AutoFocCus and the MoDe Tool

Jan Romberg, Jan Jiirjens, Guido Wimmel

Systems & Software Engineering
TU Miinchen
85748 Garching, Germany
romberg@in.tum.de

1 Introduction

Software engineering for distributed automotive
applications is shifting from a subsystem-level per-
spcective, where the focus is on optimization of a
single electronic control unit, towards a system-level
view. However, optimization of distributed systems
with respect to non-functional properties remains a
challenging task.

The goal of the MoDe (Model Based Deployment)
approach is to give early guidance for design de-
cisions using architectural-level models of the sys-
tem. In its current version, MoDe supports those
architecture-level decisions that require a perfor-
mance model of the overall system.

The MoDe approach is based on a formal design
notation, AutoFOcus, which is used for specifying
system models, functional models enriched with ab-
stractions for communication and scheduling. The
MoDe tool offers automated support for compiling
platform abstractions into the system model, so MoDe
allows a highly flexible evaluation of different archi-
tectural choices.

2 The tool AutoFOCUS/Quest

The tool AutoFOCUS supports the integral model-
based development of critical systems using a no-
tation conceptually similar to a restricted subset
of UML. The core of this platform is the ed-
itor AutoFOCUs with graphical description tech-
niques that allow to model embedded systems un-
der different view-points. AutoFOCUS/Quest offers
simulation, code generation, consistency checking,
(bounded) model checking, verification, abstractions,
and a test environment. AutoFOCUS/Quest has been
applied in a large number of case studies, in particu-
lar in the domain of safety-critical and security-critical
systems. See [I] for more information.

Oscar Slotosch, Gabor Hahn
Validas AG
Lichtenbergstr. 8
85748 Garching, Germany
{slotosch, hahn}@validas.de

| Logical Model | | Technical Model| | Synt. Descriptor |

\ * Simulation
Verification
System Model Performance Estimation

v

Implementation

Figure 1. Design Flow

3 Design Flow

Figure [| shows the design flow for the MoDe ap-
proach. The designer starts out with a functional
view on the application, the logical model, a view on
the technical architecture of the system, the techni-
cal model, and an additional synthesis descriptor. The
MoDe tool reads the input representations and gener-
ates an AutoFOCUS system model used for simulation,
verification, and performance analysis.

Logical model

The logical model captures the software architecture
in terms of software components, component interfaces,
and communication dependencies between components.
The logical model abstracts from the actual deploy-
ment, i.e. communication protocols and scheduling
are not part of the logical specification.

Figure [shows an example System Structure Dia-
gram (SSD) for a logical model. Note that a compo-
nent may be refined by a network of sub-components
defined in another SSD (component Controller in
the example.)

Leaf components in AutoFOCUS component hierar-
chies are defined by State Transition Diagrams (STDs),
an FSM dialect extended by local variables and mes-
sage send/receive statements. The MoDe tool also

(© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/CSD.2003.1207727

«active»«periodic»
HighSensor
Component

«active»«periodic»
LowSensor
Component

LowOnOff:Bool HighOnOff:Bool

umpStatus:
OnoOff

«actives«periodics

Controller OperatorAlarm

O)

MethaneValue:Int I

«active»«periodic»
MethaneSensor
Component

Figure 2. SSD for Logical Model

ControlUnit

{os=osek, policy=fps,
RS232lfink1: | task=basic} RS232Lfink2:
RS22 RS2B2
WaterSensor GasSensor
Processor Processor
{os=osek, {os=osek,

policy=fps,
task=basic}

policy=fps,
task=basic}

Figure 3. Technical model

supports an extended timed STD [3] notation for mod-
eling execution times.

Leaf components in logical models are further dif-
ferentiated along their mode of activation as active
or passive components. Each active component cor-
responds to a lightweight task (thread) on the im-
plementation level, while passive components corre-
spond to code executed within the caller’s thread.

Technical model

The characteristics of the platform are specified within
the technical model. The technical model captures the
structure of the underlying hardware such as inter-
processor communication, operating system charac-
teristics, and processor performance. The concepts
of the technical model are supported by component li-
braries which define the abstractions required to gen-
erate the system model.

Technical models consist of networks of nodes, links
between nodes, and connectors on nodes. Fig. B shows
an example technical model with three nodes.

Synthesis descriptor

In addition to the logical and technical models, some
additional mapping information has to be provided

by the developer in the form of a synthesis descriptor.
It is required to ensure an unambiguous translation to
system models. The synthesis descriptor captures in-
formation that depends both on the logical and tech-
nical models; currently, there is a mapping part, and
a schedule part.

System Model

The MoDe tool compiles the logical and technical
models into an AutoFOCUS system model. The syn-
thesis step uses the mapping from logical to technical
components in the synthesis descriptor to synthesize
the system model as a complete representation of the
system behavior relevant to analysis. The MoDe tool
uses predefined components for scheduling and com-
munication defined in an application-specific library.
All analysis is based on the system model; if several
different deployments are evaluated, a corresponding
number of analysis cycles are required.

4 MoDe Tool

The MoDe tool is an extension of the publicly avail-
able AutoFocus tool. The tool is implemented in
about 12,000 lines of Java code, and supports graph-
ical editing of logical and technical models through
AutoFOCUS’s standard editors. The automatically
generated system model may be subjected to simula-
tion or quantitative real-time analysis [2].

5 Conclusion

We have presented the tool AutoFOCUS/Quest and
a tool-supported approach for architecture-level de-
sign and analysis of real-time systems. Logical and
technical views of a system can be modeled sepa-
rately and compiled into a system-level description.
We have implemented a tool for modeling and com-
piling MoDe models.

References

[1] AutoFocus Project Homepage.
autofocus.in.tum.de/index-e.ntmi .

[2] S.Campos, E. Clarke, W. Marrero, M. Minea, and H. Hi-
raishi. Computing quantitative characteristics of finite-
state real-time systems. In Proceedings of IEEE Real-Time
Systems Symposium, 1994.

[3] J. Romberg, O. Slotosch, and G. Hahn. MoDe: A method
for system-level architecture evaluation. In Proceedings
of the First Workshop on Formal Methods and Models for
Codesign (MEMOCODE), 2003. to appear.

URL: http://

http://autofocus.in.tum.de/index-e.html
http://autofocus.in.tum.de/index-e.html

	Introduction
	The tool AutoFOCUS/Quest
	Design Flow
	MoDe Tool
	Conclusion

