Model-based Quality Assurance
of Automotive Software

Jan Jurjens’, Daniel Reiss?, David Trachtenherz®

' Open University (GB) and Microsoft Research (Cambridge)
2 Elektrobit (Germany)
3 TU Munich (Germany)

(ﬂ J.Jurjens@open.ac.uk REEEE

The Problem (Meta-level M3)

* Research in Software Engineering is largely
“hype-driven”.

* Research activities largely consist of solution
development [cf Wieringal].

* Very little independent scientific validation, as
would be expected from a scientific discipline (e.g.
controlled and repeatable experiments, preferably
independently from solution developers).

* This paper tries to contribute (a bit) towards
improving this situation.

F_ Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

The Problem (Meta-level M2)

* Model-based development using UML is one of the
current “hypes”: strongly promoted by “gurus” in
industry, actively researched in academia [cf previous
slide].

* But does it really pay ? When / under which conditions
/ to what degree / which techniques exactly ... etc ?

* Very few independent, controlled and repeatable
experiments regarding this question.

* This paper tries to contribute to improving this
situation wrt. model-based quality assurance, with an
emphasis on automotive / embedded software.

F _. Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

The Problem (Meta-level M1)

* Quality assurance of software consumes significant
resources.

* There are high levels of assurance expected especially in
safety-critical systems.

* The QA process should as far as possible controllable (to
measure degree of assurance) and repeatable (also to
account for software changes).

* Model-based quality assurance seems to offer the potential
to address these requirements due to a high degree of
automation.

* Investigate based on a practical experiment to which extent
this may be true wrt. to different QA techniques in the context
of model-based development, in a comparative approach.

F Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 4

Automotive Software

* High safety requirements for some of the
embedded software.

* Increasing complexity of the software.

* High sales numbers (compared to e.g.
airplanes).

* Incentive for quality assurance as opposed to
fault-tolerance by replication of functions.

* Relatively high uptake of model-based
development techniques and tools.

F_ Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

Model-based System Assurance

Requirements

Weave Analyze
In against
Generate

(UML) Models | gy~wwtm Configurations

Verify.
Code- Generate/ Configure
generat. Verify

Source Code IEZSP Runtime System

Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

Case study: Door controller (MO)

Industrial specification [Paech et al, Fraunhofer 2002]. Here:

— Window lifter (including crush guard)
— Door locking/unlocking

Two door controllers communicating
via CAN bus

Passenger side

r N

Driver side

~

~

Electric windows regulator
(for all doors)

Left DCU

Door handle
and lock ™

User mana, ge-
ment control keys

Seat position

keys

Seat control

Seat motors

Child-safety

lock switch

Door handle

Lock switch

Door-opened

sensor

Central lock |

motor

Door lock

A
Door Controller Unit

Seat adjustment

Electric
windows

Wit
positio

Electr

dows r

Windoy

User

Interior light

Ground-illumi-

nating lights

management
Electri
Door lock f:ctrlc
mirrors
Y
Control CAN bus Mirror
illumination (interior) adjustment

and lo

Right DCU

Door handle

Electric windows regulator

™

ck

A

Front door

ASCET

* Commercial CASE tool by ETAS
* Used in automotive industry
* Event-driven operational model

Modeling ASCET-MD
ASCET-RP

Measurement,
Calibration

and Simulation ‘ ‘
and Diagnosis

LABCAR Test and

Rapid-Prototyping Validation

3% Graphics a5 ‘ @ Formulas | &) Impl, Type | @ Comn

C Ode (} enerati on ’_:‘ Coop. Levels Wé‘ [v Enable |

Application Modes Tasks
0 - inactve B 1- Task20ms (ac
1 - active [START/CT] L cale :Maodul
.+ ||B 2- Taskls (active
init: :Modul
Application Software =
Processes
E C U - - Bl Madul;:Madul =
Platform Sottware cale
init <
(OSEK)

In_WWIN_

_In_RL

_In_l

n_FHB_HR

_In_FFHB_HL

n_FFHE_HR

AutoFOCUS

Academic CASE tool for model-based

development with UML-like notation
(http://autofocus.
iInformatik.tu-muenchen.de)

* Discrete-time operational semantics
* Simulation

* Validation (Consistency, Testing, Model Checking)
* Code Generation (e.g. Java, C, Ada)

* Connection to Matlab

Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 10

'. Initial A Cammand PWIN_MOTOR_Open
d Front_totarlF _WCOTOR_Down;DownErrorStati True;
- o T TimerCommand!True
Al ItO F O< : l ' S 1eaUt?TIMER_INFO_Alarm
SROR_WIMIERROR _WIM_ErrDiownErrarStart!F al

A Command IR_MOTOR_Meutral
alin
M Od I I g DovenErrory True: TimerCommand!False:

TimercammandlFalse;DownErrorStartlFalse
[horder =
2 Bottom?F_IUNTEM_Eottom

TimerCommand!False; DownErrorStartiF al

A Command MW M ETOR_Meutral

TimerCommandFa|ss WpErrorStartiFalse
© 1: cFront_totorlF_MOTOR_Dow:

4. AlarmTimeout?TIMER_INF O,
ownErrorStaniFalse; Timeaout,

4 AlarmTimeout? TIMER_IMF G 4 5rmm

UnErrorStartiFalse; Timeout_ERR&RE_WINIERROR_WIMN_Err

A Command?WIN_MOTOR_Close

Front_MotorlF_MOTOR_Up UpErrrSi ' rue;TimerCommandITrue

Retuest_Front_in_FHB_YL

Wi doues_in_WIN_GANAAIN_GAN

Reruest_in_FHBVLFHE VL Request_Front_in_FHE_Y¥F

b

2. Top?F_OBEM_Top TimerCo AndIFalse;UpErrorStartiFalse:

Request_In_FHE_YRIFHE_VR Request_Front_In_WIN_CAN 5 :
Request_In_FHB_HL:FHE_HL Request_ Front In_LOGK r
Request_In_FHB_HR:FHB_HR [

‘Windows_n_TYPETYPE CAN_Frant_FHE_YLFF f:Jam?True
TimerZaommand True DownErrarStati True; .
LockStanCloseLOCK CAN_Front_FHB_VR:F+ F t M t |F MOTOR D 5 Commar
windows_In_BATT-BATT rant_Motorr_ —Lman Front_hotal
Indiows_In_f CAN_Frant_TYPETY D E
N Err

CAN_Front_LOCKLC

1. cFrant_MotorF _WMOTOR_Up:

. C A N _ B ac k Windaws_Out_B_LOW_WINB_LOW_WN ©
D 1S p a tC h er Dispatcher © ResoleBattery

CAN_Back_FHE_HL:FHE_HL ® Reguest_OUL_WIN_HL_OPWIN_HL_OP

Request_out_WIN_HR_OPWIN_HR_OP

AN Back Request_Out_WIN_HL_CLWIN_HL_CL [R eso IV e B a‘t‘te ry]

Reguest_Out WIN_HR_CLIWIN_HR_CL

CAN_Back_FHE_HRFHB_HR

CAN_Back_TYPETYPE

CAN_Bark_LOCKLOCK

Back| Out_ERROR_ININER
ROR[WIN

Request_Back_In_FHE_HLFHE_HL @

BackLowidiin |B_LOW]I

z

Request_Back_In_FHE_HRFHE_HR

Request_Back_In_TYPETYPE EO—— [R eq u eSt_B a Ck] ——

Reguest_Back_In_LOCKLOCK 1 1

Request_Back_In_WIN_CANYIN_CAN MotorBack WIN_MOTOR J)D I f
= p—

ASCET: Rapid Prototyping / Simulation

Wy =
pmm————— £ 3,
--__.- -] _—
V4 Signal ” 7
. Ll |
Door coupling Ly J ==
1 r I
] 1

Trigger i

=

VME4Bus

Development

ES1000 platform

Testing in ASCET

~Properties

Standard

~Mame

L=

~Descripkion
Texk

-

Environment

| CTE_Windows_in_LockStartClose |

ATT_gti05le180

false true

| CTE_Windows_Request_Back_in_FFHB_HL |

o T

FHE_Meutral

FHE_DownAuto

FHE_DownMan

FHE_UpMan

FHE_UpAuto

|

FHE_Neutral

E-5F Testsequence 1

Sequenz I

Zeit [Sekunde]

0,2
0,4
1,0
1,2
1,3
2,0
2,2
2,4
2,6
2,5

1o o oo0 0000

ol e

g

Jan Jurjens et al.:

Model-based Quality Assurance of Automotive Software

13

Model Checking (AutoFOCUS)

Inputd Bool @

=

Output:int

iy

Test

InputB:Bool

\\—_ FnputB Y Troe: Qutputls: __/
state==Initial \4 not(state==lInitial
&& next(state)==End && is_Msg(InputA)
8& is_Msg(InputA) E— && getVal(InputA)==True)
&& getVal(InputA)==True && state==Initial
&& getVal(next(Ouput))== && next(state)==End
&& is_Msg(InputB)
- && getVal(lnputB)==True

&& getVal(next(Ouput))==2 14

Evaluation: Modeling Effort

Modeling ASCET AutoFocus
(Including Specification)

Training 1 week 1 day

Door lock 1.5 weeks 3 weeks

Window lifter |1.5 weeks 3 weeks

Interior light 0.5 weeks 1 week

(i _.' Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

15

Evaluation: QA Effort and Results

Method Time effort Error count
(days)

Simulation 3 10

(ASCET)

White box testing |7 S

(ASCET)

Simulation 3 5

(AutoFocus)

Model Checking |10 5

(AutoFocus)

O

Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

16

Evaluation: Effort Distribution

* Testing

45% | 40%

fi

* Model Checﬁng
20% ‘
W 60%

L Create test cases

O Execute test cases

O Interprete test cases

O Create properties
O Execute modelchecker

O Interprete counter examples

Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

17

Modelchecking: Experiences

State explosion problem

* compositional modelchecking
Modelling abstractions:

* execution timer

* equivalence classes for values

=» compromise between abstraction and
verification efficiency

FI Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

18

Classes of Bugs

Simulation (ASCET [10] / AutoFOCUS [9]):

* wrong priority definition

* wrong value communicated

* logical error at branchings

* wrong execution sequence (ASCET)

Coverage analysis / rapid prototyping (ASCET [7])

* same bugs as in simulation

* unreachable code

* wrong assumptions on hardware

Modelchecking (AutoFOCUS [5])

* synchronization error for concurrent components

* wrong evaluation of logical expressions

=> Testing takes real hardware into account;
modelchecking finds spurious / obscure bugs

=> combination brings synergies

(j_,_ Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

19

Evaluation: Model vs Code QA

Model:
+ earlier (less expensive to fix flaws)

+ more abstract = more efficient (=» higher
coverage, but at higher abstraction level)

- more abstract = may miss flaws

- programmers may introduce flaws

- even code generators, if not formally verified
Code:

+ the real thing“ (which is executed)

=» Do both where feasible.

Fj Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 20

Evaluation: General Comparison

Modelchecking

Examines an abstract model

Cheap and early verification
(without setting up complex in-the-loop-test environments)

Proof of correctness of properties possible

Uses selected user specific properties

Testing

Examines a physical or concrete system

[n-the-loop-tests take place in an environment near to the real one

Mo proof of correctness of properties possible

Uszes often many. superficial test cases

F_| Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 21

Evaluation (M3)

* Semi-independent: researchers in model-
based development, from AutoFocus group

* Repeatabllity: experimental data available
from http://mcs.open.ac.uk/jj2924/publications/experiments/autoga

(ref 10 in paper)

* Comparative SE: use same or different
developers ?

* Qualitative study, so no claim to statistical
significance.

(j_,_ Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software

22

Related Work

Practical experiments on model-based QA in:

* automotive: Pretschner et al. (ICSE 2005: model-based testing
with AutoFocus); Kropf (CAV 2007)

* security: Best, Jurjens, Nuseibeh (ICSE 2007; information
systems); Jurjens Schreck, Bartmann (ICSE 2008; mobile
systems); Jurjens, Rumm (M.Med.Inf 2008; e-health-card)

* general: Halling, Biffl, Grunbacher (METRICS 2003;
requirements analysis); Brat, Drusinsky, Giannakopoulou et al.
(FMSD 2004; Martian Rover); Cheng et al. (Models 2005; model
analysis); Bradbury, Cordy, Dingel (PASTE 2005; testing vs
formal analysis); Denney, Fischer, Schumann (IJAIT 2006;
ATPs); Mouchawrab, Briand, Labiche (ESEM 2007; model-
based testing)

(j_,_ _. Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 23

Conclusions

Model-based QA of automotive software:

* Model-checking and model-based testing
complementary.

* Model-based testing quickly excludes large classes
of flaws.

* Model-checking exhaustively checks user-defined
sophisticated property.

Ongoing work with Microsoft Research Cambridge:
assurance for cryptoprotocol implementations.

ADVERTISEMENT: Postdoc / PhD positions in model-
based security !

(i _.' Jan Jurjens et al.: Model-based Quality Assurance of Automotive Software 24

Questions?

More information
(papers, slides,

tool etc.):
http://www.jurjens.de/jan

J.Jurjens@open.ac.uk

