
Formally-Based Black-Box Monitoring of
Security Protocols∗

Alfredo Pironti1 and Jan Jürjens2

1 Politecnico di Torino
Turin, Italy

http://alfredo.pironti.eu/research
2 TU Dortmund and Fraunhofer ISST

Dortmund, Germany
http://jurjens.de/jan

Abstract. In the challenge of ensuring the correct behaviour of legacy
implementations of security protocols, a formally-based approach is pre-
sented to design and implement monitors that stop insecure protocol
runs executed by such legacy implementations, without the need of their
source code. We validate the approach at a case study about monitoring
several SSL legacy implementations. Recently, a security bug has been
found in the widely deployed OpenSSL client; our case study shows that
our monitor correctly stops the protocol runs otherwise allowed by the
faulty OpenSSL client. Moreover, our monitoring approach allowed us to
detect a new flaw in another open source SSL client implementation.

1 Introduction

Despite being very concise, cryptographic protocols are quite difficult to get
right, because of the concurrent nature of the distributed environment and the
presence of an active, non-deterministic attacker. Increasing the confidence in
the correctness of security protocol implementations is thus important for the
dependability of software systems. In general exhaustive testing is infeasible,
and for a motivated attacker one remaining vulnerability may be enough to
successfully attack a system. In this paper, we focus in particular on assessing
the correctness of legacy implementations, rather than on the development of
correct new implementations. Indeed, it is often the case in practice that a legacy
implementation is already in use which cannot be substituted by a new one: for
example, when the legacy implementation is strictly coupled with the rest of the
information system, making a switch very costly.

In this context, our proposed approach is based on black-box monitoring of
legacy security protocols implementations. Using the Dolev-Yao [6] model, we
assume cryptographic functions to be correct, and concentrate on their usage
within the cryptographic protocols. Moreover, we concentrate on implementa-
tions of security protocol actors, rather than on the high level specifications of
∗ This research was partially supported by the EU project SecureChange (ICT-FET-

231101).

Fig. 1: Monitor design and development methodology.

such security protocols. That is, we assume that a given protocol specification is
secure (which can be proven using existing tools); instead, by monitoring it, we
want to asses that a given implementation of one protocol’s role is correct with
respect to its specification, and it is resilient to Dolev-Yao attacks.

The overall methodology is depicted in figure 1. Given the protocol definition,
a specification for one agent is manually derived. By using the “agent to monitor”
(a2m) function introduced in this paper, a monitor specification for that protocol
role is automatically generated. Then the monitor implementation is obtained by
using the model driven development framework called spi2java [13], represented
by the dashed box in the figure. The spi2java internals will be discussed later on
in the paper. The monitor application is finally ran together with the monitored
protocol role implementation (not shown in the picture).

A monitor implementation differs from a fresh implementation of a security
protocol, because it does not execute protocol sessions on behalf of its users.
The monitor instead observes protocol sessions started by the legacy implemen-
tations, in order to recognize and stop incorrect sessions, in circumstances where
the legacy implementations cannot be replaced.

For performance trade-offs, monitoring can be performed either “online” or
“offline”. In the first case, all messages are first checked by the monitor, and then
forwarded to the intended recipient only if they are safe. In the second case, all
messages exchanged by the monitored application are logged, and then fed to the
monitor for later inspection. The online paradigm prevents a security property to
be violated, because protocol executions are stopped as soon as an unexpected
message is detected by the monitor, before it reaches the intended recipient.
However, online monitoring may introduce some latency. The offline paradigm
does not introduce any latency and is still useful to recognize compromised
protocol sessions later, which can limit the damage of an attack. For example,
if a credit card number is stolen due to an e-commerce protocol attack, and if

offline monitoring is run overnight, one can discover the issue at most one day
later, thus limiting the time span of the fraud.

In this paper, the main goal of monitors is to detect, stop and report incorrect
protocol runs. Monitors are not designed for example to assist one in forensic
diagnosis after an attack has been found.

The monitoring is “black-box” in that the source code of the monitored
application is not needed; only its observable behaviour (data transmitted over
the medium, or traces) and locally accessed data are required. Thus any legacy
implementation can still be used in production as is, while being monitored.
The correctness of this approach depends on the correctness of the generated
monitor. Our approach leverages formal methods in the derivation of the monitor
implementation, so that a trustworthy monitor is obtained.

Note that this approach can be exploited during the testing phase as well:
One can run an arbitrary number of simulated protocol sessions in a testing
environment, and use the monitor to check for the correct behaviour.

In order to validate the proposed approach, a monitor for the SSL proto-
col is presented. The generated monitor stops incorrect sessions that could, for
example, exploit a recently found flaw in the OpenSSL implementation.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 illustrates the formal background used in the paper. Section 4
describes the function translating a Spi Calculus protocol agent’s specification
into a monitor specification for that agent. Then section 5 shows the SSL protocol
case study. Finally section 6 concludes.

For brevity, this paper mainly concentrates on the description of the proposed
approach and on its validation by means of a real-life size case study. An extended
version of this paper that includes all the formal definitions and the source code
of the presented case study and other case studies can be found in [12].

2 Related Work

Several attempts have been made to check that a protocol role implementation is
correct w.r.t. its specification which can be grouped in four main categories: (1)
Model Driven Development (MDD); (2) Static Code Verification; (3) Refinement
Types; (4) Online Monitoring and Intrusion Detection Systems (IDSs).

The first approach consists of designing and verifying a formal, high-level
model of a security protocol and to semi-automatically derive an implementation
that satisfies the same security properties of the formal model [8,9,13]. However,
it has the drawback of not handling legacy implementations of security protocols.

The second approach starts from the source code of an existing implemen-
tation, and extracts a formal model which is verified for the desired security
properties [5, 11]. In principle, this approach can deal with legacy implementa-
tions, but their source code must be available, which is not always the case.

The third approach proves security properties of an implementation by means
of a special kind of type checking on its source code [4]. Working on the source
code, it shares the same advantages and drawbacks of the second approach.

The fourth approach comes in two versions. With online monitoring, the
source code of an existing implementation is instrumented with assertions: pro-
gram execution is stopped if any assertion fails at runtime [3]. Besides requiring
the source code, the legacy implementation must be substituted with the instru-
mented one, which may not always be the case. IDSs are systems that monitor
network traffic and compare it against known attack patterns, or expected av-
erage network traffic. By working on averages, in order not to miss real attacks,
IDSs often report false positive warnings. In order to reduce them, sometimes the
source code of the monitored implementation is also instrumented [10], sharing
the same advantages and drawback of online monitoring.

Another branch of research focused on security wrappers for legacy imple-
mentations. In [1], a formal approach that uses security wrappers as firewalls with
an encrypting tunnel is described. Any communication that crosses some security
boundary is automatically and transparently encrypted by the wrappers. That
is, the wrappers add security to a distributed legacy system. In our approach,
the monitor enforces the security already present in the system. Technically, our
approach derives a monitor based on the security requirements already present
in the legacy system, instead of adding a boilerplate layer of security.

Analogously, in [7] wrappers are used, among other things, to transparently
encrypt local files accessed by library calls. However, distributed environments
are not taken into account. Finally, in [17] wrappers are used to harden software
libraries. However, cryptography and distributed systems are not considered,
and the approach is test-driven, rather than formally based.

3 Formal Background

3.1 Network Model

Many network models have been proposed in the Dolev-Yao setting. For example,
sometimes the network is represented as a separate process [16]; the attacker
is connected to this network, and can eavesdrop, drop and modify messages, or
forge new ones. In other cases, the attacker is the medium [15], and honest agents
can only communicate through the attacker. Even more detailed network models
have been developed [19], where some nodes may have direct, private secured
communication with other nodes, while still also being able to communicate
through insecure channels, controlled by the attacker.

In general, it is not trivial to show that all of these models are equivalent in a
Dolev-Yao setting, furthermore different network models and agents granularity
justify different positions of the monitor with respect to the monitored agent,
affecting the way the monitor is actually implemented. In this paper, we focus on
a simple scenario that is usually found in practice, and is depicted in figure 2(a):
the attacker is the medium, and every protocol agent communicates over a single
insecure channel c, and private channels are not allowed. Moreover, agents are
sequential and non-recursive.

Let us define A as the (correct) model of the agent to be monitored, and
MA as the model of its monitor. When the monitor is present, A communicates

(a) Agents A and B with the attacker. (b) Agent A monitored by MA and the
attacker.

Fig. 2: The network model.

L,M,N ::= terms
n name
(M,N) pair
0 zero
suc(M) successor
x variable
M∼ shared-key
{M}N shared-key encryption
H (M) hashing

M+ public part

M− private part
{[M]}N public-key encryption
[{M}]N private-key signature

(a) Spi Calculus terms.

P,Q,R ::= processes

M 〈N〉 .P output
M (x) .P input
P |Q composition
!P replication
(νn)P restriction
[M is N]P match
0 nil
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case
case L of {x}N in P shared-key decryption
case L of {[x]}N in P decryption
case L of [{x}]N in P signature check

(b) Spi Calculus processes.

Table 1: Spi Calculus grammar.

with MA only, through the use of a private channel cAM , while MA is directly
connected to the attacker by channel c, as depicted in figure 2(b). The dashed
box denotes that A and MA run in the same environment, for example they run
on the same system with same privileges. Note that in A channel c is in fact
renamed to cAM .

3.2 The Spi Calculus

In this paper, the formal models are expressed in Spi Calculus [2]. Spi Calculus
is amenable for our approach because it is a domain specific language tailored
at expressing the behaviour of single security protocol agents, where checks on
received data must be explicitly specified. Thus, from the Spi Calculus speci-
fications of protocol agents, the a2m function can derive precise and complete
specifications of their monitors.

Briefly, a Spi Calculus specification is a system of concurrent processes that
operate on untyped data, called terms. Terms can be exchanged between pro-
cesses by means of input/output operations. Table 1(a) contains the terms de-
fined by the Spi Calculus, while table 1(b) shows the processes.

A name n is an atomic value, and a pair (M,N) is a compound term, com-
posed of the terms M and N . The 0 and suc(M) terms represent the value of
zero and the logical successor of some term M , respectively. A variable x rep-
resents any term, and it can be bound once to the value of another term. If

a variable or a name is not bound, then it is free. The M∼ term represents a
symmetric key built from key material M , and {M}N represents the encryption
of the plaintext M with the symmetric key N , while H(M) represents the result
of hashing M . The M+ and M− terms represent the public and private part of
the keypair M respectively, while {[M]}N and [{M}]N represent public key and
private key asymmetric encryptions respectively.

Informally, the M 〈N〉 .P process sends message N on channel M , and then
behaves like P , while the M (x) .P process receives a message from channel M ,
and then behaves like P , with x bound to the received term in P . A process P
can perform an input or output operation iff there is a reacting process Q that
is ready to perform the dual output or input operation. Note, however, that pro-
cesses run within an environment (the Dolev-Yao attacker) that is always ready
to perform input or output operations. Composition P |Q means parallel execu-
tion of processes P and Q, while replication !P means an unbounded number
of instances of P run in parallel. The restriction process (νn)P indicates that
n is a fresh name (i.e. not previously used, and unknown to the attacker) in P .
The match process executes like P , if M equals N , otherwise is stuck. The nil
process does nothing. The pair splitting process binds the variables x and y to
the components of the pair M , otherwise, if M is not a pair, the process is stuck.
The integer case process executes like P if M is 0, else it executes like Q if M is
suc(N) and x is bound to N , otherwise the process is stuck. If L is {M}N , then
the shared-key decryption process executes like P , with x bound to M , else it
is stuck, and analogous reasoning holds for the decryption and signature check
processes.

The assumption that A is a sequential process, means that composition and
replication are never used in its specification.

4 The Monitor Generation Function

The a2m function translates a sequential protocol role specification into a mon-
itor specification for that role; formally, MA , a2m(A). For brevity, a2m is only
informally presented here, by means of a running example. Formal definitions
can be found in [12].

Before introducing the function, the concepts of known and reconstructed
terms are given. For any Spi Calculus state, a term T is said to be known by the
monitor through variable T , iff T is bound to T . This can happen either because
the implementation of MA has access to the agent’s memory location where T is
stored; or because T can be read from a communication channel, and MA stores
T in variable T . A compound term T (that is not a name or a variable) is said
to be reconstructed, if all its subterms are known or reconstructed. For example,
suppose M is known through M and H(N) is known through H(N). It is
the case that (H(N),M) is reconstructed by (H(N), M). Note that, as terms
become known, other terms may become reconstructed too. In the example given
above, if M was not known, then it was not possible to reconstruct (H(N),M);

1a: A(M,k) :=
2a: cAM<{M}k>.

3a: cAM(x).
4a: [x is H(M)]
5a: 0

(a) Agent A specification.

1m: MA(k,_H(M)) :=
2m: cAM(_{M}k).
3m: case _{M}k of {_M}k in
4m: [_H(M) is H(_M)]
5m: c<_{M}k>.
6m: c(x).
7m: [x is _H(M)]
8m: cAM<x>.
9m: 0

(b) Monitor specification derived from agent A one.

Fig. 3: Example specification of agent A along with its derived monitor MA.

however, if later M became known (for example, because it was sent over a
channel), then (H(N),M) would become reconstructed.

Note that the monitor implementation presented in this paper does not en-
force that nonces are actually different for each protocol run. To enable this,
the monitor should track all previously used values, in order to ensure that no
value is used twice. Especially in the online mode, this overhead may not be
acceptable. In order to drop this check, it is needed to assume that the random
value generator in the monitored agent is correctly implemented. Also note that
there may be cases where the monitor has not enough information to properly
check protocol execution. These cases are recognised by the a2m function, so
that an error state is reached, and no unsound monitor is generated.

The a2m function behaviour is now described by means of a running exam-
ple. Agent A sends some data M encrypted by the key k to the other party, and
expects to receive the hash of the plaintext, that is H(M). Note that the exam-
ple focuses on the way the a2m function operates, rather than on monitoring a
security protocol, so no security claim is meant to be made on this protocol. Fig-
ure 3(a) shows the specification for agent A, and figure 3(b) its derived monitor
specification MA. Here, an ASCII syntax of Spi Calculus is used: the ‘ν’ symbol
is replaced by the ‘@’ symbol, and the overline in the output process is omitted
(input and output processes can still be distinguished by the different brackets).

At line 1a the agent A process is declared: it has two free variables, a message
M and a symmetric key k. At line 2a A sends the encryption of M with key k.
Then, at line 3a it receives a message that is stored into variable x, and, at line
4a, the received message is checked to be equal to the hashing of M : if this is
the case, the process correctly terminates.

At line 1m, the monitor MA is declared: to make this example significant,
it is assumed that in the initial state the key k used by A is known by the
monitor (through the variable k), while M is not known (for example, because
the monitor cannot access those data); however H(M) is known through H(M),
that is the monitor has access to the memory location where H(M) is stored,
and this value is bound to the variable H(M) in the monitor.

When line 2a is translated by a2m, lines 2m–5m are produced. The data
sent by A are received by the monitor at line 2m, and stored in variable {M}k.
Afterwards, some checks on the received value are added by the a2m function. In
general, each time a new message is received from the monitored application, it
or its parts are checked against their expected (known or reconstructed) values.
In this case, since {M}k is not known (by hypothesis) or reconstructed (because
M is not known or reconstructed), it cannot be directly compared against the
known or reconstructed value, so it is exploded into its components. As {M}k
is an encryption and k is known, the decryption case process is generated at
line 3m, binding M to the value of the plaintext, that should be M . Since M
is not known or reconstructed, and it is a name, M cannot be dissected any
more; instead, M becomes known through M , in other words, the term stored
in M is assumed by the monitor to be the correct term for M . Note that, before
M was known through M , H(M) was known through H(M), but it was not
reconstructed. After the assignment of M , H(M) becomes reconstructed by
H(M) too. The match process at line 4m ensures that known and reconstructed
values for the same term are actually the same.

After all the possible checks are performed on the received data, they are
forwarded to the attacker at line 5m. Then, line 3a is translated into line 6m.
When translating an input process, the monitor receives message x from the
attacker on behalf of the agent and buffers it; x is said to be known through
x itself. Then the monitor behaves according to what is done by the agent
(usually checks on the received data, as it is the case in the running example).
The received message stored in x is not forwarded to A immediately, because
this could lead A to receive some malicious data, that could for example enable
some denial of service attack. Instead, the received data are buffered, and will
be forwarded to A only when necessary: that is when the process should end (0
case), or when some output data from A are expected.

Line 4a is then translated into line 7m, and finally, line 5a is translated into
lines 8m and 9m. First, all buffered data (x in this case) are forwarded to A,
then the monitor correctly ends.

5 An SSL Server Monitor Example

5.1 Monitor Specification

As shown in figure 1, in order to get the monitor specification, a Spi Calculus
specification of the server role for the SSL protocol is needed. The full SSL
protocol is rather complex: many scenarios are possible, and different sets of
cryptographic algorithms (called ciphersuites) can be negotiated. For simplicity,
this example considers only one scenario of the SSL protocol version 3.0, where
the same cipher suite is always negotiated. Despite these simplifications, we
believe that the considered SSL fragment is still significant, and that adding full
SSL support would increase the example complexity more than its significance.

In this paper, the chosen scenario requires the server to use a DSA certificate
for authentication and data signature. Although RSA certificates are more com-

Fig. 4: Typical SSL scenario.

mon in SSL, using a DSA certificate allowed us to stress a bug in the OpenSSL
implementation, showing that the monitor can actively drop malicious sessions
that would be otherwise accepted as genuine by the flawed OpenSSL implemen-
tation. The more common RSA scenario has been validated through a dedicated
case-study. However, it is not reported here for brevity; it can be found in [12].

The SSL scenario considered in this example is depicted informally in figure 4,
while figure 5 shows a possible Spi Calculus specification of a server for the
chosen scenario. The ASCII syntax of Spi Calculus is used in figure 5. Also, in
order to model the Diffie-Hellman (DH) key exchange, the EXP (L,M,N) term
is added, which expresses the modular exponentiation LM mod N , along with
the equation EXP (EXP (g, a, p), b, p) = EXP (EXP (g, b, p), a, p).

To make the specification more readable, lists of terms like (A,B,C) are
added as syntactic sugar, and they are translated into left associated nested
pairs, like ((A,B), C); a rename n = M in P process is introduced too, that
renames the term M to n and then behaves like P .

The first message is the ClientHello, sent from the client to the server. It
contains the highest protocol version supported by the client, a random value,
a session ID for session resuming, and the set of supported cipher suites and
compression methods. In the server specification, the ClientHello message is
received and split into its parts at line 2S. In the chosen scenario, the client
should send at least 3.0 as the highest supported protocol version, and it should
send 0 as session ID, so that no session resuming will be performed. Moreover,
the client should at least support the always-negotiated cipher suite, namely
SSL DHE DSS 3DES EDE CBC SHA, with no compression enabled. All these con-
straints are checked at lines 3S–4S.

In the second message the server replies by sending its ServerHello message,
that contains the chosen protocol version, a random value, a fresh session ID
and the chosen cipher suite and compression method. The server random value

1S Server() :=
2S c(c_hello). let (c_version,c_rand,c_SID,c_ciph_suite,c_comp_method) = c_hello in
3S [c_version is THREE_DOT_ZERO] [c_SID is ZERO]
4S [c_ciph_suite is SSL_DHE_DSS_3DES_EDE_CBC_SHA] [c_comp_method is comp_NULL]
5S (@s_rand) (@SID)
6S rename S_HELLO = (THREE_DOT_ZERO,s_rand,SID,SSL_DHE_DSS_3DES_EDE_CBC_SHA,comp_NULL) in
7S (@DH_s_pri) rename DH_s_pub = EXP(DH_Q,DH_s_pri,DH_P) in
8S rename S_KEX = ((DH_P,DH_Q,DH_s_pub),[{H(c_rand,s_rand,(DH_P,DH_Q,DH_s_pub))}]s_PriKey) in
9S c<S_HELLO,S_CERT,S_KEX,S_HELLO_DONE>.

10S c(c_kex). let (c_kexHead,DH_c_pub) = c_kex in rename PMS = EXP(DH_c_pub,DH_s_pri,DH_P) in
11S rename MS = H(PMS,c_rand,s_rand) in rename KM = H(MS,c_rand,s_rand) in
12S rename c_w_IV = H(KM,C_WRITE_IV) in rename s_w_IV = H(KM,S_WRITE_IV) in
13S c(c_ChgCipherSpec). [c_ChgCipherSpec is CHG_CIPH_SPEC]
14S c(c_encrypted_Finish). case c_encrypted_Finish of {c_Finish_and_MAC}(KM,C_WRITE_KEY)~ in
15S let (c_Finish,c_MAC) = c_Finish_and_MAC in [c_MAC is H((KM,C_MAC_SEC)~,c_Finish)]
16S let (final_Hash_MD5, final_Hash_SHA) = c_Finish in
17S [final_Hash_MD5 is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,MD5)]
18S [final_Hash_SHA is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,SHA)]
19S c<CHG_CIPH_SPEC>.
20S rename DATA = (c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex,c_Finish) in
21S rename S_FINISH = (H(DATA,S_ROLE,MS,MD5),H(DATA,S_ROLE,MS,SHA)) in
22S (@pad) c<{S_FINISH,H((KM,S_MAC_SEC)~,S_FINISH),pad}(KM,S_WRITE_KEY)~>.
23S 0

Fig. 5: A possible Spi Calculus specification of an SSL server.

and the fresh session ID are generated at line 5S, then the ServerHello message
is declared at line 6S. Again, in the chosen scenario, the server chooses protocol
version 3.0, and always selects the SSL DHE DSS 3DES EDE CBC SHA cipher suite,
with no compression enabled. Then the server sends the Certificate message to
the client: in the chosen scenario, this message contains a DSA certificate chain
for the server’s public key, that authenticates the server.

In the fourth message, named ServerKeyExchange, the server sends the DH
key exchange parameters to the client, and digitally signs them with its public
key. In the server specification, the DH server secret value DH s pri and the cor-
responding public value DH s pub are computed at line 7S. Then, at line 8S, the
ServerKeyExchange message is declared: it consists of the server DH parameters,
along with a digital signature of the DH parameters and the client and server
random values, in order to ensure signature freshness.

The fifth message is the ServerHelloDone. It contains no data, but signals
the client that the server ended its negotiation part, so the client can move to
the next protocol stage. In the server specification, these four messages are sent
all at once at line 9S.

In the sixth message, the client replies with the ClientKeyExchange message,
that contains the client’s DH public value. Note that there is no digital signature
in this message, since the client is not authenticated. In the server specification
the ClientKeyExchange is received at line 10S, where the payload is split from
the message header too. Both client and server derive a shared secret from the
DH key exchange. This shared secret is called Premaster Secret (PMS), and
it is used by both parties to derive some shared secrets used for symmetric
encryption of application data. The PMS is computed by the server at line 10S.
By applying an SSL custom hashing function to the PMS and the client and

server random data, both client and server can compute the same Master Secret
(MS). The bytes of the MS are then extended (again by using a custom SSL
hashing algorithm) to as many byte as required by the negotiated ciphersuite,
obtaining the Key Material (KM) (line 11S). Finally, different subsets of bytes of
the KM are used as shared secrets and as initialization vectors (IVs). Note that
IVs, that are extracted at line 12S, are never referenced in the specification. They
will be used as cryptographic parameters for subsequent encryptions, during the
code generation step, explained in section 5.2.

The seventh message is the ChangeCipherSpec, received and checked at
line 13S. This message contains no data, but signals the server that the client
will start using the negotiated cipher suite from the next message on.

The client then sends its Finished message. Message Authentication Code
(MAC) and encryption are applied to the Finished message sent by the client, as
the client already sent its ChangeCipherSpec message. The client Finished mes-
sage is received and decrypted at line 14S. The decryption key used (KM,C WRITE KEY)~
is obtained by creating a shared key, starting from the key material KM and a
marker C WRITE KEY that indicates which portion of the KM to use. At line 15S
the MAC is extracted from the plaintext, and verified. The unencrypted con-
tent of the Finished message contains the final hash, that hashes all relevant
session information: all exchanged messages (excluding the ChangeCipherSpec
ones) and the MS are included in the final hash, plus some constant data iden-
tifying the protocol role (client or server) that sent the final hash. In fact, the
Finished message includes two versions of the same final hash, one using the
MD5 algorithm, and one using the SHA-1 algorithm. Both versions of the final
hash are extracted and checked at lines 16S–18S. As Spi Calculus does not sup-
port different algorithms for the same hash, they are distinguished by a marker
(MD5 and SHA respectively) as the last hash argument, making them syntactically
different.

Then the server sends its ChangeCipherSpec message to client (line 19S),
and its Finished message, that comes with MAC and encryption too (lines 20S–
22S). Encryption requires random padding to align the plaintext length to the
cipher block size. This random padding must be explicitly represented in the
server specification, so that the monitor can recognise and discard it, and only
check the real plaintext. Otherwise the monitor would try to locally reconstruct
the encryption, but it would always fail, because it could not guess the padding.
The protocol handshake is now complete, and next messages will contain secured
application data.

In order to verify any security property on this specification, the full SSL
specification, including the client and protocol sessions instantiations is required.
However, this is outside the scope of this paper; SSL security properties have
already been verified, for example, by the AVISPA project [18]. Here it is assumed
instead that the specification of the server is correct, and thus secure, so that
the monitoring approach can be shown.

The a2m function described in section 4 is applied on the server specification,
in order to obtain the online monitor specification for the server role. For brevity,

the resulting specification is not shown here. It can be found, along with more
implementation details, in [12]. It is assumed that the monitor has access to
the server private DH value, which is then known, while it is not able to read
the freshly generated server random value s rand, the session ID SID and the
random padding which are then not known nor reconstructed at generation time.
Often, the server will generate a fresh DH private value for each session, and it
will usually only store it in memory. In general, with some effort the monitor will
be able to directly read this secret from the legacy application memory, without
the need of the source code. Nevertheless, in a testing environment, if the source
code of the monitored application happens to be available, it is possible to patch
the monitored application, so that it explicitly communicates the DH private
value to the monitor. Indeed, this is reasonable because the monitor is part of
the trusted system, and is actually more trusted than the monitored application.

5.2 Monitor Implementation

The source code of the monitor implementation can be found in [12]. In order to
generate the monitor implementation, the spi2java MDD framework is used [13].
Briefly, spi2java is a toolchain that, starting from the formal Spi Calculus speci-
fication of a security protocol, semi-automatically derives an interoperable Java
implementation of the protocol actors. In the first place, spi2java was designed
to generate security protocol actors, rather than monitors. In this paper, we
originally reuse spi2java to generate a monitor.

In order to generate an executable Java implementation of a Spi Calculus
specification, some details that are not contained in the Spi Calculus specifi-
cation must be added. That is, the Spi Calculus specification must be refined,
before it can be translated into a Java application.

As shown in figure 1, the spi2java framework assists the developer during the
refinement and code generation steps. The spi2java refiner is used to automati-
cally infer some refinement information from the given specification. All inferred
information is stored into an eSpi (extended Spi Calculus) document, which is
coupled with the Spi Calculus specification. The developer can manually refine
the generated eSpi document; the manually refined eSpi document is passed back
to the spi2java refiner, that checks its coherence against the original Spi Calculus
specification, and possibly infers new information from the user given one. This
iterative refinement step can be repeated until the developer is satisfied with the
obtained eSpi document, but usually one iteration is enough.

The obtained eSpi document and the original Spi Calculus specification are
passed to the spi2java code generator that automatically outputs the Java code
implementing the given specification. The generated code implements the “pro-
tocol logic”, that is the code that simulates the Spi Calculus specification by
coordinating input/output operations, cryptographic primitives and checks on
received data. Dealing with Java sockets or the Java Cryptographic Architec-
ture (JCA) is delegated to the SpiWrapper library, which is part of the spi2java
framework. The SpiWrapper library allows the generated code to be compact

and readable, so that it can be easily mapped back to the Spi Calculus speci-
fication. For example, the monitor specification corresponding to line 2S of the
server specification in figure 5 is translated as

/* c_0(c_hello_1). */
Pair c_hello_1 = (Pair) c_0.receive(new PairRecvClHello());

(each Spi Calculus term name is mangled to make sure there is a unique Java
identifier for that term). To improve readability, the spi2java code generator
outputs the translated Spi Calculus process as a Java comment too. In this
example, the Java variable c 0 has type TcpIpChannel, which is a Java class
included in the SpiWrapper library implementing a Spi Calculus channel using
TCP/IP as transport layer. This class offers the receive method that allows the
Spi Calculus input process to be easily implemented, by internally dealing with
the Java sockets. The c hello 1 Java variable has type Pair, which implements
the Spi Calculus pair. The Pair class offers the getLeft and getRight methods,
allowing a straightforward implementation of the pair splitting process. The
spi2java translation function is proven sound in [14].

In order to get interoperable implementations, the SpiWrapper library classes
only deal with the internal representation of data. By extending the SpiWrapper
classes, the developer can provide custom marshalling functions that transform
the internal representation of data into the external one.

In the SSL monitor case study, a two-tier marshalling layer has been imple-
mented. Tier 1 handles the Record Layer protocol of SSL, while tier 2 handles
the upper layer protocols. When receiving a message from another agent, tier 1
parses one Record Layer message from the input stream, and its contained up-
per layer protocol messages are made available to tier 2. The latter implements
the real marshalling functions, for example converting US-ASCII strings to and
from Java String objects. Analogous reasoning applies when sending a message.
The marshalling layer functions only check that the packet format is correct.
No control on the payload is needed: it will be checked by the automatically
generated protocol logic.

The SSL protocol defines custom hashing algorithms, for instance to com-
pute the MS from the PMS, or to compute the MAC value. For each of them,
a corresponding SpiWrapper class has been created, implementing the custom
algorithm. Moreover, the spi2java framework has been extended to support the
modular exponentiation, so that DH key exchange can be supported.

Finally, it is worth pointing out some details about the IVs used by cryp-
tographic operations (declared in the server specification at line 12S). For each
term of the form {M}K , the eSpi document allows its cryptographic algorithm
(such as DES, 3DES, AES) and its IV to be specified. However, the IV is only
known at run time. The spi2java framework allows cryptographic algorithms
and parameters to be resolved either at compile time or at run time. If the
parameter is to be resolved at compile time, the value of the parameter must
be provided (e.g. AES for the symmetric encryption algorithm, or a constant
value for the IV). If the parameter is to be resolved at run time, the iden-
tifier of another term of the Spi Calculus specification must be provided: the

parameter value will be obtained by the content of the referred term, during ex-
ecution. In the SSL case study, this feature is used for the IVs. For example, the
{c Finish and MAC}(KM,C WRITE KEY)~ term uses the H(KM,C WRITE IV) term
as IV. Technically, this feature enables support for cipher suite negotiation. How-
ever, as stated above, this would increase the specification complexity more than
it would increase its significance, and is left for future work.

5.3 Experimental Results

The monitor has been coupled in turn with three different SSL server implemen-
tations, namely OpenSSL3 version 0.9.8j, GnuTLS4 version 2.4.2 and JESSIE5

version 1.0.1.
Since the online monitoring paradigm is used in this case study, the monitor

is accepting connections on the standard SSL port (443), while the real server
is started on another port (4433). Each time a client connects to the monitor,
the latter opens a connection to the real server, starting data checking and
forwarding, as explained above.

It is worth noting that switching the server implementation is straightfor-
ward. In the testing scenario, assuming that the server communicates its private
DH value to the monitor, it is enough to shut down the running server imple-
mentation, and to start the other one; the monitor implementation remains the
same, and no action on the monitor is required. Otherwise, it is enough to restart
the monitor too, enabling the correct plugin that gathers the private DH value
from the legacy application memory. In other words, in a production scenario,
the same monitor implementation can handle several different legacy server im-
plementations; in the monitor, the only server-dependent part is the plugin that
reads the DH secret value from the server application memory.

In order to generate protocol sessions, three SSL clients have been used with
each server; namely the OpenSSL, GnuTLS, and JESSIE clients. During exper-
iments, the monitor helped in spotting a bug in the JESSIE client: This client
always sends packet of the SSL 3.1 version (better known as TLS 1.0), regardless
of the negotiated version, that is SSL 3.0 in our scenario. The monitor correctly
rejected all JESSIE client sessions, reporting the wrong protocol version.

When the OpenSSL or GnuTLS clients are used, the monitor correctly op-
erates with all the three servers. In particular, safe sessions are successfully
handled; conversely, when exchanged data are manually corrupted, they are rec-
ognized by the monitor and the session is aborted: corrupted data are never
forwarded to the intended recipient.

In order to estimate the impact on performances of the online monitoring
approach, execution times of correctly ended protocol sessions with and with-
out the monitor have been measured. Thus, performances regarding the JESSIE
client are not reported, as no correct session could be completed, due to the

3 Available at: http://www.openssl.org/
4 Available at: http://www.gnu.org/software/gnutls/
5 Available at: http://www.nongnu.org/jessie/

Client Server No Monitor [s] Monitor [s] Overhead [s] Overhead [%]

OpenSSL OpenSSL 0.032 0.113 0.081 253.125
GnuTLS OpenSSL 0.108 0.132 0.024 22.253
OpenSSL GnuTLS 0.073 0.128 0.056 76.552
GnuTLS GnuTLS 0.109 0.120 0.011 10.313
OpenSSL JESSIE 0.158 0.172 0.014 8.986
GnuTLS JESSIE 0.144 0.148 0.004 2.788

Table 2: Average execution times for protocol runs with and without monitoring.

discovered bug. That is, the measured performances all correspond to valid exe-
cutions of the protocol only. Communication between client, server and monitor
happened over local sockets, so that no random network delays could be intro-
duced; moreover system load was constant during test execution. Table 2 shows
the average execution times for different client-server pairs, with and without
monitor enabled. For each client-server pair, the average execution times have
been computed over ten protocol runs. Columns “No Monitor” and “Monitor”
report the average execution times, in seconds, without and with monitoring
enabled respectively. When monitoring is not enabled, the clients directly con-
nect to the server on port 4433. The “Overhead” columns show the overhead
introduced by the monitor, in seconds and in percentage respectively. In four
cases out of six, the monitor overhead is under 25 milliseconds. From a practical
point of view, a client communicating through a real distributed network could
hardly tell whether a monitor is present or not, since network times are orders
of magnitude higher. On the other hand, in the worst cases online monitoring
can slow down the server machine up to 2.5 times. Whether this overhead is
acceptable on the server side depends on the number of sessions per seconds
that must be handled. If the overhead is not acceptable, the offline monitoring
paradigm can still be used.

The OpenSSL security flaw. Recently, the client side of the OpenSSL library
prior to version 0.9.8j has been discovered flawed, such that in principle it could
treat a malformed DSA certificate as a good one rather than as an error.6 By
inspecting the flawed code, we were able to forge such malformed certificate that
exploited the affected versions. This malformed DSA certificate must have the q
parameter one byte longer than expected. Up to our knowledge, this is the first
documented and repeatable exploit for this flaw.

Without monitoring enabled, we generated protocol sessions between an SSL
server sending the offending certificate, and both OpenSSL clients version 0.9.8i
(flawed) and 0.9.8j (fixed). By using the -state command line argument, it is
possible to conclude that the 0.9.8i version completes the handshake by reaching
the “read finished A” state (after message 10 in figure 4); while the 0.9.8j version
correctly reports an “handshake failure” error at state “read server certificate
A”, that is immediately after message 3 in figure 4.
6 http://www.openssl.org/news/secadv 20090107.txt

When monitoring is enabled, the malformed server certificate is passed to
the monitor as an input parameter, that is, the server certificate is known by
the monitor. In this case the monitor actually refuses to start. Indeed, when
loading the server certificate, the monitor spots that it is malformed, and does
not allow any session to be even started. If we drop the assumption that the
monitor knows the server certificate, then the monitor starts, and checks the
server certificate when it is received over the network. During these checks, the
malformed certificate is found, and the session is dropped, before the server
Certificate message is forwarded to the client. This prevents the aforecited flaw
to be exploited on OpenSSL version 0.9.8i.

6 Conclusion

The paper shows a formally-based yet practical methodology to design, develop
and deploy monitors for legacy implementations of security protocols, without
the need to modify the legacy implementations or to analyse their source code.
To our knowledge, this is the first work that allows legacy implementations of
security protocol agents to be black-box monitored.

This paper introduces a function that, given the specification of a security
protocol actor, automatically generates the specification of a monitor that stops
incorrect sessions, without rising false positive alarms. From the obtained mon-
itor specification, an MDD approach is used to generate a monitor implemen-
tation; for this purpose, the spi2java framework has been originally reused, and
some of its parts enhanced.

Finally, the proposed methodology has been validated by implementing a
monitor starting from the server role of the widely used SSL protocol. Core
insights gained from conducting the SSL case study include that the same gen-
erated monitor implementation can in fact monitor several different SSL server
implementations against different clients, in a black-box way. The only needed
information is the private Diffie-Hellman key used by the server, in order to check
message contents. Moreover, by reporting session errors, the monitor effectively
helped us in finding a bug in an open source SSL client implementation.

The “online” monitoring paradigm proved useful in avoiding protocol vi-
olations, for example by stopping malicious data that would have otherwise
exploited a known flaw of the widely deployed OpenSSL client. The overhead
introduced by the monitor to check and forward messages is usually negligible. If
the overhead is not acceptable, this paper also proposes an “offline” monitoring
strategy that has no overhead and can still be useful to timely discover protocol
attacks.

As future work, a general result about soundness of the monitor specification
generating function would be useful. The soundness property should show that
the generated monitor specification actually forwards only (and all) the protocol
sessions that would be accepted by the agent’s verified specification. Together
with the soundness proofs of the spi2java framework, this would produce a sound
monitor implementation, directly from the monitored agent’s specification.

References

1. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstrac-
tions. Information and Computation 174(1), 37–83 (2002)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi Calculus.
Digital Research Report 149 (1998)

3. Bauer, A., Jürjens, J.: Security protocols, properties, and their monitoring. In:
International Workshop on Software Engineering for Secure Systems. pp. 33–40
(2008)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Computer Security Foundations Symposium,
IEEE. pp. 17–32 (2008)

5. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. In: Computer Security Foundations Workshop.
pp. 139–152 (2006)

6. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

7. Fraser, T., Badger, L., Feldman, M.: Hardening COTS software with generic soft-
ware wrappers. In: IEEE Symposium on Security and Privacy. pp. 2–16 (1999)

8. Hubbers, E., Oostdijk, M., Poll, E.: Implementing a formally verifiable security
protocol in Java Card. In: Security in Pervasive Computing. Lecture Notes in
Computer Science, vol. 2802, pp. 213–226 (2003)

9. Jeon, C.W., Kim, I.G., Choi, J.Y.: Automatic generation of the C# code for secu-
rity protocols verified with Casper/FDR. In: International Conference on Advanced
Information Networking and Applications. pp. 507–510 (2005)

10. Joglekar, S.P., Tate, S.R.: ProtoMon: Embedded monitors for cryptographic pro-
tocol intrusion detection and prevention. Journal of Universal Computer Science
11(1), 83–103 (2005)

11. Jürjens, J., Yampolskiy, M.: Code security analysis with assertions. In: IEEE/ACM
International Conference on Automated Software Engineering. pp. 392–395 (2005)

12. Pironti, A., Jürjens, J.: Online resources about black-box monitoring, available at:
http://alfredo.pironti.eu/research/projects/monitoring/

13. Pironti, A., Sisto, R.: An experiment in interoperable cryptographic protocol imple-
mentation using automatic code generation. In: IEEE Symposium on Computers
and Communications. pp. 839–844 (2007)

14. Pironti, A., Sisto, R.: Provably correct Java implementations of Spi Calculus se-
curity protocols specifications. Computers & Security (2009), in Press

15. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR (1997)

16. Schneider, S.: Security properties and CSP. In: IEEE Symposium on Security and
Privacy. pp. 174–187 (1996)

17. Süßkraut, M., Fetzer, C.: Robustness and security hardening of COTS software
libraries. In: IEEE/IFIP International Conference on Dependable Systems and
Networks. pp. 61–71 (2007)

18. Viganò, L.: Automated security protocol analysis with the AVISPA tool. Electronic
Notes on Theoretical Computer Science 155, 61–86 (2006)

19. Voydock, V.L., Kent, S.T.: Security mechanisms in high-level network protocols.
ACM Computing Surveys 15(2), 135–171 (1983)

