
Developing Safety-Critical Systems with UML

Jan Jürjens?

Software & Systems Engineering, TU Munich, Germany

Abstract. Safety-critical systems have to be developed carefully to pre-
vent loss of life and resources due to system failures. Some of their mech-
anisms (for example, providing fault-tolerance) can be complicated to
design and use correctly in the system context and are thus error-prone.
We show how one can use UML for model-based development of safety-
critical systems with the aim to increase the quality of the developed
systems without an unacceptable increase in cost and time-to-market.
Specifically, we describe how to use the UML extension mechanisms to
include safety-requirements in a UML model which is then analyzed for
satisfaction of the requirements. The approach can thus be used to en-
capsulate safety engineering knowledge. It is supported by a prototypical
XMI-based tool performing the analysis.

1 Introduction

There is an increasing desire to exploit the flexibility of software-based
systems in the context of critical systems where predictability is essential.
Examples include the use of embedded systems in various application do-
mains, such as fly-by-wire in Avionics, drive-by-wire in Automotive and
so on. Given the high safety requirements in such systems (such as a
maximum of 10−9 failures per hour in the avionics sector), a thorough
design method is necessary. In particular, the use of redundancy mecha-
nisms to compensate the faults that occur in any operational system may
require complex protocols whose correctness can be non-obvious [Rus94].
Therefore, safety mechanisms cannot be “blindly” inserted into a criti-
cal system, but the overall system development must take safety aspects
into account. Furthermore, sometimes safety mechanisms cannot be used
off-the-shelf, but have to be designed specifically to satisfy given require-
ments. This can be non-trivial, as spectacular examples for software fail-
ures in practice demonstrate (such as the explosive failure of the Ariane
5 rocket in 1997).

Any support to aid safe systems development would thus be useful.
In particular, it would be desirable to consider safety aspects already in

? http://www.jurjens.de/jan – juerjens@in.tum.de



the design phase, before a system is actually implemented, since remov-
ing flaws in the design phase saves cost and time. This is significant; for
example, in avionics, verification costs represent 50% of the overall costs
[Ran00]. There has been a significant amount of successful research into
using formal methods for the development of safety-critical systems. Un-
fortunately, part of the difficulty of critical systems development is that
correctness is often in conflict to cost. It would thus be beneficial to use
rigorous means in the context of an industrially efficient development
method.

The Unified Modeling Language (UML) [UML01] offers an unprece-
dented opportunity for high-quality critical systems development that is
feasible in an industrial context.

– As the de facto standard in industrial modeling, a large number of
developers is trained in UML, making less training necessary. Also,
UML specifications may already be available for safety analysis, which
again would save time and cost.

– Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined, opening up the possibility
for advanced tool-support to assist the development of safety-critical
systems.

Problems in critical systems development often arise when the con-
ceptual independence of software from the underlying physical layer turns
out to be an unfaithful abstraction (for example in settings such as real-
time or more generally safety-critical systems, see [Sel02]). Since UML
allows the modeller to describe different views on a system, including the
physical layer, it seems promising to try to use UML to address these
problems by modeling the interdependencies between the system and its
physical environment.

While there has been a significant amount of work addressing real-
time systems with UML (including for example [SR98]), and increasing
attention to using UML for security (see for example [Jür03c]), in the
present work we consider safety and fault-tolerance requirements. To sup-
port safe systems development, safety checklists have been proposed in
[HJL96, Lut96, Hel98]. Here, we tailor UML to this application domain
by precisely defining some such checks with stereotypes capturing safety
requirements and related physical properties. This way we encapsulate
knowledge on prudent safety engineering and thereby make it available
to developers who may not be specialized in safety. One can also check
whether the constraints associated with the stereotypes are fulfilled in



a given specification. A prototypical tool supporting this will shortly be
introduced at the end of this paper.

Safety In safety-critical systems, an important concept also used here
is that of a safety level (see e.g. [Ran00]). Safety goals for safety-critical
systems are often expressed quantitatively via the maximum allowed fail-
ure rate. We exemplarily consider the following kinds of failure semantics
in this paper (other kinds have to be omitted for space reasons).

– crash/performance failure semantics means that a component may
crash or may deliver the requested data only after the specified time
limit, but it is assumed to be partially correct.

– value failure semantics means that a component may deliver incorrect
values.

Possible failures include:

message loss which may be due to hardware failures or software failures
(for example, buffer overflows)

message delay which may in turn result into the reordering of messages
if the delay is variable

message corruption when a message is modified in transit.

Forms of redundancy commonly employed include space redundancy
(physical copies of a resource), time redundancy (rerunning functions)
and information redundancy (error-detecting codes).

UML extension mechanisms We use the three main “lightweight”
extension mechanisms (stereotypes, tagged values and constraints) to in-
clude safety-requirements in a UML specification, together with the con-
straints formalizing the requirements. To evaluate a model against the
requirements, we refer to a precise semantics for the used fragment of
UML extended with a notion of failures sketched in Sect. 2.

Related work Some of the ideas reported here were or will be presented
in the unpublished [Jür02, Jür03b, Jür03a]. [Jür03c] proposes to use UML
for developing security-critical systems. In the related area of real-time
systems there has been a substantial amount of work regarding the usage
of UML. For example, [SR98] describes constructs to facilitate the design
of software architectures in this domain which are specified using UML.
[JCF+02] contains several approaches to developing systems with vari-
ous criticality requirements using UML. In particular, [HG02] discusses



a pattern-based approach for using UML use cases for safety-critical sys-
tems. The focus is on the development of a testing strategy rather than
model analysis. [PMP01] discusses methods and tools for the checking of
UML statechart specifications of embedded controllers. The focus is on
the use of statecharts and on efficient methods for automated checking
and does not include the use of other UML diagrams or the inclusion of
safety requirements using stereotypes. Also relevant is the work towards
a formal semantics of UML (see the proceedings of related conferences,
including the UML and FASE conferences, GROOM UML workshop ’98,
OOPSLA ’98, PSMT ’98, ECOOP ’00 workshop reader, AMCIS ’00, and
other conferences). Furthermore, there are techniques for requirements
elicitation that can be used fruitfully with the current approach. An ex-
ample is the approach of goal-oriented requirements engineering [vL01]
which is specifically useful for non-functional requirements and which is
related to UML in [SC02].

Outline In Sect. 2 we explain the foundation for checking the constraints
associated with the stereotypes suggested for safety-critical systems de-
velopment which are presented in Sect. 3, together with examples of their
use. In Sect. 3.1, we shortly describe the tool assisting our approach.

2 Safety Evaluation of UML Diagrams

We briefly give an idea how the constraints used in the UMLsec profile
can be checked in a precise and well-defined way. A precise semantics for
a (restricted and simplified) fragment of UML supporting these ideas can
be found in [Jür03c], building on the statecharts semantics in [BCR00]. It
includes activity diagrams, statecharts, sequence diagrams, static struc-
ture diagrams, deployment diagrams, and subsystems, each restricted and
simplified to keep a mechanical analysis that is necessary for some of the
more subtle behavioral safety requirements feasible. The subsystems in-
tegrate the information between the different kinds of diagrams and be-
tween different parts of the system specification. For safety analysis, the
safety-relevant information from the safety-oriented stereotypes is then
incorporated as explained below.

Outline of precise semantics In UML the objects or components com-
municate through messages received in their input queues and released to
their output queues. Thus for each component C of a given system, the
semantics defines a function JCK() which



– takes a multi-set I of input messages and a component state S and
– outputs a set JCK(I, S) of pairs (O, T ) where O is a multi-set of output

messages and T the new component state (it is a set of pairs because
of the non-determinism that may arise)

together with an initial state S0 of the component. The behavioral se-
mantics JDK() of a statechart diagram D models the run-to-completion
semantics of UML statecharts. As a special case, this gives us the se-
mantics for activity diagrams. Given a sequence diagram S, we define
the behavior JS.CK() of each contained component C. Subsystems group
together diagrams describing different parts of a system: a system compo-
nent C given by a subsystem S may contain subcomponents C1, . . . , Cn.
The behavioral interpretation JSK() of S is defined by iterating the fol-
lowing steps:

(1) It takes a multi-set of input events.
(2) The events are distributed from the input multi-set and the link

queues connecting the subcomponents and given as arguments to the
functions defining the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link
queues of the links connecting the sender of a message to the receiver,
or given as the output from JSK() when the receiver is not part of S.

When performing safety analysis, after the last step, the failure model
may corrupt the contents of the link queues in a certain way explained
below.

Safety analysis For a safety analysis of a given UMLsec subsystem
specification S, we need to model potential failure behavior. We model
specific types of failures that can corrupt different parts of the system
in a specified way, depending on the used redundancy model. For this
we assume a function FailuresR(s) which takes a redundancy model R
and a stereotype s ∈ {〈〈 crash/performance 〉〉, 〈〈 value 〉〉} and returns a set
of expressions FailuresR(s) ⊆ {delay(t) : t ∈ N ∧ t > 0} ∪ {loss(p) : p ∈
[0, 1]} ∪ {corruption(q) : q ∈ [0, 1]}. Here R is a name representing a re-
dundancy mechanism (such as duplication of components together with a
voting mechanism), which is semantically defined through the Failures()
sets. The natural number t represents the maximum delay to be expected
in time units. p gives the probability that an expected data value is not
delivered after the t time units specified in delay(t). Given a value deliv-
ered within this time period, q denotes the probability that this value is
corrupted.



Then we model the actual behavior of a failure, given a redundancy
model R, as a failure function that, at each iteration of the system ex-
ecution, non-deterministically maps the contents of the link queues in S
and a state S to the new contents of the link queues in S and a new state
T as explained below. For this, for any link l, we use a sequence (lql

n)n∈N

of multi-sets such that at each iteration of the system, for any n, lql
n con-

tains the messages that will be delayed for further n time units. Here lql
0

stands for the actual contents of the link queue l. At the beginning of the
system execution, all these multi-sets are assumed to be empty. Also, for
any execution trace h (that is, a particular sequence of system states and
occurring failures describing a possible history of the system execution),
we define a sequence (ph

n)n∈N of probabilities such that at the nth itera-
tion of the system, the failure considered in the current execution trace
happened with probability ph

n. Thus the probability ph that a trace h of
length n will take place is the product of the values ph

1 , . . . , ph
n (since in

our presentation here, we assume failures to be mutually independent, to
keep the exposition accessible). Then for an execution trace h, the failure
function is defined as follows. It is non-deterministic in the sense that for
each input, it may have a set of possible outputs.

– For any link l stereotyped s where loss(p) ∈ FailuresR(s) we
• either define lql

0 := ∅ and append p to the sequence (ph
n)n∈N,

• or append 1− p to the sequence (ph
n)n∈N.

– For any link l stereotyped s where corruption(q) ∈ FailuresR(s) we
• either define lql

0 := {2} and append q to the sequence (ph
n)n∈N,

• or append 1− q to the sequence (ph
n)n∈N.

– For any link l stereotyped s where delay(t) ∈ FailuresR(s) and lql
0 6= ∅,

we define lql
n := lql

0 for some n ≤ t and append 1/t to the sequence
(ph

n)n∈N.
– Then for each n, we (simultaneously) define lql

n := lql
n+1.

The failure types define which kind of failure may happen to a com-
munication link with a given stereotype, as explained above. Note that for
simplicity we assume that delay times are uniformly distributed. Also, cor-
rupted messages (symbolized by 2) are assumed to be recognized (using
error-detecting codes). To evaluate the safety of the system with respect
to the given type of failure, we define the execution of the subsystem S
in presence of a redundancy model R to be the function JSKR() defined
from JSK() by applying the failure function to the link queues as a fourth
step in the definition of JSK() as follows:

(4) The failure function is applied to the link queues as detailed above.



Table 1. Stereotypes

Stereotype Base Class Tags Constraints Description

risk link, node failure risks

crash/ link, node crash/performance
performance failure semantics

value link, node value
failure semantics

guarantee link, node goal guarantees

redundancy dependency, model redundancy model
component

safe links subsystem dependency safety enforces safe
matched by links communication links

safe subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural
dependency data safety data safety

critical object (level) critical object

safe behavior subsystem behavior fulfills safety safe behavior

containment subsystem provides containment containment

error handling subsystem error object handles errors

Containment A system ensures containment if there is no unsafe inter-
ference between components on different safety levels (this is called non-
interference in [DS99]). Intuitively, providing containment means that an
output should in no way depend on inputs of a lower level. For this we as-
sume an ordering on the set Levels of safety levels. Then the containment
constraint is that in the system, the value of any data element of level l
may only be influenced by data of the same or a higher safety level: Write
H(l) for the set of messages of level l or higher. Given a sequence m of
messages, we write mºH(l) for the sequence of messages derived from those
in m by deleting all events the message names of which are not in H(l).

For a set M of sequences of messages, we define MºH
def
= {mºH : m ∈ M}.

Definition 1. Given a component C and a safety level l, we say that
C provides containment with respect to l if for any two sequences i, j of
input messages, iºH(l) = jºH(l) implies JCKiºH(l) = JCKjºH(l).

3 Stereotypes for Safety Analysis: The “Safety Checklist”

In Table 1 we give the stereotypes, together with their tags and con-
straints, that we suggest to be used in the model-based development of
safety-critical systems with UML, based on experience in the model-based
development of safety-critical systems at our group (for example, from an
avionics project [BHL+02]) and on work on safety checklists in the lit-
erature [HJL96, Lut96, Hel98]. Thus, in a way, we define a UML-based



Table 2. Tags

Tag Stereotype Type Multipl. Description

failure risk P({delay(t), loss(p), * specifies risks
corruption(q)})

goal guarantee P({immediate(t), * specifies guarantees
eventual , correct})

model redundancy {none, majority, fastest} * redundancy model
error object error handling string 1 error object

“Safety Checklist” (which one can verify mechanically on the design level).
The constraints, which in the table are only named briefly, are formu-
lated and explained in the remainder of the section. Table 2 gives the
corresponding tags. The relations between the elements of the tables are
explained below in detail.

Note that some of the concepts introduced below are easier to apply
at component rather than object level. Instead of class models, one could
also use capsules from [SR98] (but we restrict ourselves to using standard
UML 1.5 to remain as general as possible). We explain the stereotypes
and tags given in Tables 1 and 2 and give examples (which for space
restrictions have to be kept simple). Note that the constraints considered
here span a range in sophistication: Some of the constraints are relatively
simple (comparable to type-checking in programming languages) and can
be enforced at the level of abstract syntax (such as 〈〈 safe links 〉〉) and
can be used without the semantics sketched in Sect. 2. Others (such as
〈〈 containment 〉〉) refer to the semantics and can only be checked reliably
using tool-support.

Overview We give an overview of the syntactic extensions together with
an informal explanation of their meaning. 〈〈 redundancy 〉〉, with associ-
ated tag {model}, describes the redundancy model that should be im-
plemented. 〈〈 risk 〉〉 describes the risks arising at the physical level using
the associated tag {failure}. 〈〈 guarantee 〉〉 requires the goals described in
the associated tag {goal} for communicated data. 〈〈 safe links 〉〉 ensures
that safety requirements on the communication are met by the physical
layer. 〈〈 critical 〉〉 labels critical objects using the associated tags {level}
(for each safety level level). 〈〈 safe dependency 〉〉 ensures that communica-
tion dependencies respect safety requirements on the communicated data.
〈〈 safe behavior 〉〉 ensures that the system behaves safely as required by
〈〈 guarantee 〉〉, in the presence of the specified failure model. 〈〈 containment 〉〉

ensures containment as defined in Definition 1. 〈〈 error handling 〉〉 with tag
{error object} provides an object for handling errors.



Table 3. Failure semantics

Risk Failuresnone()

Crash/performance {delay(t), loss(p)}
Value {corruption(q)}

We define the stereotypes and their constraints in detail.

Redundancy The stereotype 〈〈 redundancy 〉〉 of dependencies and compo-
nents and its associated tag {model} can be used to describe the redun-
dancy model that should be implemented for the communication along
the dependency or the values computed by the component. Here we con-
sider the redundancy models none, majority, fastest meaning that there
is no redundancy, there is replication with majority vote, or replication
where the fastest result is taken (but of course there are others, which
can easily be incorporated in our approach).

Risk, crash/performance, value With the stereotype 〈〈 risk 〉〉 on links and
nodes in deployment diagrams one can describe the risks arising at these
links or nodes, using the associated tag {failure}, which may have any
subset of {delay(t), loss(p), corruption(q)} as its value. In the case of
nodes, these concern the respective communication links connected with
the node. Alternatively, one may use the stereotypes 〈〈 crash/performance 〉〉

or 〈〈 value 〉〉, which describe specific failure semantics (by giving the rel-
evant subset of {delay(t), loss(p), corruption(q)}): For each redundancy
model R, we have a function FailuresR(s) from a given stereotype s ∈
{〈〈 crash/performance 〉〉, 〈〈 value 〉〉} to a set of strings FailuresR(s) ⊆
{delay(t), loss(p), corruption(q)}.

If there are several such stereotypes relevant to a given link (possibly
arising from a node connected to it), the union of the relevant failure
sets is considered. This way we can evaluate UML specifications. We
make use of this for the constraints of the remaining stereotypes. As an
example for a failures function, Table 3 gives the one for the absence of
any redundancy mechanism (R = none).

Guarantee 〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component di-
agrams stereotyped 〈〈 guarantee 〉〉 are supposed to provide the goals de-
scribed in the associated tag {goal} for the data that is sent along them as
arguments or return values of operations or signals. The goals may be any
subset of {immediate(t), eventual(p), correct(q)}. This stereotype is used
in the constraints for the stereotypes 〈〈 safe links 〉〉 and 〈〈 safe behavior 〉〉.



client/server

client machine server machine

performance»
«crash/

client
apps «call»

{immediate(T)}}
{goal=

«guarantee»

server
apps

«safe links»

Fig. 1. Example safe links usage

Safe links The stereotype 〈〈 safe links 〉〉, which may label subsystems, is
used to ensure that safety requirements on the communication are met
by the physical layer. More precisely, the constraint enforces that for each
dependency d with redundancy model R stereotyped 〈〈 guarantee 〉〉 between
subsystems or objects on different nodes n, m, we have a communication
link l between n and m with stereotype s such that

– if {goal} has immediate(t) as one of its values then delay(t′) ∈
FailuresR(s) entails t′ ≤ t,

– if {goal} includes eventual(p) as one of its values then loss(p′) ∈
FailuresR(s) entails p′ ≤ 1− p, and

– if {goal} has correct(q) as one of its values then corruption(q′) ∈
FailuresR(s) entails q′ ≤ 1− q.

Example In Fig. 1, given the redundancy model R = none, the con-
straint for the stereotype 〈〈 safe links 〉〉 is fulfilled if and only if T ≤ t, where
t is the expected delay according to the Failuresnone(crash/performance)
scenario in Fig. 3.

Critical We assume that we are given an ordered set Levels of safety
levels. Then the stereotype 〈〈 critical 〉〉 labels classes whose instances are
critical in some way, as specified by the associated tags {level} (for each
level level ∈ Levels), the values of which are data values or attributes of
the current object with the required to be protected by the given safety
level. This protection is enforced by the constraints of the stereotypes
〈〈 safe dependency 〉〉 and 〈〈 containment 〉〉 which label subsystems that con-
tain 〈〈 critical 〉〉 objects.

Safe dependency The stereotype 〈〈 safe dependency 〉〉, used to label sub-
systems containing object diagrams or static structure diagrams, ensures
that the 〈〈 call 〉〉 and 〈〈 send 〉〉 dependencies between objects or subsystems
respect the safety requirements on the data that may be communicated



switch(): Bool

Controller
{realtime={measure()}}

«critical»

switch(): Bool

Sensor/controller

measure(): Value

«call»

«safe dependency»

Sensor

Fig. 2. Example safe dependency usage

along them. Exactly, we assume that each l ∈ Levels has an associated
set of goals goals(l) ⊆ {immediate(t), eventual(p), correct(q)}. Then the
constraint enforced by this stereotype is that if there is a 〈〈 call 〉〉 or 〈〈 send 〉〉

dependency from an object (or subsystem) C to an object (or subsystem)
D then the following conditions are fulfilled.

– For any message name n offered by D, the goals associated with the
safety level of n in D imply those in C.

– If a message name offered by D has safety level l in C and g ∈ goals(l),
then g is implied by the goals provided by the dependency.

Example Figure 2 shows a sensor/controller subsystem stereotyped with
the requirement 〈〈 safe dependency 〉〉. We assume that immediate ∈
goals(realtime). The given specification violates the constraint for this
stereotype, since Sensor and the 〈〈 call 〉〉 dependency do not provide the
realtime goal immediate for measure() required by Controller.

Safe behavior The stereotype 〈〈 safe behavior 〉〉 ensures that the specified
system behavior in the presence of the failure model under consideration
does provide the safety goals stated in the tag {goal} associated with the
stereotype 〈〈 guarantee 〉〉 as follows, by referring to the semantics sketched
in Sect. 2.

immediate(t) In any trace h of the system, the value is delivered after
at most t time steps in transmission from the sender to the receiver
along the link l. Technically, the constraint is that after at most t
steps the value is assigned to lql

0.
eventual(p) In any trace h of the system, the probability that delivered

value is lost during transmission is at most 1−p. Technically, the sum
of all ph for such histories h is at most 1− p.

correct(q) In any trace h of the system, the probability that delivered
value is corrupted during transmission is at most 1 − q. Technically,
the sum of all ph for such histories h is at most 1− q.



Fuel controller {safe={fuel}}
«containment»

fuel(x:Data):Data
wheelsin(x:Bool)

Fuel control

fuel(x:Data):Data
wheelsin(x:Bool)

WheelsOutWheelsIn
wheelsin

(false)

(true)
wheelsin

fuel(x)/return(c.x)

wheelsin(true)

fuel(x)/return(d.x)

wheelsin(false)

Fig. 3. Example containment usage

Containment The stereotype 〈〈 containment 〉〉 of subsystems ensures that
it satisfies the containment constraint defined in Definition 1. For this, we
order the set Levels: For l, l′ ∈ Levels we have l ≤ l′ if goals(l) ⊆ goals(l′).
A subsystem S correctly carries the stereotype 〈〈 containment 〉〉 if S satisfies
containment with respect to every safety level l ∈ Levels.

Example Figure 3 shows a Fuel Controller that computes the amount
of used fuel of an airplane from the distance travelled so far. This is
done (quite simplistically for the purpose of the example) by multiplying
the distance with a constant (the amount of fuel consumed per length
unit). Because of different air resistance, this constant depends on the
fact whether the wheels of the plane were pulled in-board or (mistak-
enly) left outside. This is modelled by having two states corresponding
to the state of the wheels, and having different constants c 6= d. Now the
result of the message fuel is supposed to be of the level safe. However,
the message wheelsin giving the state of the wheels is not assigned any
safety level. Therefore this example violates 〈〈 containment 〉〉, because a safe
value depends on a value not at least of level safe. This can be checked
as follows: Considering the sequences i = (wheelsin(true), fuel(1)) and
j = (wheelsin(false), fuel(1)), and the safety level l = safe, we have
iºH(l) = jºH(l), but JpKiºH(l) = {return(c)} 6= {return(d)} = JpKjºH(l)

since c 6= d by assumption on c, d.

Error handling In UML, an event that does not trigger a transition is
ignored. For safety-critical systems the arrival of an unexpected message
or of a message with an out-of-range value may indicate a serious fail-
ure. Similar to [SP00], we suggest to use a stereotype 〈〈 error handling 〉〉 of
subsystems with a tag {error object} pointing to a statechart defining the
behavior of an error component. This could be compiled directly from the
UML model to an aspect-oriented language. For traditional programming
languages, we have to “weave” it in on the level of the UML model. For
statecharts S1 defining the component and S1 defining the error object



(both assumed to be flattenable to contain only simple states [LCAK00])
the state set of the result S is the cartesian product of the state sets of
S1 and S2. There is a transition t from a state (s1, s2) to a state (s′1, s

′
2)

in S if one of the following conditions holds:

– if there is a transition with the same event, guard, and action from s1

to s′1 in S1 and s2 = s′2, or

– if there is a transition t′ with the same event and action from s2 to s′2
in S2 and the guard of t is the conjunction of the guard of t′ and the
negation of each guard of a transition t′′ in S1 with the same event,
and s1 = s′1.

3.1 Tool Support

We describe a prototypical tool currently under development for criti-
cal systems development for checking constraints such as those associ-
ated with the stereotypes defined above. A first version has been demon-
strated at [Jür03a]; a web-interface is currently being made available at
http://www4.in.tum.de/csduml . The tool works with UML 1.4 models
stored in a XMI 1.2 (XML Metadata Interchange) format by a suitable
UML design tools. To avoid having to process UML models directly on the
XMI level, the MDR (MetaData Repository, http://mdr.netbeans.org) is
used, allowing one to operate on the UML model level (this is, for exam-
ple, used by the UML CASE tool Poseidon, http://www.gentleware.com).
The MDR library implements a repository for any model described by a
modeling language compliant to the MOF (Meta Object Facility). This
approach should easen the transition to future UML versions. To use
the tool, a developer creates a model and stores it in the UML 1.4 /
XMI 1.2 file format. The tool imports the file into the internal MDR
repository and accesses the model through the JMI interfaces generated
by the MDR library. The checker parses the model and checks the con-
straints associated with the stereotype. The results are delivered as a
text report for the developer describing problems found, and as a mod-
ified UML model, where the stereotypes whose constraints are violated
are highlighted. Specifically, the syntactic checks (such as 〈〈 safe links 〉〉

and 〈〈 safe dependency 〉〉 are implemented in Java, whereas the semantic
checks (such as 〈〈 safe behavior 〉〉 and 〈〈 containment 〉〉) need more special-
ized tool-support (we are currently working on a connection with Spin
and Prolog).



4 Conclusion and Future Work

We propose to use UML to aid the development of safety-critical sys-
tems. The goal is to enable developers without a background in safety
to make use of safety engineering knowledge encapsulated in a widely
used design notation. Since the behavioral parts of UML are supposed
to be used with a precisely defined semantics, this allows an evaluation
of the models (parts of which may be mechanized). The aim is that the
constraints for the safety requirements can be checked and explained to
the user by a CASE tool (formally or informally). An XMI-based tool
supporting the analysis of the constraints defined here developed in the
context of some student projects has been presented at [Jür03a]. It en-
ables developers to analyze UML models created in a UML CASE tool
with an XMI output interface for safety and security requirements. As
it is still in a prototypical state, interesting further work includes an im-
provement of the tool to enable use in an industrial environment, which
is a necessary prerequisite for technology transfer. Here we only exem-
plarily realized some of the checks proposed in [HJL96, Lut96, Hel98], for
space reasons; others would also be interesting, as well as more specific
checks that can lead to safety violations, such as whether variable values
are undefined or out of range. Also for space reasons, we could only use
very simple examples to demonstrate their use. As [Sel02] points out, de-
pendency of software on the underlying physical layer is not restricted to
safety-critical or real-time systems. It would be interesting to see which
other application domains beyond safety- (and security-) critical systems
our approach could be applied to.

Acknowledgement Progress in tool-support for critical systems develop-
ment with UML made by P. Shabalin, S. Meng, S. Hoehn, E. Alter and
others has contributed to encourage the present work. Comments from
the anonymous reviewers improved the presentation of the paper.

References

[BCR00] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML
State Machines. In ASMs, volume 1912 of LNCS. Springer, 2000.

[BHL+02] A. Blotz, F. Huber, H. Lötzbeyer, A. Pretschner, O. Slotosch, and H.-P.
Zängerl. Model-based software engineering and Ada: Synergy for the devel-
opment of safety-critical systems. In Ada Deutschland 2002, 2002.

[DS99] B. Dutertre and V. Stavridou. A model of noninterference for integrating
mixed-criticality software components. In DCCA, San Jose, CA, January
1999.



[Hel98] G. Helmer. Safety checklist for four-variable requirements methods. Technical
Report 98-01, Iowa State University Department of Computer Science, 1998.

[HG02] K. Hansen and I. Gullesen. Utilizing UML and patterns for safety critical
systems. In Jürjens et al. [JCF+02].

[HJL96] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of
requirements specifications. ACM Trans. on Software Eng. and Methodology,
5(3):231–261, July 1996.

[JCF+02] J. Jürjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors.
Critical Systems Development with UML, number TUM-I0208 in TUM tech-
nical report, 2002. UML’02 satellite workshop proceedings.

[Jür02] J. Jürjens. Critical Systems Development with UML. In Forum on Design
Languages, Marseille, Sept. 24–27 2002. European Electronic Chips & Sys-
tems design Initiative (ECSI). Invited talk.

[Jür03a] J. Jürjens. Critical Systems Development with UML, 2003. Series of tutorials
at 20 international conferences including SAFECOMP, ETAPS 2003, Formal
Methods Europe 2003. http://www4.in.tum.de/̃ juerjens/csdumltut .

[Jür03b] J. Jürjens. Developing safety- and security-critical systems with UML. In
DARP workshop, Loughborough, May 7–8 2003. Invited talk.

[Jür03c] J. Jürjens. Secure Systems Development with UML. Springer, 2003. In
preparation.

[LCAK00] K. Lano, D. Clark, K. Androutsopoulos, and P. Kan. Invariant-based syn-
thesis of fault-tolerant systems. In M. Joseph, editor, FTRTFT, volume 1926
of LNCS, pages 46–57. Springer, 2000.

[Lut96] R. Lutz. Targeting safety-related errors during software requirements analy-
sis. The Journal of Systems and Software, 34:223–230, September 1996.

[PMP01] Z. Pap, I. Majzik, and A. Pataricza. Checking general safety criteria on UML
statecharts. In U. Voges, editor, SAFECOMP 2001, volume 2187 of LNCS,
pages 46–55, 2001.

[Ran00] F. Randimbivololona. Orientations in verification engineering of avionics soft-
ware. In R. Wilhelm, editor, Informatics – 10 Years Back, 10 Years Ahead,
LNCS, pages 131–137. Springer, 2000.

[Rus94] J. Rushby. Critical system properties: Survey and taxonomy. Reliability
Engineering and System Safety, 43(2):189–219, 1994.

[SC02] V. Santander and J. Castro. Deriving use cases from organizational modeling.
In RE 2002, pages 32–42, 2002.

[Sel02] B. Selic. Physical programming: Beyond mere logic. In A. Sangiovanni-
Vincentelli and J. Sifakis, editors, Embedded Software Second International
Conference (EMSOFT 2002), volume 2491 of LNCS, pages 399–406, 2002.

[SP00] P. Stevens and R. Pooley. Using UML. Addison-Wesley, 2000.
[SR98] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time sys-

tems, 1998.
[UML01] UML Revision Task Force. OMG UML Specification v. 1.4. OMG Document

ad/01-09-67. Available at http : //www.omg.org/uml, 2001.
[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering: A guided

tour. In RE’01 - 5th IEEE International Symposium on Requirements Engi-
neering, pages 249–263, Toronto, August 2001. Invited Paper.


