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The Problem (Meta-level M3)

* Research in Software Engineering is largely
“hype-driven”.

* Research activities largely consist of solution
development [cf Wieringal].

* Very little independent scientific validation, as
would be expected from a scientific discipline (e.g.
controlled and repeatable experiments, preferably
independently from solution developers).

* This paper tries to contribute (a bit) towards
improving this situation.
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The Problem (Meta-level M2)

* Model-based development using UML is one of the
current “hypes”: strongly promoted by “gurus” in
industry, actively researched in academia [cf previous
slide].

* But does it really pay ? When / under which conditions
/ to what degree / which techniques exactly ... etc ?

* Very few independent, controlled and repeatable
experiments regarding this question.

* This paper tries to contribute to improving this
situation wrt. model-based quality assurance, with an
emphasis on automotive / embedded software.
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The Problem (Meta-level M1)

* Quality assurance of software consumes significant
resources.

* There are high levels of assurance expected especially in
safety-critical systems.

* The QA process should as far as possible controllable (to
measure degree of assurance) and repeatable (also to
account for software changes).

* Model-based quality assurance seems to offer the potential
to address these requirements due to a high degree of
automation.

* Investigate based on a practical experiment to which extent
this may be true wrt. to different QA techniques in the context
of model-based development, in a comparative approach.
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Automotive Software

* High safety requirements for some of the
embedded software.

* Increasing complexity of the software.

* High sales numbers (compared to e.g.
airplanes).

* Incentive for quality assurance as opposed to
fault-tolerance by replication of functions.

* Relatively high uptake of model-based
development techniques and tools.
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Model-based System Assurance
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Case study: Door controller (MO)

Industrial specification [Paech et al, Fraunhofer 2002]. Here:

— Window lifter (including crush guard)
— Door locking/unlocking

Two door controllers communicating
via CAN bus
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ASCET

* Commercial CASE tool by ETAS
* Used in automotive industry
* Event-driven operational model
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AutoFOCUS

Academic CASE tool for model-based

development with UML-like notation
(http://autofocus.
iInformatik.tu-muenchen.de)

* Discrete-time operational semantics
* Simulation

* Validation (Consistency, Testing, Model Checking)
* Code Generation (e.g. Java, C, Ada)

* Connection to Matlab
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ASCET: Rapid Prototyping / Simulation
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Testing in ASCET
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Model Checking (AutoFOCUS)
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Evaluation: Modeling Effort

Modeling ASCET AutoFocus
(Including Specification)

Training 1 week 1 day

Door lock 1.5 weeks 3 weeks

Window lifter |1.5 weeks 3 weeks

Interior light 0.5 weeks 1 week
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Evaluation: QA Effort and Results

Method Time effort Error count
(days)

Simulation 3 10

(ASCET)

White box testing |7 S

(ASCET)

Simulation 3 5

(AutoFocus)

Model Checking |10 5

(AutoFocus)

O
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Evaluation: Effort Distribution

* Testing

45% | 40%

fi

* Model Checﬁng
20% ‘
W 60%

L Create test cases

O Execute test cases

O Interprete test cases

O Create properties
O Execute modelchecker

O Interprete counter examples
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Modelchecking: Experiences

State explosion problem

* compositional modelchecking
Modelling abstractions:

* execution timer

* equivalence classes for values

=» compromise between abstraction and
verification efficiency
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Classes of Bugs

Simulation (ASCET [10] / AutoFOCUS [9]):

* wrong priority definition

* wrong value communicated

* logical error at branchings

* wrong execution sequence (ASCET)

Coverage analysis / rapid prototyping (ASCET [7])

* same bugs as in simulation

* unreachable code

* wrong assumptions on hardware

Modelchecking (AutoFOCUS [5])

* synchronization error for concurrent components

* wrong evaluation of logical expressions

=> Testing takes real hardware into account;
modelchecking finds spurious / obscure bugs

=> combination brings synergies
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Evaluation: Model vs Code QA

Model:
+ earlier (less expensive to fix flaws)

+ more abstract = more efficient (=» higher
coverage, but at higher abstraction level)

- more abstract = may miss flaws

- programmers may introduce flaws

- even code generators, if not formally verified
Code:

+ the real thing“ (which is executed)

=» Do both where feasible.
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Evaluation: General Comparison

Modelchecking

Examines an abstract model

Cheap and early verification
(without setting up complex in-the-loop-test environments )

Proof of correctness of properties possible

Uses selected user specific properties

Testing

Examines a physical or concrete system

[n-the-loop-tests take place in an environment near to the real one

Mo proof of correctness of properties possible

Uszes often many. superficial test cases
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Evaluation (M3)

* Semi-independent: researchers in model-
based development, from AutoFocus group

* Repeatabllity: experimental data available
from http://mcs.open.ac.uk/jj2924/publications/experiments/autoga

(ref 10 in paper)

* Comparative SE: use same or different
developers ?

* Qualitative study, so no claim to statistical
significance.
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Related Work

Practical experiments on model-based QA in:

* automotive: Pretschner et al. (ICSE 2005: model-based testing
with AutoFocus); Kropf (CAV 2007)

* security: Best, Jurjens, Nuseibeh (ICSE 2007; information
systems); Jurjens Schreck, Bartmann (ICSE 2008; mobile
systems); Jurjens, Rumm (M.Med.Inf 2008; e-health-card)

* general: Halling, Biffl, Grunbacher (METRICS 2003;
requirements analysis); Brat, Drusinsky, Giannakopoulou et al.
(FMSD 2004; Martian Rover); Cheng et al. (Models 2005; model
analysis); Bradbury, Cordy, Dingel (PASTE 2005; testing vs
formal analysis); Denney, Fischer, Schumann (IJAIT 2006;
ATPs); Mouchawrab, Briand, Labiche (ESEM 2007; model-
based testing)
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Conclusions

Model-based QA of automotive software:

* Model-checking and model-based testing
complementary.

* Model-based testing quickly excludes large classes
of flaws.

* Model-checking exhaustively checks user-defined
sophisticated property.

Ongoing work with Microsoft Research Cambridge:
assurance for cryptoprotocol implementations.

ADVERTISEMENT: Postdoc / PhD positions in model-
based security !
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Questions?

More information
(papers, slides,

tool etc.):
http://www.jurjens.de/jan

J.Jurjens@open.ac.uk



