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Abstract
Designing and implementing cryptographic protocols is
known to be difficult. A lot of research has been devoted
to developing formal techniques to analyze abstract de-
signs of cryptographic protocols. Less attention has
been paid to the verification of implementation-relevant
aspects of cryptographic protocols. This is an important
challenge since it is non-trivial to securely implement
secure designs, because a specification by its nature is
more abstract than the corresponding implementation,
and the additional information may introduce attacks
not present on the design level. In this paper, we ad-
dress aspects of crypto protocol implementations close
to the hardware level. More concretely, we consider
the industrial Cryptographic Token Interface Standard
PKCS 11 which defines how software on untrustwor-
thy hardware can make use of tamper-proof hardware
such as smart-cards to perform cryptographic opera-
tions on sensitive data. We propose an approach for
automated security analysis with first-order logic theo-
rem provers of crypto protocol implementations making
use of this standard. Keywords: Cryptographic pro-
tocols, hardware, code analysis, verification, automated
theorem proving.

1 Introduction

Automated theorem provers (ATPs) have been suc-
cessfully applied to the problem of verifying cryp-
tographic protocols for security requirements [Sch97,
Wei99, Coh03]. An advantage is the potential for being
not only automatic, but also quite efficient and pow-
erful, because of the efficient decision procedures im-
plemented in these tools and because security require-
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ments can be formalized straightforwardly in first-order
logic (FOL).

A disadvantage of many of these approaches is that
they require developers to construct a formal specifica-
tion of their protocol in a formal notation. Also, it is
not clear whether an implementation of a secure design
is still secure, since in general, implementations cannot
be automatically generated from formal specifications.
For example, [RS98] presents an attack against a pro-
tocol implementation whose design had been proven se-
cure using formal logic. Such examples are not just due
to careless implementation of specifications: A speci-
fication by its nature is more abstract than the corre-
sponding implementation, and the additional informa-
tion may introduce attacks not present on the design
level.

To address this problem, we present an approach
for analyzing cryptographic protocol implementations
for security requirements using automated theorem
provers. Specifically, in this paper, we address aspects
of crypto protocol implementations close to the hard-
ware level: We consider the industrial Cryptographic
Token Interface Standard PKCS 11 which defines how
software on untrustworthy hardware can make use of
tamper-proof hardware such as smart-cards to perform
cryptographic operations on sensitive data. The C code
gives rise to a control flow graph in which the cryp-
tographic operations offered by the cryptographic to-
ken are represented as abstract functions. The con-
trol flow graph is translated to formulas in first-order
logic with equality. Together with a logical formaliza-
tion of the security requirements, they are then given
as input into any automated theorem prover (such as
e-SETHEO [SW00]) supporting the TPTP input nota-
tion, which is a standard input notation for automated
theorem provers (ATPs). If the analysis reveals that
there could be an attack against the protocol, an at-
tack generation script written in Prolog is generated
from the C code. We demonstrate our approach at the
hand of a variant of TLS (the current version of the
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security protocol SSL) proposed in [APS99]. We also
briefly report on experiences from an ongoing applica-
tion to a biometric authentication protocol within an
industrial project.

One should note that it is not our goal to provide
an automated full formal verification of C code. This
would not be possible in general, since security require-
ments are undecidable [DLMS99]. Instead, our goal
is to increase trustworthiness of cryptoprotocol imple-
mentations in an approach which is as automated as
possible to facilitate use in an industrial environment.
Because of the abstractions used, the approach may
produce false alarms (which however have not surfaced
yet in practical examples). Also, for space restrictions
we cannot consider features such as pointer arithmetic
in our presentation here (we essentially follow the ap-
proach in [CKY03] in that respect). We do not consider
casts, and expressions are assumed to be well-typed.
Loops are only investigated through a bounded number
of rounds (which is a classical approach in automated
software verification, see for example [HS01, CKL04]).
Note also that our focus here is on high-level secu-
rity properties such as secrecy and authenticity, and
not on detecting low-level security flaws such as buffer-
overflow attacks (for which a number of tools already
exist). To support our approach, a tool is available
over a web-interface and as open-source which, from
control flow graphs, automatically generates FOL logic
formulas in the standard TPTP notation as input to a
variety of ATP’s [Jür04b].

Section 2 introduces the Cryptographic Token In-
terface Standard PKCS 11 of RSA Labs. Section 3 ex-
plains the code analysis framework for our approach.
In Sect. 4, we demonstrate our approach on a variant
of the TLS protocol. In Sect. 5, we shortly report on
experiences from an ongoing application to a biometric
authentication protocol within an industrial project.
After comparing our research with related work, we
close with a discussion and an outlook on ongoing re-
search.

2 PKCS 11 Standard

The PKCS 11 standard [Lab04] specifies an ANSI C
application programming interface (API) to hardware
devices which can store cryptographic information and
perform cryptographic functions. It supports resource
sharing in the sense of multiple applications accessing
multiple devices. The aim of the standard is to isolate
an application from the details of the cryptographic
device. One or more applications that need to perform
certain cryptographic operations are linked to one or
more cryptographic devices, on which some or all of

Function Description
C GetAttributeValue obtains attribute value
C SetAttributeValue modifies attribute value
C Encrypt encrypts single-part data
C Decrypt decrypts encrypted data
C Digest digests single-part data
C Sign signs single-part data
C VerifyRecover verifies a signature

where the data is recovered
C GenerateKey generates a secret key
C GenerateKeyPair generates a key pair
C GenerateRandom generates random data

Figure 1. PKCS 11 Functions

the operations are performed. A user may or may not
be associated with an application.

The standard provides an interface to one or more
cryptographic devices through a number of ”slots”.
Each slot (a physical reader or other device interface)
may contain a cryptographic token. Applications can
connect to tokens in any or all of those slots. The
connections are called sessions and identified by a ses-
sion handle. For the standard, a token is a device that
stores objects (data, certificates, and keys) which can
be accessed by object handles, and can perform crypto-
graphic functions. Objects may be visible to all appli-
cations connected to a token and remain on the token
beyond the end of a session (token objects), or they
may only be visible to the application which created
them and destroyed after the relevant session in which
they were created is closed (session objects). There is
a further distinction between private objects for which
applications have to log on to view them and public
objects otherwise, but for space reasons we have to ab-
stract from this latter aspect in our current treatment.

An application may have one or more sessions with
one or more tokens. In general, a token may have mul-
tiple sessions with one or more applications. An appli-
cation may access a token concurrently from multiple
threads. All threads of a given application have ac-
cess to the same sessions and the same session objects.
Note that if an application has multiple sessions with
a token and creates a session object in one of them,
that session object is visible through any of that appli-
cation’s sessions. As soon as the session that was used
to create the object is closed, that object is destroyed.
Note also that it may go unnoticed by the applications
if a token is removed and re-inserted before a PKCS 11
function is executed.

The PKCS 11 functions which we will consider are
presented in Fig. 1. For space reasons, here we can
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/* C_Encrypt encrypts single-part data. */

CK_PKCS11_FUNCTION_INFO(C_Encrypt)

#ifdef CK_NEED_ARG_LIST

(

CK_SESSION_HANDLE hSession, /*session handle*/

CK_BYTE_PTR pData, /*plaintext data*/

CK_ULONG ulDataLen, /*plaintext bytes*/

CK_BYTE_PTR pEncryptedData, /*gets ciphertext*/

CK_ULONG_PTR pulEncryptedDataLen /*gets ctext size*/

);

#endif

Figure 2. C Encrypt header

present only a fragment of the PKCS 11 API which
is directly relevant to cryptographic operations. As
an example, we give the header description for the
C Encrypt function in Fig. 2. We also have to omit
our treatment of management functions such as open-
ing and closing sessions (the latter is formalized by set-
ting the session objects to the undefined value ε).

3 Code Analysis

We define the translation of security protocol im-
plementations to first-order logic formulas which allows
automated analysis of the source code using automated
first-order logic theorem provers. The general approach
and framework can be found in [JK04]; here we extend
the approach to deal with the PKCS 11 standard. We
assume that the following information is given:

• A description of the physical layer of the system,
such as system nodes and communication links (for
example Internet links), and the level of security
it provides. This may be given as a UMLsec de-
ployment diagram (see [Jür04a]).

• Secondly, the data structure of the system, in-
cluding the security requirements on the system
data (such as secrecy, integrity, and authenticity),
which may be given in a UMLsec class diagram
[Jür04a]. For the security analysis, from this in-
formation the conjecture is derived that is to be
checked by the automated theorem prover.

• The source code gives the intended behavior of the
system. It is extracted as a control flow graph us-
ing the aiCall tool [Abs04] which is compiled to
first-order logic axioms giving an abstract inter-
pretation of the system behavior suitable for secu-
rity analysis.

The analysis approach presented here works with
the well-known Dolev-Yao adversary model for security

analysis [DY83] and is similar to previous approaches
using first-order logic such as [Sch97, Wei99, Coh03]
(for differences, see Sect. 6). More specifically, we have
a broadcast setting simular to that in [Shy02] suitable
in particular for the case of Internet security protocols.
The idea is that an adversary can read messages sent
over the network and collect them in his knowledge set.
The adversary can merge and extract messages in the
knowledge set and can delete or insert messages on the
communication links. The security requirements can
then be formalized using this adversary model. For ex-
ample, a data value remains secret from the adversary
if it never appears in the knowledge set of the adver-
sary. Other important data security properties such as
integrity and authenticity of data can be analyzed with
our method as well, although this cannot be explained
here for lack of space.

We explain the transformation from the control flow
graph generated from the C program to first-order
logic, which is given as input to the automated the-
orem prover. For space restrictions, we restrict our ex-
planation to the analysis for secrecy of data. The idea
here is to use a predicate knows which defines a bound
on the knowledge an adversary may obtain by reading,
deleting and inserting messages on vulnerable commu-
nication lines (such as the Internet) in interaction with
the protocol participants. Precisely, knows(E) means
that the adversary may get to know E during the exe-
cution of the protocol. For any data value s supposed
to remain confidential, one thus has to check whether
one can derive knows(s).

From a logical point of view, this means that one
considers a term algebra generated from ground data
such as variables, keys, nonces and other data using
symbolic operations including the ones in Fig. 3.
There, the symbols E, E′, and E′′ denote terms
inducticely constructed in this way. These symbolic
operations are the abstract versions of the crypto-
graphic algorithms offered in PKCS 11, as defined in
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• encS(E,E′) (encryption)
• decS(E,E′) (decryption)
• hashS(E) (hashing)
• signS(E,E′) (signing)
• verS(E,E′, E′′) (verification of signature)
• extS(E,E′) (recovering content of sig.)
• kgenS(E) (key generation)
• invS(E) (inverse key)
• concS(E,E′) (concatenation)
• headS(E) and tailS(E) (head and tail of concat.)

Figure 3. Abstract Crypto Operations

Fig. 1. Note that the goal is to have all unencrypted,
sensitive data stored and processed on the crypto
token, since the hardware employed otherwise may
not be trustworthy. Therefore, all operations in our
abstract model are parameterized over a session handle
S, since they may make use of data stored at the token
during a particular session. Note that C Digest from
Fig. 1 is written as hashS(E) here and that the func-
tions C GetAttributeValue, C SetAttributeValue,
C GenerateKey, C GenerateKeyPair, and
C GenerateRandom are not part of the crypto
term algebra in Fig. 3 but are formalized implicitly in
the logical formula: setting an attribute a to a value
v is formalized as the logical constraint a = v on the
models (which any valid model of the axioms will
have to fulfill, whereby it amounts to an assignment);
getting the value from the attribute a is modeled
by just using that attribute; and C GenerateKey,
C GenerateKeyPair, and C GenerateRandom are
formalized by introducing new constants representing
the keys and random values (and making use of the
invS(E) operation in the case of C GenerateKeyPair).
Note also that we introduce an additional function
extS(E,E′) here which lets one conveniently recover
the plaintext content of a signature.

In that term algebra, one then defines
the equations decS(encS′(E, invS′′ (K)),K) = E,
verS(signS′(E, invS′′(K)),K,E) = true, and
extS(signS′(E,K), invS′′(K)) = E for all terms E,K
and session handles S, S′, S′′, and the usual laws
regarding concatenation, headS(), and tailS(). This
abstract information is automatically generated from
the concrete source code.

The set of predicates defined to hold for a given
program is defined as follows. For each publicly known
expression E, the statement knows(E) is derived. To
model the fact that the adversary may enlarge his set
of knowledge by constructing new expressions from the

ones he knows, including the use of cryptographic op-
erations, formulas are generated for these operations
for which some examples are given in Fig. 4. We use
the TPTP notation for the first-order logic formulas
[SS01], which is the input notation for many auto-
mated theorem provers including the one we use (e-
SETHEO [SW00]). Here & means logical conjunction
and ![E1,E2] forall-quantification over E1, E2.

We now define how a control flow graph gener-
ated from a C program gives rise to a logical for-
mula characterizing the interaction between the ad-
versary and the protocol participants (technically,
this is realized via the export format GDL of the
aiCall tool). We observe that the graph can be
transformed to consist of transitions of the form
trans(state, inpattern, condition, action, truestate), where
inpattern is empty and condition equals true where they
are not needed, and where action is a logical expression
of the form localvar = value respectively outpattern in
case of a local assignment resp. output command (and
leaving it empty if not needed). If needed, there may
be additionally another transition with the negation of
the given condition.

Now assume that the source code gives
rise to a transition TR1 = trans(s1, i1, c1, a1, t1)
such that there is a second transition TR2 =
trans(s2, i2, c2, a2, t2) where s2 = t1. If there is no such
transition TR2, we define TR2 = trans(t1, [], true, [], t1)
to simplify our presentation, where [] is the empty in-
put or output pattern and trueis the boolean condition.
Suppose that c1 is of the form cond(arg1, . . . , argn).
For i1, we define ī1 = knows(i1) in case i1 is non-
empty and otherwise ī1 = true. For a1, we define
ā1 = a1 in case a1 is of the form localvar = value and
ā1 = knows(outpattern) in case a1 = outpattern (and
ā1 = true in case a1 is empty). Then for TR1 we define
the following predicate:

PRED(TR1) ≡ ī1&c1 ⇒ā1&PRED(TR2) (1)

The formula formalizes the fact that, if the adver-
sary knows an expression he can assign to the vari-
able i1 such that the condition c1 holds, then this im-
plies that ā1 will hold according to the protocol, which
means that either the equation localvar = value holds in
case of an assignment, or the adversary gets to know
outpattern, in case it is send out in a1. Also then the
predicate for the succeeding transition TR2 will hold.

To construct the recursive definition above, we as-
sume that the control flow graph is finite and cycle-free.
Since in general there may be unbounded loops in the C
program (although in the case of cryptographic proto-
cols, these are not so prevalent because the emphasis is
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%---- Basic Crypto Axioms ----

input_formula(construct_message_1,axiom,(

! [E1,E2,S,S’,S’’] :

equal(head(S,conc(S’,E1,E2)),E1)

& equal(tail(S,conc(S’,E1,E2)),E2)

& equal(dec(S,enc(S’,E1,E2),inv(S’’,E2)),E1)

& equal(ext(S,sign(S’,E1,inv(S’’,E2)),E2),E1)

& equal(ver(S,sign(S’,E1,inv(S’’,E2)),E2,E1),true)

)).

%---- Basic Relations on Knowledge ----

input_formula(construct_message,axiom,(

! [E1,E2,S] : ((knows(E1) & knows(E2))

=> (knows(conc(S,E1,E2))

& knows(head(S,E1))

& knows(tail(S,E1))

& knows(enc(S,E1,E2))

& knows(dec(S,E1,E2))

& knows(sign(S,E1,E2))

& knows(ext(S,E1,E2))

& knows(hash(S,E1)))))).

Figure 4. Some general crypto axioms

on interaction rather than computation), this can only
be achieved in an approximate way by fixing a natural
number n (supplied by the user of the approach) and
unfolding all cycles up to the transition path length
n. This is a classical approach in automated software
verification, see for example [HS01, CKL04]. The anal-
ysis process can also be iterated with n as the itera-
tion variable to approximate the unbounded loops as
far as possible (within the limits of tool performance).
Although this works fine with our practical examples,
we are currently working towards providing limits after
which a further security analysis becomes redundant,
similar to ideas in [Sto02].

We explain how we deal with concurrent threads
sharing objects on the crypto token. First, we iden-
tify maximal transition paths in the control flow graph
between synchronization points (that is, where shared
variables are written or read). We have to consider
all possible interleavings between these maximal tran-
sition paths. This is done by constructing a formula
φ constructing of nested implications of the form like
formula 1 but containing predicates PRED(Pi) where i
ranges from 1 to the number of paths n. We then con-
sider the all-quantification of the formula ψ⇒φ over
the possible interleavings of the paths (represented as
ordered lists of the numbers 1 through n), where ψ
is an equational formula assigning to the predicate
PRED(Pi) the values from the predicate formalizing the
path numbered j, where j is the ith element in the or-
dered list. This way we can detect security flaws arising
from concurrent access to shared objects on the token
(for example one threads storing a confidential value to
an object and then another sending out the content of
that object unencrypted).

The predicates PRED(TR) for all such transitions
TR are then joined together using logical conjunc-
tions. The resulting logical formula is closed by forall-
quantification over all free variables contained.

The formulas defined above are written into the
TPTP file as axioms. This means that the theorem
prover will take these formulas as given. The security

requirement to be checked is written into the TPTP
file as a conjecture (for example, knows(secret) in case
the secrecy of the value secret is to be checked). The
theorem prover will then check whether the conjecture
is derivable from the axioms. In the case of secrecy, the
result is interpreted as follows: If knows(secret) can be
derived from the axioms, this means that the adver-
sary may potentially get to know secret. If the the-
orem prover returns that it is not possible to derive
knows(secret) from the axioms, this means that the ad-
versary will not get secret.

Note that the adversary knowledge set is approxi-
mated from above (because one abstracts away for ex-
ample from the message sender and receiver identities).
This means, that one will find all possible attacks, but
one may also encounter “false alarms”. However, this
has not so far happened with practical examples, and
the treatment turns out to be rather efficient.

Note that due to the undecidability of Horn formulas
with equations, one may not always be able to estab-
lish automatically that the adversary does not get to
know a certain data value, but the theorem prover may
execute without termination or may break up because
resources are exceeded. In our practical applications
of our method, this limitation has, however, not yet
become observable.

In case the result is that there may be an attack, in
order to fix the flaw in the code, it would be helpful to
retrieve the attack trace. Since theorem provers such
as e-SETHEO are highly optimized for performance by
using abstract derivations, it is not trivial to extract
this information. Therefore, we also implemented a
tool which transforms the logical formulas explained
above to Prolog. While the analysis in Prolog is not
useful to establish whether there is an attack in the
first place (because it is in order of magnitudes slower
than using e-SETHEO and in general there are termi-
nation problems with its depth-first search algorithm),
Prolog works fine in the case where one already knows
that there is an attack, and it only needs to be shown
explicitly (because it explicitly assigned values to vari-
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C:Client S:Server

init(Ni,KC,SignK−1
C

(C ::KC))

resp
({SignK−1

S
(kj ::N′)}K′ ,

SignK−1
CA

(S ::KS)
)

xchd({secret}k)

N′ ::= init1

K′ ::= init2

cC ::= init3

[snd(ExtK′(cC))

= K′]

ck ::= resp1

cS ::= resp2

K′′ ::=snd(ExtKCA
(cS))

k ::= fst(ExtK′′(DecK−1
C

(ck)))

[fst(ExtKCA
(cS)) = S∧

snd(ExtK′′(DecK−1
C

(ck)))

= Ni]

Figure 5. Variant of the TLS handshake protocol

ables during its search, which can then be queried).

4 A Variant of TLS

We will analyze a variant of the handshake protocol
of TLS1 proposed in [APS99]. To show applicability of
our approach, we demonstrate that we can detect the
flaw observed in [Jür04a]. The goal of the protocol is
to let a client send a secret over an untrusted commu-
nication link to a server in a way that provides secrecy
and server authentication, by using symmetric session
keys.

As shown in the specification in Fig. 5, the pro-
tocol proceeds as follows. The symbols msgn for
each message name msg and number n, represent
the nth argument of the message msgn. received
by an object according to the protocol specifica-
tion. The client C initiates the protocol by send-
ing the message init(Ni,KC,SignK−1

C
(C :: KC)) to the

server S. If the condition [snd(ExtK′(cC))=K′] holds,
where K′ ::= init2 and cC ::= init3 (that is, the key
KC contained in the signature matches the one
transmitted in the clear), S sends the message
resp

({SignK−1
S

(kj :: N′)}K′ ,SignK−1
CA

(S :: KS)
)

back to C
(where N′ ::= init1). Then if the condition

[fst(ExtKCA
(cS))=S ∧ snd(ExtK′′(DecK−1

C
(ck)))=Ni]

holds, where ck ::= resp1 and cS ::= resp2, and
1TLS is the current successor of the Internet security protocol

SSL.

K′′ ::= snd(ExtKCA
(cS)) (that is, the certificate is actu-

ally for S and the correct nonce is returned), C sends
xchd({si}k) to S, where k ::= fst(ExtK′′(DecK−1

C
(ck))).

If any of the checks fail, the respective protocol
participant stops the execution of the protocol.

Figure 6 gives a simplified C implementation of the
client side of the protocol, where the cryptographic op-
erations from Fig. 1 are already substituted by the ab-
stract operations in Fig. 3 and the cryptographic data
is represented by strings. From this abstracted code,
we can then generate the control flow graph. Although
the complete graph cannot be shown here we show as
examples the fragments representing the main function
in Fig. 7 and the s xchd 3 message function in Fig. 8.

The main part of the transformation to the e-
SETHEO input formal TPTP is given in Fig. 9. The
protocol itself is expressed by a for-all quantification
over the session handles used and the pieces of mes-
sages which are transferred over the communication
channel. The variable S represents the session han-
dle which is included during the translation from the
control flow graph to the FOL formula. The message
variables Init 1, Init 2, Init 3, and Xchd 1 stand for the
messages received by the server. The message vari-
ables Resp 1 and Resp 2 stand for the client receiving
messages parts. The protocol example includes three
messages (cf. Fig. 5): the first one sent from the client,
the second one from the server and the third one sent
again from the client. Each message is expressed by an
implication.

When given the formulas generated from the source
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Figure 7. Control graph for main function

code together with the conjecture known(secret), the
prover returns Proof found (within a few seconds on an
AMD Athlon processor with 1533 MHz. tact frequency
and 1024 MB RAM), which means that the secrecy re-
quirement on the value secret is not fulfilled. Using the
Prolog attack generation script we could then generate
the attack scenario to see that it is not a false positive.
Details about the attack can be found in [Jür04a] as
mentioned above.

5 Industrial Application

We are applying our method in an industrial project
with a major German company. The goal is the correct
development of a security-critical biometric authenti-
cation system which is supposed to control access to a
protected resource. In this system, a user carries his
biometric reference data on a personal smart-card. To
gain access, he inserts the smart-card in the card reader
and delivers a fresh biometric sample at the biomet-
ric sensor, for example a finger-print reader. Since the
communication links between the host system (contain-
ing the bio-sensor), the card reader, and the smart-card
are physically vulnerable, the system needs to make use
of a cryptographic protocol to protect this communi-
cation. Because the correct design of such protocols
and the correct use within the surrounding system is
very difficult, our method was chosen to support the
development of the biometric authentication system.
Our approach has already been applied at the specifica-
tion level [Jür05]. Since the implementation is created
manually from the specification, and therefore is open

to implementation bugs and introduced additional se-
curity flaws, we are currently continuing to apply our
approach on the implementation level. So far, we have
already found several severe security flaws which al-
low an adversary to disable the misuse counters which
are supposed to detect attempts to authenticate using
forged biometric samples.

6 Related Work

There are other approaches to using FOL automated
theorem provers for cryptoprotocol analysis, so far ap-
plied mainly on the specification level. [Sch97] formal-
izes the well-known BAN logic in first-order logic and
uses the ATP SETHEO to prove statements in the
BAN logic. BAN logic is a modal belief logic used
to formulate the beliefs of protocol participants during
protocol execution. It has been successfully applied
to the analysis of authenticity properties of protocols.
It is less suitable for reasoning about secrecy and not
particularly close to an execution model of a protocol.
In that sense, it is different from our approach which
is based on the knowledge of the adversary, instead of
the beliefs of the protocol participants. [Wei99] ana-
lyzes the Neuman-Stubblebine key exchange protocol
using FOL and the ATP Spass. The protocol is trans-
lated into first-order monadic Horn fragments and an-
alyzed for attacks against the secure key establishment
between the two protocol participants. This approach
differs from ours for example in that in general we also
use non-monadic Horn formulas (and even non-Horn
formulas), to be able to consider unbounded state when
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Figure 8. Control graph for s xchd 3 message function

necessary to express a security property.
[Coh03] uses first-order invariants to verify crypto-

graphic protocols against safety properties. For typ-
ical protocols, the invariants can be generated au-
tomatically from the protocol specification, allowing
them to be proved by ordinary first-order reasoning.
The approach is supported by the ATP TAPS and
has been extensively tested and shown to be efficient
on the protocols that were considered. Compared to
our approach, the method does not generate counter-
examples (that is, attacks) in case a protocol is found
to be insecure. In our approach, the attack can be
generated from the proof tree. Alternatively, we have
implemented our approach also in Prolog which allows
one to read the attack off the message variables directly
(but is not as efficient are therefore only used once the
protocol is found to be insecure by the ATP). In so far,
the cited approach and ours are complementary.

In other approaches to automated software engi-
neering for security, [KAH99] uses the Software Cost
Reduction method (SCR) to analyze a cryptographic
system for various security properties. Lowlevel secu-
rity properties have so far received comparatively lit-
tle attention; examples are [ALP03], analyzing security
policies for Security-Enhanced Linux, and [GRS99], se-
curely refining architectural descriptions down to im-
plementations.

There has been a substantial amount of research re-
garding program analysis. In [HS01] model checking
and an automated model extraction in combination
with a lookup table is used to verify large software ap-

plications. [CKL04] presents a tool for the automated
formal verification of ANSI-C programs using Bounded
Model Checking. The tool supports most ANSI-C lan-
guage features, such as pointer constructs, dynamic
memory allocation, recursion, and the float and double
data types. Both approaches differ from ours in that
they do not consider security properties.

We are not aware of any existing work formally ver-
ifying crypto protocol implementations making use of
the PKCS 11 crypto API.

7 Conclusion

We presented an approach using automated theo-
rem provers for first order logic to analyze C code im-
plementations of cryptographic protocols making use
of the PKCS 11 API for security requirements. The
goal is to detect security flaws in code, as opposed to
abstract specifications, because of the difficulty in se-
curely implementing a secure specification. Our ap-
proach constructs a logical abstraction of the code
which can be used to verify predefined security proper-
ties (such as confidentiality) with automated theorem
provers.

One should note that it is not our goal to provide
an automated full formal verification of C code using
formal logic but to increase trustworthiness of crypto-
protocol implementations in an approach which is as
automated as possible. Note also that our focus here is
on high-level security properties such as secrecy and au-
thenticity, and not on detecting low-level security flaws
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input_formula(protocol,axiom,(

![S,Init_1, Init_2, Init_3, Resp_1, Resp_2, Xchd_1] : (

% C -> Attacker

( ( ( true & true )

=> knows(conc(S, n, conc(S, k_c, sign(S, conc(S, c, conc(S, k_c, eol)), inv(S, k_c)) ) ))

& ( (knows(Resp_1) & knows(Resp_2)

& equal( fst(S, ext(S, Resp_2, k_ca)), s) & equal(snd(S, ext(S, dec(S, Resp_1, inv(S, k_c)),

snd(S, ext(S, Resp_2, k_ca)))), n ) )

=> knows(enc(S, secret, fst(S, ext(S, dec(S, Resp_1, inv(S, k_c)), snd(S, ext(S, Resp_2, k_ca))))))

) ) )

& % S -> Attacker

( ( ( knows(Init_1) & knows(Init_2) & knows(Init_3)

& equal( snd(S, ext(S, Init_3, Init_2)), Init_2 ) )

=> knows(conc(S, enc(S, sign(S, conc(S, kgen(S, Init_2), conc(S, Init_1, eol)), inv(S, k_s)), Init_2),

sign(S, conc(S, s, conc(S, k_s, eol)), inv(S, k_ca) ) ))

& ( ( knows(Xchd_1)

& true )

=> true ) ) ) ) ) ).

Figure 9. Core Protocol Axiom

such as buffer overflows. We demonstrate feasibility of
our approach at the hand of a variant of the TLS pro-
tocol. Also, we are currently applying it to a biometric
authentication protocol currently in development by a
large German company. Experiences from that appli-
cation have been quite encouraging, in so far as several
significant security flaws have been identified automat-
ically and corrected in subsequent versions of the pro-
tocol. The verification method is automatic and, ac-
cording to the experiences gained from the presented
application, sufficiently powerful to address industrial-
size systems.
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