
Secure Java Development with UML

Jan Jürjens

Software & Systems Engineering, Informatics, TU Munich

Computing Laboratory, University of Oxford

juerjens@in.tum.de

http://www4.in.tum.de/̃ juerjens

1

Motivation

Security increasingly important, but difficult to achieve

– and developers often lack background in security.

Can’t use security mechanisms “blindly”:

Security compromised most often not by

breaking mechanisms, but by circumventing them.

Use formal core of UML (industry standard in OO-modelling)

to enforce correct deployment of security mechanisms.

Jan Jürjens, TU Munich: Secure Java Development with UML 2

Java Security

Originally (JDK 1.0): sandbox.

Too simplistic and restrictive.

JDK 1.2/1.3: more fine-grained security architecture

(access control, signing, sealing, guarding objects, . . .)

BUT: complex, thus use is error-prone.

Jan Jürjens, TU Munich: Secure Java Development with UML 3

Java Security policies

Permission entries consist of:

• protection domains (i. e. URL’s and keys)

• target resource (e.g. files on local machine)

• corresponding permissions (e.g. read, write, execute)

Jan Jürjens, TU Munich: Secure Java Development with UML 4

Signed and Sealed Objects

Need to protect integrity of objects used as authentication

tokens or transported across JVMs.

A SignedObject contains an object and its signature.

Similarly, need confidentiality.

A SealedObject is an encrypted object.

Jan Jürjens, TU Munich: Secure Java Development with UML 5

Guarded Objects

Class java.security.GuardedObject: objects that protect access
to other objects

• access controlled by getObject method

• invokes checkGuard method on the java.security.Guard object
that is guarding access

• If access allowed: return reference
Otherwise: throw SecurityException

access
1. Request

2. Check guard

3. Return
reference

2.

1.

3.

Jan Jürjens, TU Munich: Secure Java Development with UML 6

Problem: Complexity

• Granting of permission depends on execution context.

• Access control decisions may rely on multiple threads.

• A thread may involve several protection domains.

• Have method doPrivileged() overriding execution context.

• Guarded objects defer access control to run-time.

• Authentication in presence of adversaries can be subtle.

• Indirect granting of access with capabilities (keys).

; Difficult to see which objects are granted permission.

Jan Jürjens, TU Munich: Secure Java Development with UML 7

Solution

Use formal core of Unified Modeling Language (UML)

to check dynamical behaviour against expressed

security policies on specification-level.

Find correct required security policies in advance

(not through “penetrate-and-fix”).

• fewer vulnerabilities

• reduced cost (development, maintenance)

Jan Jürjens, TU Munich: Secure Java Development with UML 8

UML

UML: standard modeling language for

object-oriented analysis and design.

Different diagrams for different views

on system.

Here: simplified fragment: class

diagrams, statechart diagrams,

deployment diagrams.

Cls2{guarded,GObj} {signed,Key}

Op1(arg1:ATy1):RTy1 Op2(arg2:ATy2):RTy2

Att2: AttTy2Att1: AttTy1

Cls1

Class

Dependency
<<call>>

InitialState
\action

message(x)[condition]
State

Transition State Start marker

Component Dependency

Node

Location
Physical Link

<<kindOfLink>>

<<kindOfDep>>

CompName

Jan Jürjens, TU Munich: Secure Java Development with UML 9

Design Process

(1) Formulate access control requirements for sensitive objects.

(2) Give guard objects with appropriate access control checks.

(3) Check that guard objects protect objects sufficiently.

(4) Check that access control is consistent with functionality.

(5) Check mobile objects are sufficiently protected.

Jan Jürjens, TU Munich: Secure Java Development with UML 10

Reasoning

Definition. Statechart preserves secrecy of K if (informally):

exists no adversary without prior knowledge of K such that

joint execution may eventually output K.

Theorem. Suppose access to resource according to Guard

object specifications granted only to objects signed with K.

Suppose all components preserve secrecy of K.

Then only objects signed with K are granted access.

Relies on formal semantics.

Jan Jürjens, TU Munich: Secure Java Development with UML 11

Example: Access control rule

waitReqcheckReq

[signed=K]S

recMaster

−1K

K
C

K
C

−1K

K
M

sign(skey)

checkGuard()

[otherwise]

\return

cert()

M

[fst({cert})=req]

snd({cert})

mst(key,cert)

S

/return(K,Dec (grd,K))

 /K :={Dec (key)}

/K :=Dec (skey)
/throw new SecurityException()

May submit keys KS protected by KM. Objects signed

with KS granted access to guarded object.

Flaw: adversary A can find out KM and make grd accept

a key KS chosen by A.

Can exhibit flaws like this when trying to show formally

that assumptions of the above theorem are fulfilled.

Jan Jürjens, TU Munich: Secure Java Development with UML 12

Example: Financial Application

Local
<<Internet>>

www.bankeasy.com

Server

Server

<<rmi>>

<<rmi>>

www.finance.com
Store

Browser

<<Internet>>

Internet bank, Bankeasy, and financial advisor, Finance, offer

services to local user. Applets need certain privileges (step 1).

• Applets from and signed by bank read and write

financial data between 1 pm and 2 pm.

• Applets from and signed by Finance use

micropayment key five times a week.

Jan Jürjens, TU Munich: Secure Java Development with UML 13

Financial Application: Class diagram

Sign and seal objects sent over Internet for integrity

and confidentiality.

GuardedObjects control access.

{signed=bankeasy}

{signed=finance,
certiflow}

BankData: FDat

BankAp

UserData: FDat

AdvAp

MicroSign
{guard=MicGd}

MicroKey: Key

Sign(O:Obj):Obj

{signed=finance}

SignedReq: Obj

InfoAp
<<call>>

Write(arg:FDat)
Read():FDat

FinData: FDat

{guard=FinGd}
StoredFinan

Read():FDat

FinanExcpt
{guard=ExcGd}

ExcData: FDat

<<call>>

<<call>>

<<call>>

Jan Jürjens, TU Munich: Secure Java Development with UML 14

Financial Application: Guard objects (step 2)

timeslot true between

1pm and 2pm.
CheckReq WaitReq

checkGuard()

[otherwise] \throw new SecurityException()

[origin=signed=bankeasy,timeslot]\return

weeklimit true until

access granted five

times; incThisWeek

increments counter.

CheckReq WaitReq
checkGuard()

[otherwise] \throw new SecurityException()

\incThisWeek \return[origin=signed=finance,weeklimit]

Jan Jürjens, TU Munich: Secure Java Development with UML 15

Financial Application: Validation

Guard objects give sufficient protection (step 3).

Proposition. UML specification for guard objects only grants

permissions implied by access permission requirements.

Access control consistent with functionality (step 4). Includes:

Proposition. Suppose applet in current execution context

originates from and signed by Finance. Use of micropayment

key requested (and less than five times before). Then

permission granted.

Proofs. Use formal semantics and above theorem.

Mobile objects sufficiently protected (step 5), since objects sent

over Internet are signed and sealed.

Jan Jürjens, TU Munich: Secure Java Development with UML 16

Related Work

Li Gong: “Inside Java 2 Platform Security”, 1999

Kassab et al. 98, Wallach et al. 98, Karjoth 00:

formal reference model for Java 2 access control.

Hauswirth et al. 00: higher-level abstractions

for Java security policies

UMLsec (FASE ’01), applications to electronic purses

(IFIP SEC 01), CORBA (EPS 2002)

Jan Jürjens, TU Munich: Secure Java Development with UML 17

Conclusion

Use formal core of UML to specify and reason about access

control in Java-based systems.

• Provides support for correct use of

relatively complicated mechanisms.

• Relatively feasible: developers may already know UML;

UML allows high level of abstraction.

More general approach for secure systems design using UML.

Jan Jürjens, TU Munich: Secure Java Development with UML 18

Future Work

• Extend to doPrivileged, JAAS etc.

• Tool support (verification, testing).

• Automatic generation of minimal permission sets.

Jan Jürjens, TU Munich: Secure Java Development with UML 19

