data” is completely missing in the process.
Thus the third and fourth security requirements are not met,
which can be detected by the process described above. The
gaps are displayed explicitely (e.g., by enumerating missing
tags) and can be used for a subsequent improvement cycle
or a risk analysis.

4.2 Scenario 2: Mobile Communication
We want to develop the second example on the basis of

the following exemplary security requirements which refer
to the communication between a mobile device and external
storage devices respectively the company’s intranet:

Requirement 1: All data sent between a mobile device
and the intranet is allowed to be read only by employees.

Requirement 2: The data stored on a mobile device is
allowed to be stored only encrypted on an external storage
device such that only the owner of the related mobile device
is able to read the data.

Both items specify the requirement of secrecy of data sent
between the mobile device and the intranet or stored on an
external storage device like a memory card, which can be
achieved by encryption. Since the stereotype 〈〈 secure links 〉〉

is used to ensure that security requirements on the com-
munication are met by the physical layer, this stereotype
seems to be appropriate to formalize these requirements.
Fig. 5 shows a deployment diagram labeled by the stereo-
type 〈〈 secure links 〉〉 and is used as basis of the Security Re-
quirements Model.

Part of the Security Requirements Model is the definition
of the attacker types against which the security requirements
have to hold. For our example we define two different at-
tacker types, and for each the actions they can apply to
various communication links (cf. Tables 1 and 2).

For building an exemplary Concretized Model (which we
can test for fulfilling the security requirements listed above)
we assume the usage of an encryption software which en-

Figure 5: Deployment diagram for Security Require-
ments Model

crypts data sent between the mobile device and the intranet
and data stored on an external storage device with a com-
pany-wide key (which every employee is assumed to know).
The deployment diagram in Fig. 6 labeled with the stereo-
type 〈〈 secure links 〉〉 contains the relevant subsystem of the
Concretized Model.

An analysis of this Concretized Model with the plugin
”UMLsec Static Check I” in the UMLsec tool framework
shows that the model only satisfies the first security require-
ment. The constraint associated with the 〈〈 secure links 〉〉

enforces that for a dependency with stereotype 〈〈 secrecy 〉〉

between two objects on different nodes we have a commu-
nication link between these nodes such that a defined at-
tacker type is not able to perform the threat ”read” on that
communication link. According to the first requirement, an
external attacker should not be able to read the data sent
on the communication link between the nodes ”mobile de-
vice” and ”intranet”. Because this communication link is
labeled with the stereotype 〈〈 encrypted with company key 〉〉,
an external attacker is not able to read any data sent on
this link according to the definition of the related attacker
type. By contrast, an internal attacker is able to read data
sent on this communication link. However, the first require-
ment does not specify an employee as unauthorized to read
this data. Hence the first requirement holds in the archi-
tecture model above. Analogously, an external attacker is
not able to perform the threat ”read” on the communication

communication links threats
plain delete, read, insert
encrypted with company key delete
encrypted with user key delete

Table 1: Threats from an external attacker

communication links threats
plain delete, read, insert
encrypted with company key delete, read, insert
encrypted with user key delete

Table 2: Threats from an internal attacker

Figure 6: Deployment diagram for Concretized
Model

link between the nodes ”mobile device” and ”external stor-
age device”, but an internal attacker is. Because the second
requirement specifies that only the owner of the mobile de-
vice is allowed to read data stored on external memory, this
requirement is violated by the architecture model. A solu-
tion could be to use encryption software for encrypting data
with an individual key of the user.

4.3 Scenario 3: Network Security Architec-
ture

Within the project, we identified a group of similar secu-
rity requirements for whose formalization we did not find an
appropriate UMLsec notation element and tool plugin. Most
of these security requirements specify that there should not
exist any network services or dataflows between an insecure
component like the Internet and a critical component of the
company’s intranet like internal server applications. So we
developed a method to test a network architecture model for
potentially dangerous network services and dataflows mak-
ing use of automated theorem provers which can be easily
integrated into UMLsec. Here, a potentially dangerous net-
work service is understood as a service which is not regu-
lated by a firewall and a potentially dangerous dataflow is
understood as a dataflow not scanned for malware. The fol-
lowing exemplary requirements concerning the architecture
in which a mobile device can be integrated belong to this
group of security requirements:

Requirement 1: Every network service incoming from
or outgoing to the Internet must be regulated by a firewall if
an internal server application is using this network service.

Requirement 2: All data coming from the Internet must
be tested for malware before being received and processed
by an internal server application.

Again, one can create a Security Requirements Model for-
malizing these requirements and an associated Concretized
Model that is supposed to describe the implemented security
requirements for a given architecture. To be able to verify
the Concretized Model for this kind of security requirements,
we have developed an approach based on a formalization
of the Security Requirements Model and the Concretized
Model using first-order logic (FOL). The logical formulas
arising from the Concretized Model can then be automati-
cally verified against those arising from the Security Require-
ments Model using automated theorem provers (ATPs) for

Figure 7: Deployment diagram for Concretized
Model

first-order logic, such as SPASS1.
The set of formulas is composed of three main categories,

as explained in the following paragraphs:
Network architecture: The first set of formulas formal-

izes the network architecture model to be tested. This part
formalizes the Concretized Model which has a deployment
diagram specifying the network architecture model as its ba-
sis. Within this deployment diagram, devices are modeled as
nodes which may contain several components (for example
software applications). For every node the available access
medium is specified, and the nodes can be interconnected
by communication links of different types of access media
(such as LAN, WLAN, etc.). The components can be la-
beled with stereotypes describing the type of the component
(such as firewall, anti-virus software, encryption software,
critical component to be protected, etc). Network services
and dataflows are modeled as directed dependencies between
components. For each dependency, the protocol (such as
HTTP, FTP, IMAP etc.) on which the related network ser-
vice or dataflow is based is also specified using a stereotype.
Additionally, for each component of the type 〈〈 firewall 〉〉 and
〈〈 anti-virus 〉〉 one needs to define which ports or protocol
services they can regulate respectively scan. Fig. 7 shows
such a deployment diagram of a simplified network archi-
tecture to be analyzed for the security requirements. Fig. 8
shows an exemplary logical formula which defines the com-
ponent ”I-Server-Application”as a critical component of the
node ”Intranet” and ”IW-Application” as component of ”In-
ternal Workstation” with the stereotype 〈〈 others 〉〉. In ad-
dition, this formula specifies that LAN is an active access
medium on both nodes (”Intranet” and ”Internal Worksta-
tion”), that on this access medium an HTTP network service
can be established, and that there exists an HTTP network
service between the components ”I-Server-Application” and
”IW-Application”.

1http://spass.mpi-sb.mpg.de

input_formula(network_architecture_model,axiom,(
is_component_of(internal_workstation,iw-application) &
is_component_of(intranet,i-server-application) &
type_of_component(iw-application,others) &
type_of_component(i-server-application,critical) &
access_media_availability(internal_workstation,lan) &
access_media_availability(intranet,lan) &
service_on_access_media(http,lan) &
connection(service,iw-application,i-server-application,

http,plaindata))).

Figure 8: Formulas for Network Architecture Model

Threat model: The second set of formulas formalizes the
threat model against which the Concretized Model should
be analyzed. On the one hand these logical formulas pro-
vide the rules for generating possible attacks. For example,
if the same access medium standard is active on two different
nodes, these two nodes can be connected by a communica-
tion link of this type of access medium. Furthermore, all
kinds of network services and dataflows which can be es-
tablished on this communication link are added to the net-
work architecture model between the components of these
two nodes, in a way that a network service between two
components in one direction always implies a dataflow be-
tween these two components in both directions. Fig. 9 shows
a logical formula which formulates the rule for generating
dataflows between two components in both directions from a
directed network service between the same two components.
More precisely, the formula formalizes that if there exists a
network service of any type of protocol and encryption stan-
dard between the component ComponentX and the compo-
nent ComponentY, there also exist a bidirectional dataflow
of the same type of protocol and encryption standard be-
tween ComponentX and ComponentY. On the other hand,
the formulas describe the rules for marking all potentially
dangerous network services and dataflows as well as for con-
necting these dangerous services and dataflows transitively.

Security requirements: The third set of formulas for-
malizes the security requirements against which the Con-
cretized Model has to be analyzed (i.e., the Security Re-
quirements Model). For every security requirement a par-
ticular predicate has to be formulated. Intuitively, a formula
formalizing the first security requirement specifies that there
exists no transitive network service from an insecure compo-
nent (in the example in Fig. 7, the component ”World Wide
Web”) to a critical component (”I-Server-Application”) or
vice versa not passing a component of the type 〈〈 firewall 〉〉.
More precisely, because of the way this requirement will be
verified by the automated theorem prover (see below), we
need to formalize the negation of this requirement (since the
requirement is then fulfilled if the prover reports that this
formalization is not derivable from the formulas explained
above). For example, in the input notation for the FOL
theorem provers, the formalization of the first requirement
is shown in Fig. 10. Intuitively, this formula formalizes the
logical conjecture that there exist an insecure component
ComponentX and a critical component ComponentY which
are connected by a transitive network service without fire-

input_formula(connection_of_service_to_connection_of_dataflow,axiom,(
! [ComponentX,ComponentY,Service,DataEnc] : ((

connection(service,ComponentX,ComponentY,Service,DataEnc)) => (
connection(dataflow,ComponentX,ComponentY,Service,DataEnc) &
connection(dataflow,ComponentY,ComponentX,Service,DataEnc))))).

Figure 9: Formulas for Dataflow Model

input_formula(requirement_1,conjecture,(
? [ComponentX,ComponentY,Service] : (

connection_without_firewall_regulation
(dataflow,ComponentX,ComponentY,Service,plaindata)&

type_of_component(ComponentX,insecure) &
type_of_component(ComponentY,critical)))).

Figure 10: Formalized Security Properties

wall. If the theorem prover can derive this conjecture from
the formulas formalizing the network architecture and the
threat model, this means that there is a potential vulnera-
bility. If the theorem prover reports that such a derivation
does not exist, there is no such vulnerability. The predicates
such as type of component() used in this formulas have to be
defined in the first set of formulas. The second requirement
(malware scan) can be formalized by a similar formula.

To analyze the Concretized Model, the formulas explained
above are given as input to the automated theorem prover
which then tries to deduce the predicates formalizing the se-
curity requirements from the set of formulas describing the
architecture model and the rules. This is done completely
automatic (i.e. without any human interaction). Also, the
formulas can be generated automatically from the Security
Requirements Model and the Concretized Model so that the
user can use this new verification technique in an automated
way as part of the general UMLsec tool-flow (this genera-
tion plugin is currently in the development phase). If the
theorem prover finds a deduction of one of these predicates,
the related security requirement does not hold in the Con-
cretized Model. If the theorem prover reports that no such
deduction exists, the security requirement does hold. (In
principle, it can happen that the theorem prover does not
return a result at all, in which case one cannot draw any
conclusions, but this did not happen with the models in the
application reported here.)

Assuming that the access medium ”LAN” is active on the
nodes ”Mobile Device” and ”Internal Workstation” and an
HTTP network service can be established on a LAN com-
munication link, the first security requirement does not hold
in the Concretized Model in Fig. 7. For example, these two
nodes can be connected by a communication link of the type
LAN and hence an HTTP network service can be build on
the following path not passing a firewall component: ”World
Wide Web” -> ”MD-Application” -> ”IW-Application” ->
”I-Server-Application”. Thus there exists a network ser-
vice between the Internet and an internal server application
which is not regulated by a firewall. A solution could be to
integrate a firewall on the device ”Internal Workstation” or
to deactivate the access medium ”LAN” on this device.

The second requirement is violated in the Concretized
Model when assuming, that ”P-Anti-Virus-Software” is not
able to scan encrypted dataflows for malware. Because the
dataflow coming from ”MD-Application” over ”MD-Encryp-
tion” and ”P-Firewall” is decrypted by ”P-Encryption” af-
ter passing ”P-Anti-Virus-Software”, there exists a dataflow
from the Internet (”World Wide Web”) to an internal server
application without being tested for malware.

5. LESSONS LEARNED
In this section, we provide a discussion of the lessons

learned from this application experience at the hand of some
guiding questions.

Are there ways in which the application of UMLsec
did not go as expected?

Generally, the application of UMLsec worked as expected,
though analyzing sophisticated security mechanisms turned
out to be less easy than applying simple consistency checks.
One main reason is, that depending on the chosen level of ab-
straction the formalization of security requirements emded-
ded and described in security policies always entails the re-
duction of real world complexity and thus loosing some of
its context. Hence such a formalization of requirements for
developing formal security models and analyzing architec-
ture models only produce reasonable results in considera-
tion of well-formed an sophisticated assumptions. Note that
most users will not design their own security mechanisms
but instead just want to make sure that they use existing
mechanisms correctly.

Did the method have to be changed or adapted to
work properly, and if so, in what way? Did UMLsec
rules have to be changed to fit the application to
mobile communication systems with their specific
characteristics as discussed in Sec. 2? Were there se-
curity mechanisms in the system that UMLsec does
not cover?

Of the 62 security requirements that were considered, 34
could be treated using UMLsec rules without having to be
changed or adapted specifically to mobile systems. A fur-
ther 15 were treated with a new verification technique that
allows one to analyse a network architecture as to whether
a sufficient number of firewall and virus scan nodes are in
place. This analysis can be done automatically using au-
tomated theorem provers for first-order logic. This exten-
sion to UMLsec has been developed and added to UMLsec
for this purpose as part of this project (see Sect. 4 for de-
tails). Also, all security mechanisms in the system could
be analyzed using the UMLsec notation and the extension
mentioned above.

Furthermore, there were some recommendations for de-
sirable reasonable improvements of the analysis plugins in
the associated UMLsec tool framework. For example, a lot
of plugins are only able to test a UML diagram for only
one requirement at one time. But often it turned out to be
necessary to formalize more than one requirement in one dia-
gram. Hence it would be desirable to add some functionality
to these plugins for testing a diagram for many requirements
at one time. Due to the amount of repeated checking tasks
we thus enhanced the tool to automatically verify a number
of arbitrary tags within one activity diagram.

Did the method yield interesting results?
The method showed that the system under considera-

tion is indeed secure with respect to the security require-
ments and adversary model that were considered, which is
certainly interesting giving the high number of insecure or
untested systems. In particular, this seems to be the first
time UMLsec has been used in a telecommunications envi-
ronment (in particular for a mobile communication architec-
ture), which in itself is a new and interesting result.

Did it not pick up issues that you would have
hoped it would or should?

We are not aware of any issues that the approach did not
notify but which were nevertheless present. In particular,
the architecture under analysis was found to provide the
desired level of security.

How did its use differ from previous uses?
To our knowledge, this was the first application of UMLsec

to mobile telecommunications systems. It differs from previ-

ous applications in so far as the mobility-specific properties
of the application had to be taken into account, which was
done rather easily using the adversary definition mechanism
built into UMLsec.

Can you say anything specific about the security
of the application/system now that you have done
the modeling?

Using the UMLsec approach, we were able to precisely
demonstrate that the main security requirements central to
the mobile communication architecture at hand are actually
correctly enforced.

How can you be sure you have applied the method
correctly or even optimally? Are there other ways
in which you could have applied it? Would you use
the UMLsec approach again to this kind of system?

We tried to apply the UMLsec method optimally in the
sense that we focussed on the security-critical core of the
mobile communications system. Since the identification of
this part was done informally, there always exist the pos-
sibility that security weaknesses may have gone undetected
for this reason. However, we believe that this approach is
cost-effective in a practical application in industry. In par-
ticular, we developed a security assessment process based on
UMLsec which seems to be particularly suitable for mobile
systems (see Sect. 3.4). Generally, the conclusion was the
the use of UMLsec in the given application was successful
and it would be worthwhile to apply it again next time to a
similar kind of system.

Requirements on Security Analysis.
Coming back to the requirements on the security analysis

process that were formulated in Sect. 3.1, we can say that
each of them has been reached to a satisfactory degree:

Reproducability: The results turned out to be reprod-
ucable for a given architecture with apparently little risk of
misinterpretation.

Delegability: Analysis tasks could be delegated.
Efficiency: The analysis process was reasonably efficient

and could be scaled down by limiting its scope.
Parallelization: It was possible to perform parts of the

analysis in parallel and independently.
Traceability: The results of the analysis could be traced

to the architecture and guidance derived how negative re-
sults can be improved on.

Expressiveness: The results carried enough information
to enable an overall risk analysis of a given architecture.

General Discussion.
The use of UMLsec was generally appropriate for this case

study. We were able to start the security analysis based on
the given company security policy and proceed down to the
technical details of the security analysis of the mobile com-
munication architecture. Some areas for future improvement
of the UMLsec method remain. While the definition of some
simple (e.g., static security requirements) is quite intuitive
for the user, the modeling of more sophisticated (e.g., behav-
ioral or cryptography-related) security aspects turned out to
be non-trivial for a user who has only a basic background
in security. Future improvements on the usability of the
method would therefore be useful, although it may never
be achievable to give such a method to someone without
any kind of prior knowledge in security. Conclusions from
the model-based security analysis need to be drawn care-
fully, since it is based on the assumption that the actual
software implementations that are used are themselves se-

cure. Research on linking model-level security analysis to
the implementation level is currently under way [7].

Although this case-study was not aimed at assessing the
usefulness of model-based software development techniques
in general, it turned out that such techniques do come with
an added overhead with respect to training of the user and
with respect to effort and time. One may speculate therefore
that uptake of model-based software development in indus-
try be fastest for application domains that involve highly
sophisticated and critical requirements, such as security-
critical systems, since here the effort is most justified (al-
though again, a controlled comparative study on this obser-
vation was not part of the scope of the current case-study
but would be very interesting future work).

6. SUMMARY
This paper presented a field report on the deployment of

the UMLsec method in an industrial context. A model-based
security analysis was conducted on a mobile communications
system at a major German telecommunications company.
The focus was on the application’s security mechanisms and
policies. Using the UMLsec notation, the user was able to
annotate his models with information regarding the security
critical aspects of the system in a concise and clear way.
Employing the UML profile of UMLsec, developers famil-
iar with the extension mechanisms of the UML should have
no problem to learn UMLsec quickly. Furthermore, by em-
bedding the security analysis directly into the IT develop-
ment and management process, a better understanding and
clearer communication of these issues is made possible.

7. REFERENCES
[1] A. Apvrille and M. Pourzandi. Secure software development by

example. IEEE Security & Privacy, 3(4):10–17, 2005.

[2] B. Best, J. Jürjens, and B. Nuseibeh. Model-based security
engineering of distributed information systems using UMLsec.
In 29th International Conference on Software Engineering
(ICSE 2007), pages 581–590. ACM, 2007.

[3] J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel.
Modelling and verification of layered security-protocols: A bank
application. In SAFECOMP 2003, LNCS. Springer, 2003.

[4] J. Jürjens. Secure Systems Development with UML. Springer,
2004.

[5] J. Jürjens. Sound methods and effective tools for model-based
security engineering with UML. In 27th Int. Conf. on
Softw. Engineering (ICSE 2005). IEEE, 2005.

[6] J. Jürjens. Model-based security engineering for real. In 14th
Intern. Symposium on Formal Methods (FM 2006), volume
4085 of LNCS, pages 600–606. Springer, 2006. Industry Day
Invited Paper.

[7] J. Jürjens. Security analysis of crypto-based Java programs
using automated theorem provers. In S. Easterbrook and
S. Uchitel, editors, 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006). ACM, 2006.

[8] J. Jürjens and P. Shabalin. Tools for secure systems
development with UML. Intern. Journal on Software Tools for
Technology Transfer, 2007.

[9] D. Perry, A. Porter, and L. Votta. Empirical studies of software
engineering: a roadmap. In ICSE - Future of SE Track, pages
345–355, 2000.

[10] J. Schalken. Research methods for the empirical assessment of
software processes. In The 12th Doctoral Consortium at
CAiSE 05, 2005.

[11] UMLsec tool, 2001-08. http://computing-research.open.ac.uk/jj/
umlsectool.

[12] M. Vetterling, G. Wimmel, and A. Wisspeintner. Secure
systems development based on the Common Criteria. In 10th
International Symposium on the Foundations of Software
Engineering (FSE-10), pages 129–138. ACM, 2002.

