
Tools and Techniques for 
Model-based Testing 

with UML
 Jan Jürjens

Computing Department 
The Open University

http://www.umlsec.org



 Jan Jürjens, Open University: Model-based Testing with UML 2

Testing Critical and Embedded Systems

Very challenging.
For high level of assurance, would need full 

coverage (test every possible execution).
Usually infeasible (especially reactive systems).
Have heuristics for trade-off between 

development effort and reliability.
Need to ask yourself:
• How complete is the heuristic ?
• How can I validate it ?
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 Tool-supported, theoretically sound, efficient 
automated design & analysis.

Idea: Extract models 
from artefacts in 
development and 
use of software. 

Model-based System Assurance
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[McGraw 2003]

Critical System Lifecycle

Model-based System Assurance

Design: Encapsulate prudent engineering rules.
Analysis: Formally based, automated, efficient tools.
Note: emphasis on high-level requirements.
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System Assurance: Model or Code ?

Model:
+ earlier (less expensive to fix flaws)
+ more abstract  more efficient
- more abstract  may miss flaws
- programmers may introduce flaws
- even code generators, if not formally verified
Code:
+ „the real thing“ (which is executed)

 Do both where feasible.
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Verify Code against Models

Assumption: Have textual specification. 
Then:

• construct interface spec from textual spec
• analyze interface spec for critical 

requirements
• verify that software satisfies interface spec
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Model vs. Implementation
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.java

Elements of connectionsSent and received data

„meaning“ „meaning“

compare meaning!

Backtrace
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Defined during
model creation

Find Has

Abstract model

Equal?

[with David 
Kirscheneder
]
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How to Verify Code Against Models

Model-based Testing (e.g. based on 
Real-time UML). Advantages:

• Precise measures for completeness.

• Can be formally validated.

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements
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Conformance Testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, but only once and for all].

Works independently of real-time 
requirements.
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Conformance Testing: Caveats

• Complete test-coverage still infeasible 
(although can measure coverage). 

• Can only test code against what is 
contained in model. Usually, model 
more abstract than code. May lead to 
„blind spots“.

For both reasons, may miss critical test-
cases. Want: „criticality testing“.
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Criticality Testing: Strategies

Internal: Ensure test-case selection from 
models does not miss critical cases: Select 
according to information on criticality.

External: Test code against possible 
environment interaction generated from 
parts of the model (e.g. deployment 
diagram with information on physical 
environment).
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Criticality Testing

Shortcoming of classical model-based 
test-generation (conformance testing) 
motivates „criticality testing“.

Goal: model-based test-generation 
adequate for critical real-time systems.
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Internal Criticality Testing

Need behavioral semantics of used 
specification language (precise enough to be 
understood by a tool). 

Here: semantics for simplified fragment of UML 
in „pseudo-code“ (ASMs).

Select test-cases according to criticality 
annotations in the class diagrams.

Test-cases: critical selections of intended 
behavior of the system.
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External Criticality Testing

Generate test-sequences representing the 

environment behaviour from the 

criticality information in the deployment 

diagrams.
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• Generate control flow graph. 

• Analyze for criticality requirements.

• Use to generate critical test-cases.

Automated White-Box Testing
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Model-based Testing with UML

Meaning of diagrams stated informally in (OMG 
2003).

Ambiguities problem for 

• tool support

• establishing behavioral properties (safety, 
security)

Need precise semantics for used part of UML, 
especially to ensure security requirements.
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Tool-support: Pragmatics

Commercial modelling tools: so far mainly 
syntactic checks and code-generation.

Goal: sophisticated analysis. Solution:
• Draw UML models with editor. 
• Save UML models as XMI (XML dialect).
• Connect to verification tools (automated 

theorem prover, model-checker …), e.g. 
using XMI Data Binding.
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CSDUML Framework: Features

Framework for analysis plug-ins to access UML 
models on conceptual level over various UI’s.

Exposes a set of commands. Has internal state 
(preserved between command calls).

Framework and analysis tools accessible and 
available at http://www.umlsec.org .

Upload UML model (as .xmi file) on website. 
Analyse model for included critical 
requirements. Download report and UML 
model with highlighted weaknesses.
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Tool Support

For example:
• consistency checks
• mechanical analysis of complicated 

requirements on model level (bindings to 
model-checkers, constraint solvers, 
automated theorem provers, …)

• code generation
• test-sequence generation
• configuration data analysis against UML.



 Jan Jürjens, Open University: Model-based Testing with UML 20

Tool 
Support

[UML04,
FASE05,ICSE06]
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p

qg

Example: 
Interface 
spec of SSL

I) Identify program points: 
             value (r), receive (p), guard (g), send (q)
II) Check guards enforced

r
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Implementation 
of SSL: 
Identify Values
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 public void write(OutputStream out) throws IOException
  {          ...    out.write(randomBytes);     …         }

 public void write(OutputStream out) 
throws IOException 
{ ... random.write(out); ... }

 ClientHello(… , Random random, ) 
 {   ... this.random = random;    ... }

ClientHello clientHello = new ClientHello(...,clientRandom,...);

Random clientRandom = 
new Random(...,session.random.generateSeed(28));

class SecureRandom (specified in: FIPS 
140-2,RFC 1750) of package java.security
Function: generateSeed

Identify: randomBytes
2nd parameter of Random constructor 
called by ClientHello.write()

2nd parameter of ClientHello constructor

initialized in SSLSocket.doClientHandshake()

initialization of the used Random object

via Handshake.write()

„meaning“

(in message 
ClientHello)
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Sending Messages

SSLSocket.doClientHandshake()                          ClientHello.write()                      

Random.write()

traverse CFG

call of
OutputStream.
write()

Handshake.write()

Automate this 
using patterns

ProtocolVersion.write()
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Guard g enforced by code?

b) Generate runtime check 
for g at q from diagram: 
simple + effective, but performance penalty.

c) Testing against checks (symbolic crypto for 
inequalities).

d) Automated formal local verification: 
conditionals between p and q logically imply 
g (using ATP for FOL).

Checking Guards

[ICFEM02]

[ASE06]

p

qg
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private void checkTrusted(X509Certificate[] chain, 
String authType) throws CertificateException
    {      ...    }

public void verify(PublicKey key, String provider) 
 throws CertificateException, ... 
    {      ...    }

private void doVerify(Signature sig,PublicKey key)
    throws CertificateException, ...
  {   ...    sig.initVerify(key);
    sig.update(tbsCertBytes);
    if (!sig.verify(signature))
  {… throw new CertificateException
        ("signature not validated"); …   }  }

public void checkServerTrusted(X509Certificate[] chain, String authType)
   throws CertificateException  {…      checkTrusted(chain, authType);    }

Guard:
checkServerTrusted()

calls checkTrusted()

calls verify() for every member of certificate chain

calls doVerify()

java.security.Signature
• Initializatize
• Update
• Verify
„verifies the signature“ 

„meaning
“
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msg = Handshake.read(din, certType);

session.trustManager.checkServerTrusted
(peerCerts,suite.getAuthType());

msg = new Handshake(Handshake.Type.CLIENT_KEY_EXCHANGE, ckex);
        msg.write (dout, version);

p

q

g

try

catch

only possible way
without throwing 
exception



 Jan Jürjens, Open University: Model-based Testing with UML 28

Some Applications

Analyzed designs / implementations / 
configurations for

• biometry, smart-card or RFID 
based identification

• authentication (crypto protocols)
• authorization (user permissions, 

e.g. SAP systems)
Analyzed security policies, e.g. for 

privacy regulations.
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Biometric Authentication System

In development by company in joint 
project.

Uses bio-reference template on smart-card.

Analyze given UML spec.

Discovered three major weaknesses in 
subsequently improved versions (misuse 
counter circumvented by dropping / replaying 
messages, smart-card insufficiently 
authenticated by mixing sessions). [ACSAC05]
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Bank Application

Security analysis of web-based banking 
application, to be put to commercial use 
(clients fill out and sign digital order forms).

Layered security protocol (first layer: SSL 
protocol, second layer: client authentication 
protocol)

Security requirements:

• confidentiality

• authenticity

[SAFECOMP03]



 Jan Jürjens, Open University: Model-based Testing with UML 31

Common Electronic Purse Specifications

Global elec. purse standard (Visa, 90% market).
Smart card contains account balance, performs 
crypto operations securing each transaction.

Formal analysis of load and purchase protocols: 
three significant weaknesses: purchase 
redirection, fraud bank vs. load device owner.

[ASE01]
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Load Protocol

Unlinked, cash-based load transaction (on-line).
Load value onto card using cash at load device.
Load device contains Load Security Application 

Module (LSAM): secure data processing and 
storage.

Card account balance adjusted; transaction 
data logged and sent to issuer for financial 
settlement.

Uses symmetric cryptography.
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Audit Security

No direct communication between card 
and cardholder. Manipulate load device 
display.

Use post-transaction settlement scheme.

Relies on secure auditing.

Verify this here (only executions 
completed without exception).
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Flaw I

mln: „Proof“
for bank
that load 
machine 
received 
money.
But: rn shared 
between 
bank and 
load 
machine.
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Flaw II

rcnt: „Proof“ for 
LSAM that load 
device received 
only amount mn.

But: LSAM 
cannot prove 
validity of rcnt.
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Conclusions

Model-based Testing using UMLsec:
• formally based approach

• automated tool support

• industrially used methods

• integrated approach (source-code, 
configuration data)
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IT Security

Overview
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Questions ?
More information 

(papers, slides, tool 
etc.): 

http://www.umlsec.org
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Backup



 Jan Jürjens, Open University: Model-based Testing with UML 41

Decrease 
misuse counter

Authent. Protocol Pt. 2: Problem ?

Message order 
not enforced by 
smart card !
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Authent. Prot. Pt. 2: Problem

Replay 
MACskh

   (FBZ2‘)
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Mutual authentication with
challenge & response

Generate shared key

Authentic. 
Protocol
Part 1:
Problem.

Forged smart-card after 
authentic.; replay old session key


