Using UMLsec and Goal Trees for Secure Systems Development

Jan Jürjens

Software & Systems Engineering
Informatics, TU Munich
Germany

juerjens@in.tum.de

http://www.jurjens.de/jan
Motivation

Computer security increasingly important (networks), but designers often lack background in security.

Cannot use security mechanisms “blindly”: Security often compromised by circumventing (rather than breaking) them.

Get security assurance into design process:

- Encourage and enable developers to consider security from early design phases.
- Encapsulate knowledge on prudent security engineering to aid secure systems development.
- Gain confidence on system security by verification.

Different kinds of diagrams for different views on the system.

Verification of behavioural properties: formal semantics.
UML diagrams

- **Use case** diagram: typical interaction between user and system
- **Activity** diagram: flow of control between system components
- **Class** diagram: class structure of the system
- **Sequence** diagram: interaction between components by message exchange
- **Statechart** diagram: dynamic component behaviour
- **Package**: collect system parts into groups
- **Deployment** diagram: Components in physical environment.
Distributed systems

Objects distributed over untrusted networks.

“Adversary” intercepts, modifies, deletes, inserts messages.

Cryptographic protocols to exchange session keys etc.

Vulnerabilities often at boundary between protocols and system.

Protocols in the context of system development with UML.
Requirements capture (use cases)

Formulate security requirements on use cases as stereotypes.

fair exchange: if “buys good” then eventually “sells good”.
Analysis (activity diagrams)

Ensure secure overall control flow (e.g. work-flow).
Gives fair exchange if payment \(\text{provable}\).
Proof using formal semantics.
Design (class diagrams)

Ensure class structure provides data security.

Operation random() does not guarantee required security.
Design (class diagrams): Goal tree

fair exchange
[After \{fairexchange:buy\} will eventually reach \{fair exchange:deliver\}]

payment provable

key integrity
key confidentiality

random number integrity
random number confidentiality

Goal tree
Use sequence diagrams to specify security protocols.

Translate to formal semantics; model-check or reason formally.
Design (sequence diagrams): Goal tree

fair exchange
[After \{fairexchange:buy\} will eventually reach \{fair exchange:deliver\}]

communication
secure

payment provable

key confidentiality

key integrity

random number integrity

random number confidentiality
Design: statechart diagrams

[origin=signed=finance,weeklimit] \incThisWeek \return

CheckReq \overset{\text{checkGuard()}}{\rightarrow} \text{WaitReq}

[otherwise] \throw \text{new SecurityException()}

Ensure secure behaviour \textbf{within} components/objects.

Access control, database security, information flow, . . .
Component-based reasoning using package diagrams.

Uses visibility of parts within packages.
Implementation: deployment diagrams

Express security assumptions on physical layer of the system (security of communication links, hardware security, tamper resistance . . .)
Conclusion

Secure systems development with UML.

Security by design:

- start in early design phases
- encapsulate security knowledge
- make verification more usable in practice
- reduce cost of certification (reuse UML specs)

Combination of use-case driven and goal-directed process.
Further work

- developing secure Java systems using UML
 (signing/sealing/guarding objects...)

- modelling and analysis of
 Common Electronic Purse Specifications with UML

Future work

- tool support (UML tool via XMI to AutoFocus)
Resources

Slides, papers etc.:
http://www4.in.tum.de/~umlsec

Homepage:
http://www.jurjens.de/jan

Thanks for your attention!