
Tools and Techniques for
Model-based Testing

with UML
 Jan Jürjens

Computing Department
The Open University

http://www.umlsec.org

 Jan Jürjens, Open University: Model-based Testing with UML 2

Testing Critical and Embedded Systems

Very challenging.
For high level of assurance, would need full

coverage (test every possible execution).
Usually infeasible (especially reactive systems).
Have heuristics for trade-off between

development effort and reliability.
Need to ask yourself:
• How complete is the heuristic ?
• How can I validate it ?

 Jan Jürjens, Open University: Model-based Testing with UML 3

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Reverse
Engin.

Analyze
against

Configurations

Gener.

Verify.

Configure

 Tool-supported, theoretically sound, efficient
automated design & analysis.

Idea: Extract models
from artefacts in
development and
use of software.

Model-based System Assurance

 Jan Jürjens, Open University: Model-based Testing with UML 4

Requirements
and use cases

Abuse
cases

Critical
requirements

Risk
analysis

External
review

Design Test
plans

Code Test
results

Field
feedback

Risk-based
tests

Static
analysis
(tools)

Risk
analysis

System
Monitoring

System
breaks

[McGraw 2003]

Critical System Lifecycle

Model-based System Assurance

Design: Encapsulate prudent engineering rules.
Analysis: Formally based, automated, efficient tools.
Note: emphasis on high-level requirements.

 Jan Jürjens, Open University: Model-based Testing with UML 5

System Assurance: Model or Code ?

Model:
+ earlier (less expensive to fix flaws)
+ more abstract more efficient
- more abstract may miss flaws
- programmers may introduce flaws
- even code generators, if not formally verified
Code:
+ „the real thing“ (which is executed)

 Do both where feasible.

 Jan Jürjens, Open University: Model-based Testing with UML 6

Verify Code against Models

Assumption: Have textual specification.
Then:

• construct interface spec from textual spec
• analyze interface spec for critical

requirements
• verify that software satisfies interface spec

 Jan Jürjens, Open University: Model-based Testing with UML 7

Model vs. Implementation

Implement
-ation

.java

Elements of connectionsSent and received data

„meaning“ „meaning“

compare meaning!

Backtrace
assignments

Defined during
model creation

Find Has

Abstract model

Equal?

[with David
Kirscheneder
]

 Jan Jürjens, Open University: Model-based Testing with UML 8

How to Verify Code Against Models

Model-based Testing (e.g. based on
Real-time UML). Advantages:

• Precise measures for completeness.

• Can be formally validated.

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements

 Jan Jürjens, Open University: Model-based Testing with UML 9

Conformance Testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, but only once and for all].

Works independently of real-time
requirements.

 Jan Jürjens, Open University: Model-based Testing with UML 10

Conformance Testing: Caveats

• Complete test-coverage still infeasible
(although can measure coverage).

• Can only test code against what is
contained in model. Usually, model
more abstract than code. May lead to
„blind spots“.

For both reasons, may miss critical test-
cases. Want: „criticality testing“.

 Jan Jürjens, Open University: Model-based Testing with UML 11

Criticality Testing: Strategies

Internal: Ensure test-case selection from
models does not miss critical cases: Select
according to information on criticality.

External: Test code against possible
environment interaction generated from
parts of the model (e.g. deployment
diagram with information on physical
environment).

 Jan Jürjens, Open University: Model-based Testing with UML 12

Criticality Testing

Shortcoming of classical model-based
test-generation (conformance testing)
motivates „criticality testing“.

Goal: model-based test-generation
adequate for critical real-time systems.

 Jan Jürjens, Open University: Model-based Testing with UML 13

Internal Criticality Testing

Need behavioral semantics of used
specification language (precise enough to be
understood by a tool).

Here: semantics for simplified fragment of UML
in „pseudo-code“ (ASMs).

Select test-cases according to criticality
annotations in the class diagrams.

Test-cases: critical selections of intended
behavior of the system.

 Jan Jürjens, Open University: Model-based Testing with UML 14

External Criticality Testing

Generate test-sequences representing the

environment behaviour from the

criticality information in the deployment

diagrams.

 Jan Jürjens, Open University: Model-based Testing with UML 15

• Generate control flow graph.

• Analyze for criticality requirements.

• Use to generate critical test-cases.

Automated White-Box Testing

 Jan Jürjens, Open University: Model-based Testing with UML 16

Model-based Testing with UML

Meaning of diagrams stated informally in (OMG
2003).

Ambiguities problem for

• tool support

• establishing behavioral properties (safety,
security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

 Jan Jürjens, Open University: Model-based Testing with UML 17

Tool-support: Pragmatics

Commercial modelling tools: so far mainly
syntactic checks and code-generation.

Goal: sophisticated analysis. Solution:
• Draw UML models with editor.
• Save UML models as XMI (XML dialect).
• Connect to verification tools (automated

theorem prover, model-checker …), e.g.
using XMI Data Binding.

 Jan Jürjens, Open University: Model-based Testing with UML 18

CSDUML Framework: Features

Framework for analysis plug-ins to access UML
models on conceptual level over various UI’s.

Exposes a set of commands. Has internal state
(preserved between command calls).

Framework and analysis tools accessible and
available at http://www.umlsec.org .

Upload UML model (as .xmi file) on website.
Analyse model for included critical
requirements. Download report and UML
model with highlighted weaknesses.

 Jan Jürjens, Open University: Model-based Testing with UML 19

Tool Support

For example:
• consistency checks
• mechanical analysis of complicated

requirements on model level (bindings to
model-checkers, constraint solvers,
automated theorem provers, …)

• code generation
• test-sequence generation
• configuration data analysis against UML.

 Jan Jürjens, Open University: Model-based Testing with UML 20

Tool
Support

[UML04,
FASE05,ICSE06]

 Jan Jürjens, Open University: Model-based Testing with UML 21

p

qg

Example:
Interface
spec of SSL

I) Identify program points:
 value (r), receive (p), guard (g), send (q)
II) Check guards enforced

r

 Jan Jürjens, Open University: Model-based Testing with UML 22

Implementation
of SSL:
Identify Values

 Jan Jürjens, Open University: Model-based Testing with UML 23

 public void write(OutputStream out) throws IOException
 { ... out.write(randomBytes); … }

 public void write(OutputStream out)
throws IOException
{ ... random.write(out); ... }

 ClientHello(… , Random random,)
 { ... this.random = random; ... }

ClientHello clientHello = new ClientHello(...,clientRandom,...);

Random clientRandom =
new Random(...,session.random.generateSeed(28));

class SecureRandom (specified in: FIPS
140-2,RFC 1750) of package java.security
Function: generateSeed

Identify: randomBytes
2nd parameter of Random constructor
called by ClientHello.write()

2nd parameter of ClientHello constructor

initialized in SSLSocket.doClientHandshake()

initialization of the used Random object

via Handshake.write()

„meaning“

(in message
ClientHello)

 Jan Jürjens, Open University: Model-based Testing with UML 24

Sending Messages

SSLSocket.doClientHandshake() ClientHello.write()

Random.write()

traverse CFG

call of
OutputStream.
write()

Handshake.write()

Automate this
using patterns

ProtocolVersion.write()

 Jan Jürjens, Open University: Model-based Testing with UML 25

Guard g enforced by code?

b) Generate runtime check
for g at q from diagram:
simple + effective, but performance penalty.

c) Testing against checks (symbolic crypto for
inequalities).

d) Automated formal local verification:
conditionals between p and q logically imply
g (using ATP for FOL).

Checking Guards

[ICFEM02]

[ASE06]

p

qg

 Jan Jürjens, Open University: Model-based Testing with UML 26

private void checkTrusted(X509Certificate[] chain,
String authType) throws CertificateException
 { ... }

public void verify(PublicKey key, String provider)
 throws CertificateException, ...
 { ... }

private void doVerify(Signature sig,PublicKey key)
 throws CertificateException, ...
 { ... sig.initVerify(key);
 sig.update(tbsCertBytes);
 if (!sig.verify(signature))
 {… throw new CertificateException
 ("signature not validated"); … } }

public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {… checkTrusted(chain, authType); }

Guard:
checkServerTrusted()

calls checkTrusted()

calls verify() for every member of certificate chain

calls doVerify()

java.security.Signature
• Initializatize
• Update
• Verify
„verifies the signature“

„meaning
“

 Jan Jürjens, Open University: Model-based Testing with UML 27

msg = Handshake.read(din, certType);

session.trustManager.checkServerTrusted
(peerCerts,suite.getAuthType());

msg = new Handshake(Handshake.Type.CLIENT_KEY_EXCHANGE, ckex);
 msg.write (dout, version);

p

q

g

try

catch

only possible way
without throwing
exception

 Jan Jürjens, Open University: Model-based Testing with UML 28

Some Applications

Analyzed designs / implementations /
configurations for

• biometry, smart-card or RFID
based identification

• authentication (crypto protocols)
• authorization (user permissions,

e.g. SAP systems)
Analyzed security policies, e.g. for

privacy regulations.

 Jan Jürjens, Open University: Model-based Testing with UML 29

Biometric Authentication System

In development by company in joint
project.

Uses bio-reference template on smart-card.

Analyze given UML spec.

Discovered three major weaknesses in
subsequently improved versions (misuse
counter circumvented by dropping / replaying
messages, smart-card insufficiently
authenticated by mixing sessions). [ACSAC05]

 Jan Jürjens, Open University: Model-based Testing with UML 30

Bank Application

Security analysis of web-based banking
application, to be put to commercial use
(clients fill out and sign digital order forms).

Layered security protocol (first layer: SSL
protocol, second layer: client authentication
protocol)

Security requirements:

• confidentiality

• authenticity

[SAFECOMP03]

 Jan Jürjens, Open University: Model-based Testing with UML 31

Common Electronic Purse Specifications

Global elec. purse standard (Visa, 90% market).
Smart card contains account balance, performs
crypto operations securing each transaction.

Formal analysis of load and purchase protocols:
three significant weaknesses: purchase
redirection, fraud bank vs. load device owner.

[ASE01]

 Jan Jürjens, Open University: Model-based Testing with UML 32

Load Protocol

Unlinked, cash-based load transaction (on-line).
Load value onto card using cash at load device.
Load device contains Load Security Application

Module (LSAM): secure data processing and
storage.

Card account balance adjusted; transaction
data logged and sent to issuer for financial
settlement.

Uses symmetric cryptography.

 Jan Jürjens, Open University: Model-based Testing with UML 33

 Jan Jürjens, Open University: Model-based Testing with UML 34

Audit Security

No direct communication between card
and cardholder. Manipulate load device
display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions
completed without exception).

 Jan Jürjens, Open University: Model-based Testing with UML 35

Flaw I

mln: „Proof“
for bank
that load
machine
received
money.
But: rn shared
between
bank and
load
machine.

 Jan Jürjens, Open University: Model-based Testing with UML 36

Flaw II

rcnt: „Proof“ for
LSAM that load
device received
only amount mn.

But: LSAM
cannot prove
validity of rcnt.

 Jan Jürjens, Open University: Model-based Testing with UML 37

Conclusions

Model-based Testing using UMLsec:
• formally based approach

• automated tool support

• industrially used methods

• integrated approach (source-code,
configuration data)

 Jan Jürjens, Open University: Model-based Testing with UML 38

IT Security

Overview

 Jan Jürjens, Open University: Model-based Testing with UML 39

Questions ?
More information

(papers, slides, tool
etc.):

http://www.umlsec.org

 Jan Jürjens, Open University: Model-based Testing with UML 40

Backup

 Jan Jürjens, Open University: Model-based Testing with UML 41

Decrease
misuse counter

Authent. Protocol Pt. 2: Problem ?

Message order
not enforced by
smart card !

 Jan Jürjens, Open University: Model-based Testing with UML 42

Authent. Prot. Pt. 2: Problem

Replay
MACskh

 (FBZ2‘)

 Jan Jürjens, Open University: Model-based Testing with UML 43

Mutual authentication with
challenge & response

Generate shared key

Authentic.
Protocol
Part 1:
Problem.

Forged smart-card after
authentic.; replay old session key

