
Automated Verification of UMLsec Models

for Security Requirements

Jan Jürjens? and Pasha Shabalin

Software & Systems Engineering, TU Munich, Germany
http://www4.in.tum.de/̃ juerjens, http://www4.in.tum.de/̃ shabalin

Abstract. For model-based development to be a success in practice, it
needs to have a convincing added-value associated with its use. Our goal
is to provide such added-value by developing tool-support for the anal-
ysis of UML models against difficult system requirements. Towards this
goal, we describe a UML verification framework supporting the construc-
tion of automated requirements analysis tools for UML diagrams. The
framework is connected to industrial CASE tools using XMI and allows
convenient access to this data and to the human user.
As a particular example for usage of this framework, we present veri-
fication routines for verifying models of the security extension UMLsec
of UML. These plug-ins should not only contribute towards usage of
UMLsec in practice by offering automated analysis routines connected
to popular CASE tools. The verification framework should also allow
advanced users of the UMLsec approach to themselves implement veri-
fication routines for the constraints of self-defined stereotypes, in a way
that allows them to concentrate on the verification logic. In particular, we
focus on an analysis plug-in that utilises the model-checker Spin to verify
security properties of UMLsec models which make use of cryptography
(such as cryptographic protocols).

1 Introduction

Still only about 4% of software systems in practice are built using modeling tech-
niques of some sort (most of them using UML). There needs to be a convincing
added-value to the usage of model-based development techniques before it will
be widely adopted in industry. Our goal is to provide such added-value by devel-
oping tool-support for the analysis of UML models against system requirements
which can be formulated at the level of the system model, and which cannot be
manually checked in a reliable and efficient way (such as security requirements).
Here, we describe a UML verification framework supporting the construction
of automated requirements analysis tools for UML diagrams. Its design is in-
fluenced by experiences from long-standing efforts at our group regarding the
development of the AutoFocus CASE-tool [HMR+98]. The framework is con-
nected to industrial CASE tools using data integration with XMI [Obj02] and
allows convenient access to this data and to the human user.

? Supported by the Verisoft Project of the German Ministry for Research (BMBF).



To be of interest in practice, the requirements that can be treated, and the
method we propose for handling them, should fulfill the following constraints.

– The properties that can be specified and analysed should be important and
sophisticated enough so that it is necessary to consider them and that it
would be difficult to do so manually.

– The analysis should be automatic to prevent additional running costs in
using it.

– It should efficient enough to be effectively and conveniently usable and an
ongoing basis.

– It should be possible to use the approach with just a modest training effort.

As an example for such requirements, we focus on security aspects. We demon-
strate how to instantiate this framework with analysis plug-ins at the hand of
examples for verification routines for constraints associated with the stereotypes
of the UML security extension UMLsec [Jür02, Jür04]. In particular, we focus
on a plug-in that utilises the model-checker Spin to verify security properties of
UMLsec models which make use of cryptography (such as cryptographic proto-
cols). To do so, the analysis routine extracts information from different diagram
types (class, deployment, and statechart diagrams) that may contain additional
specific cryptography-related information. With respect to UMLsec, the goal
here is thus two-fold. On the one hand, we aim to support the usage of UMLsec
in practice by offering analysis routines connected to popular CASE tools which
allow the automated verification of the constraints associated with the UMLsec
stereotypes. One the other hand, the verification framework should allow ad-
vanced users of the UMLsec approach to themselves implement verification rou-
tines for the constraints of self-defined stereotypes, in a way that allows them to
concentrate on the verification logic (rather than on user interface issues). This
verification framework should then be useful beyond UMLsec, as well. For these
purposes, the framework is available as open-source.

Sect. 2 presents the verification framework supporting the construction of au-
tomated requirements analysis tools for UML diagrams. We give a short overview
over analysis tool plugins for the framework supporting verification of UMLsec
models for the contained security requirements. In Sect. 3, we present one of
these plug-ins, a binding with the Spin modelchecker for checking data security
requirements, for example of cryptographic protocols. At the hand of a running
example, the translation from UMLsec models to Promela code and its execution
in Spin is explained. We close with comparisons to related work, a discussion
of our work and an outlook on further developments. For background on data
security and UMLsec, we refer to [Jür02, Jür04].

2 The UML Verification Framework

We present a framework supporting the construction of automated requirements
analysis tools for UML diagrams. The framework is connected to industrial
CASE tools using data integration with XMI [Obj02] and allows convenient



access to this data and to the human user. The framework provides three input
and output interfaces for the analysis plug-ins: a textual command-line interface,
a graphical user interface, and a web-interface. Inputs can be UML diagrams in
the form of XMI files, as well as textual parameters. (Alternatively, the dia-
grams can be input in the .zuml format of the Poseidon tool [Gen03], which also
includes graphical information.) As output one can again have UML diagrams
as XMI (or .zuml) files and text messages. The tool can access the information
in the UML models on the conceptual level of UML model elements through
Java Metadata Interface (JMI) methods [Dir02]. The plug-ins can have an inter-
nal state which is preserved between different executions of its commands. Any
analysis tool written in Java and complying with the input and output inter-
face of the framework can be plugged into the framework. To avoid having to
parse XMI files, we use XMI data-binding offered by the Meta Data Repository
(MDR) [Mat03], a XMI-specific data-binding library in Java Netbeans. Since
MDR allows one to make use of the DTDs for XMI that are officially released,
compatibility with the standard is ensured (and MDR is also used in Poseidon).
The architecture and basic functionality of the UML verification framework are
illustrated in Fig. 1. The framework can be offered as a web application (where
the UML models are uploaded to the framework over the web). Additionally, a
locally installable version is available. Exemplarily, the figure includes two of the
UMLsec analysis plug-ins (a checker for static security properties, and a checker
for dynamic properties using a model checker).

The usage of the framework as illustrated in Fig. 1 proceeds as follows. The
developer creates a model and stores it in the UML 1.4/XMI 1.2 file format.1

The file is imported by the UML verification framework into the internal MDR
repository. Each plug-in accesses the model through the JMI interfaces generated
by the MDR library, they may receive additional textual input, and they may
return both a UML model and textual output. The two exemplary analysis plug-
ins proceed as follows: The static checker parses the model, verifies its static
features, and delivers the results to the error analyzer. The dynamic checker
translates the relevant fragments of the UML model into the model-checker
input language. The model-checker is spawned by the UML framework as an
external process; its results (a counter-example in case a problem was found)
are delivered back to the error analyzer. The error analyzer uses the information
received from the static checker and dynamic checker to produce a text report for
the developer describing the problems found, and a modified UML model, where
the errors found are visualized. On any Java-enabled platform, the framework
can run in one of three modi:

– as a console application, either interactive or in batch mode
– as a Java Servlet, exposing its functionality over the Internet
– as a GUI application with higher interactivity and presentation capabilities

To achieve a media-independent operation of the tools, input and output
are handled by the framework. Each tool command defines a set of required in-
put parameters (currently supported parameter types are Integer, Double, String

1 This will be updated to UML 2.0 once the corresponding DTD is released.



UML Editor
(UML 1.4 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.4 /
XMI 1.2)

Model Checker

MDR
JMI

Executable
Model
and

Properties

Counter -
Example

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML Model

Error Analyzer

“uses"

data flow

Fig. 1. UML verification framework: usage

and File; others can be easily added). On behalf of the tool, the framework col-
lects the parameters from the user and returns the output to the user using the
current input/output media (console, web, or GUI). To enable this, each tool
that is integrated into the UML verification framework must implement a com-
mon interface (IToolBase), plus three media-dependent interfaces (IToolConsole,
IToolWeb and IToolGui). For simplification, the framework provides default im-
plementations for the IToolWeb and IToolGui interfaces. These default wrappers
use the interface implemented by the tool IToolConsole and render the text out-
put in HTML or in a text window format respectively. Each tool exposes a set
of commands which can be executed through the functions of the correspond-
ing interface (GetConsoleCommands, GetWebCommands and GetGuiCommands).
Thus the tool can provide different functionality on different media, adopting
to its specifics. The framework uses the IToolBase interface to retrieve general
information about the tool, and one of the three media-specific tool interfaces
to call a command provided by the tool and receive the output. This output is
rendered by the framework on the current media. The tool can execute several
commands subsequently; the internal state of the MDR repository and all tools
is preserved between command calls. The set of available commands for each
tool may vary depending on the execution history and current state. This allows
to use the UML framework for complex and interactive operations on the UML
model. The source code of the verification framework and the plug-ins is down-



loadable as part of the UMLsec tool from [UML], where they are also offered as
a web-interface, including a small user tutorial.

We give a short overview over analysis tool plugins for the UML verification
framework which support verification of UMLsec models for the security require-
ments contained as stereotypes and their constraints (see [Jür02]). One of them
will be explained in more detail in the later sections (a binding with the Spin
modelchecker for checking the constraints of the 〈〈 data security 〉〉 stereotype, for
example to verify cryptographic protocols). When given a UMLsec model, the
analysis tools automatically produce a semantic model and include a formaliza-
tion of the security requirements or primitives contained as stereotypes and their
constraints. These can be applied by a developer without specialized training in
security or formal methods by simply including them in the UML model. The
constraints associated with the stereotypes are translated to the formal model,
protecting from errors that manual formalization is prone to (see [Jür02] for de-
tails about the formal semantics of a simplified fragment of UML we use). Since
security requirements are usually defined relative to an adversary, to analyze
whether the UML specification fulfills a security requirement, the tools auto-
matically include the adversary model arising from the physical view contained
in the UML specification as a deployment diagram. The UMLsec verification
plug-ins fall into several different categories.

Static features: For each of the static security requirements in UMLsec (such
as 〈〈 secure links 〉〉 and 〈〈 secure dependency 〉〉), we have implemented an anal-
ysis plugin which directly checks the relevant conditions in a Java routine.

Simple dynamic features: For dynamic properties, we need a mapping from
UMLsec models to a representation of their behavioral semantics as event
histories. This is done for statecharts, activity diagrams, sequence diagrams,
and for subsystems containing the above diagram types in four other plugins.
The semantics is analyzed to verify basic security requirement, defined on
the behavioral level (such as 〈〈 fair exchange 〉〉 and 〈〈 guarded access 〉〉).

Complex dynamic features: For complex dynamic properties, the UMLsec
model is translated into the input language of a suitable analysis tool. As an
example, we describe a tool-binding to the model-checker Spin to verify the
〈〈 data security 〉〉 constraints in this paper.

External application binding There are also plug-ins analyzing security per-
missions from configurations for SAP R/3 business applications with respect
to security rules and business processes formulated in UML [HJ03].

Note that the other stereotypes from [Jür02] not mentioned above do not en-
tail any verification obligation, but just provide some security-relevant informa-
tion which is used when defining constraints associated with other stereotypes:
For example, 〈〈 Internet 〉〉 and other stereotypes include information about the
physical security level used for example by the 〈〈 secure links 〉〉 constraint.



3 Model-checking UMLsec models

As an example for the verification routines implemented in the UMLsec tool,
we present a tool-binding with the model-checker Spin [Hol03] for verifying
cryptographic protocols following the 〈〈 data security 〉〉 requirement from [Jür02].
〈〈 data security 〉〉 is a UMLsec stereotype for subsystems which one can use to
specify that certain attributes in the subsystem that are marked using the
〈〈 secrecy 〉〉 stereotype are supposed to remain secret. These UML subsystems,
such as cryptographic protocols, can be specified to make use of cryptographic
algorithms. That the secrecy requirement is actually fulfilled (as far as one can
determine from the model), is formalized using the constraint associated with
〈〈 data security 〉〉. This is done with respect to a formal semantics of (a restricted
version of) the subsystem and its subdiagrams, and using an adversary model
arising from the physical security specification given in the deployment diagram
contained in the subsystem. This is shortly sketched at the end of this sec-
tion; for details we refer to [Jür02]. In this section, we present work on how
to provide tool-support for automatically verifying a UML specification for the
〈〈 data security 〉〉 constraint.

Spin supports automatic verification of finite-state reactive systems given in
form of a state-transition system against properties expressed in Linear Time
Logic (LTL). To check the constraint associated with 〈〈 data security 〉〉 attached
to a subsystem, we collect information from the following diagrams contained in
the subsystem:

Class diagrams In class diagrams, attributes and methods may be tagged for
example with {secrecy} to specify that the relevant data should remain secret
from an adversary.

Statecharts The behaviour of the instances of each class (for example, with a
cryptographic protocol) is defined in a statechart diagram.

Deployment diagrams Deployment diagram are used to specify the physical
security of communication links between objects within the system that are
distributed, for example over the Internet.

Thus, from the information in the statecharts we construct a formal model of
the system, which is augmented with an adversary model derived from the threat
information in the deployment diagram. This formal model is then verified with
respect to the security requirement contained in the class diagram.

Following [Jür02], we extend the UML notation with cryptography prim-
itives, which can be used in Guards and Effects in UMLsec Statecharts and
to define initial values for variables in the Class diagrams. The BNF repre-
sentation of the cryptographic expressions is given in Fig. 2. Here, the ob-
ject identifiers identifier are assumed to be given. The functions SenderOf,
PublicKeyOf, SecretKeyOf, SymmetricKeyOf, and NonceOf return the corre-
sponding attributes of the object. Note that the function NonceOf was intro-
duced based on the assumptions that for protocols with symmetric session keys,
at each iteration of the protocol a new object with a fresh session key is gener-
ated; it would alternatively be easily possible to modify the definition to allow



<expression> ::= <identifier> |

"SenderOf" "(" <identifier> ")" |

"PublicKeyOf" "(" <identifier> ")" |

"SecretKeyOf" "(" <identifier> ")" |

"SymmetricKeyOf" "(" <identifier> ")" |

"NonceOf" "(" <identifier> ")" |

"ApplyKey" "(" <expression> "," <expression> ")" |

"this" |

<expression> "::" <expression> |

<expression> "[" integer "]"

Fig. 2. UMLsec Cryptography Language

each object to have several symmetric keys. The function ApplyKey performs the
cryptographic operations of encryption, decryption, signing, and extraction from
signatures (as formalized below). Within a class, the keyword this references
the class itself, and the other classes are referenced by the corresponding associ-
ation end identifiers from the class diagram. Expressions can finally include the
concatenation and indexing operators :: and [] (where a concatenation of n

expressions followed by [m] evaluates to the mth of these expressions if m ≤ n.
Furthermore, one can use the Boolean comparison operators == (equal) and !=

(not equal) between expressions, the assignment = of expressions to attributes,
as well as events (which specify incoming method calls at statechart transitions).

For any symmetric key k, any asymmetric key pair consisting of a secret key
sk and a public key pk, and any message m, the following rules apply:

– ApplyKey(ApplyKey(m, k), k) = m (symmetric encryption)
– ApplyKey(ApplyKey(m, pk), sk) = m (asymmetric encryption)
– ApplyKey(ApplyKey(m, sk), pk) = m (digital signature)

The first rule axiomatizes the functional properties of any symmetric en-
cryption algorithm, the latter two rules the properties of the RSA asymmetric
encryption algorithm [RSA78].

Example We introduce a UML specification of a simple cryptographic protocol,
which we use in the remainder of this paper as a running example. In this simple
(and obviously insecure) protocol, Alice (of class Initiator) wants to receive some

+respond(in m)

-k = SymmetricKeyOf(this)
-m

Initiator

+request(in m)

«secrecy» -m = NonceOf(this)
-receivedKey

Responder-initiator -responder

Fig. 3. Example Class diagram



ServerNode

 : Component1

ClientNode

 : Component1
<<lan>>

Alice:Initiator Bob:Responder

Fig. 4. Example Deployment diagram

secret information from Bob (of class Responder). Alice sends to Bob her key,
and Bob returns the secret value encrypted under the key:

Alice → Bob : k

Bob → Alice : {x}k

The UML model of the example is presented in Figures 3 through 6. Fig. 3
contains a class diagram defining the data structure of the system consisting of
the Initiator and the Responder. Note that the attribute m of the Responder
class is marked with the 〈〈 secrecy 〉〉 stereotype, which expresses the requirement
that the content of this attribute is never leaked to the adversary. Fig. 4 contains
a deployment diagram describing the physical layer underlying the protocol.
The communication link is marked with the 〈〈 lan 〉〉 stereotype, meaning that
the communication link is supposed to be a connection in a local area network,
which implies that the (internal) adversary we consider in this example is capable
of reading and writing on the link. Fig. 5 contains a statechart specifying the
behavior of the Initiator in the protocol sketched above, and Fig. 6 a statechart
for the Responder.

Translation to Model-Checker We explain some key points in the automatic
translation from UMLsec models to Promela code and its execution in Spin at
the hand of our running example. We use the Spin model checker since we found
it suitable for verification of distributed communicating systems. In particular,
Spin’s on-the-fly model checking allowing to partially verify a model without
building the full state space seems suitable for verifying security requirements
with their highly non-deterministic adversary models.

Parameters and Data Types In a UML model, developers can use a broad
range of predefined data types, and can also define their own data types. In

State1 State2 State3

respond(m) / m = ApplyKey(m, k)

/ responder.request(k)

Fig. 5. Example Initiator Statechart



State4 State5

request(receivedKey)

/ initiator.respond(ApplyKey(m, receivedKey))

Fig. 6. Example Responder Statechart

contrast, model checker notations usually support only a very limited set of
data types (in the case of Promela: Boolean, Integer and enumeration [Hol03]).
For a given UML model, we thus need to define a mapping of complex UML
data types onto the limited set of data types supported by the model checker.
We discuss two obvious approaches for constructing such a mapping and explain
why they are not sufficient for our needs, which motivates the solution we then
propose. We use the term atomic values for values like an encryption key k, or a
message v, which are considered to be unique and cannot be derived from other
atomic values. We use the term complex values for data constructs received from
applying operations (the data transformation functions) to atomic values, such
as {v}k (x encrypted under the key k).

We consider a model with a base data type (say, Integer) supposed to include
the atomic values to discuss three possibilities of representing and processing
complex values:

Simple Enumeration We use the Integer data type to enumerate all possible data
values. For the {v}k expression we assign a new integer value to every combina-
tion of atomic values v and k. The data transformation functions are represented
by a simple mapping function. In this approach, it is difficult to decide which
combinations of values are possible and need to be enumerated. The transla-
tion process and the resulting code are complex. The internal logic of different
processes in the translated code becomes mutually dependent. Detecting and
enumerating all possible combinations is in fact the task of the Model Checker.
Implementing the same logic in the translator complicates the translation pro-
cess and the resulting model. The HUGO UML to Promela translator [SKM01],
for example, allows using native Model Checker data types in the function pa-
rameters in the UML Model. It does not explicitly implement enumerating of the
all possible complex data values, but it may be possible to be extended in this
way. However, taking the discussed drawbacks into account, we consider other
possibilities.

Fixed Types The UML explicitly defines the data types of all variables, param-
eters and return values in the model. For every data type, it is then possible to
enumerate all its values and define data transformation functions hardcoded in
the translated Model Checker code according to the data type they process. We
are not aware of any existing tools implementing this approach. Comparing to
the first solution, it will result in a better structured code, and the translation
logic will be cleaner and easier to understand. However, we then have to limit



the developer to use only those data types known to our translator. Alterna-
tively we can request the developer to provide mapping rules describing how the
data types in the UML model relate to the translator data types. Both solutions
mean significant additional effort which might prevent developers from using the
technology. To handle these problems, we introduce dynamic handling of data
types, where the message itself carries information about its type.

Dynamic Types The complex data type is defined during the translation process
and holds any complex value which may appear in the system during its execu-
tion. For this, the tool builds a Type Graph. Starting from the root node of type
atomic, and applying all expressions which are met in the model (namely, initial
values, transition effects, and transition guards), the tool creates new vertexes
in the graph as necessary. The data transformation functions are presented by
edges, and the complex data types incarnations are presented by nodes.

The data graph for our example is presented in Fig. 7. It contains two vertices
representing a simple variable (root) and an encrypted variable, and two edges
representing encryption and decryption. Based on the data graph, the complex
data type is encoded by a structure which holds as many atomic values as nec-
essary to represent the most complex vertex plus a variable to encode the actual
value type. Then the tool defines a set of data transformation functions which
perform operations on the complex data type, for each edge in the graph. The
translation result for our example in Promela language is presented in Fig. 8.
The MSG structure is then used in the translated code to represent complex
data type. The messageType field defines which vertex the structure represents.
The param1 field stores the message v, and param2 stores the key k only when
the structure represents vertex {v}k. The ApplyKey function defines a transfor-
mation rule for the graph: encryption on a v-type vertex produces a {v}k vertex;
decryption with a valid key on a {v}k vertex produces a v vertex.

UML Semantics We sketch how the analysis plug-in translates the UML
model into the Promela notation, following the simplified UML semantics in
[Jür02, Jür04]. The resulting model consists of a network of communicating ob-
jects, based on the deployment diagram. Each object has an input queue and
an output queue for exchanging messages with other parts of the system. Each
object has a separate thread of execution within the model. This is achieved by
creating a Promela proctype definition for every UML class, and by instantiat-

{ }

v

v
k

Fig. 7. Example Data Graph



typedef MSG {

TYPE_MSGTYPE messageType; TYPE_DATAVAL param1; TYPE_DATAVAL param2;}%

inline ApplyKey(message, key) {

if :: message.messageType == MT_GARBAGE -> ;

:: message.messageType == MT_v -> message.messageType = MT_LvRk;

message.param2 = key;

:: message.messageType == MT_LvRk ->

if :: message.param2 == InverseKey(key) ->

message.messageType = MT_v;

:: else -> message.messageType = MT_GARBAGE;

fi;

fi;}

Fig. 8. Translated Example - fragment

ing it for every corresponding object in the deployment diagram. Each object in
the resulted code receives a unique ID. From the class diagram, the tool collects
information about the attributes and its associations with other classes; each
association is resolved to an object ID based on the Deployment diagram. The
behavior of each class is encoded in a loop following the UML run-to-completion

semantics by repeatedly executing the following two steps:

– If not in the end state, all enabled actions are executed in a loop, without
consuming external events. If more than one action is enabled, the selection
of the executed action is non-deterministic.

– A single event is read from the input communication channel and the cor-
responding action is executed. The execution of the object is blocked if the
channel is empty. The events which do not trigger any actions in the current
object state are lost.

The tool uses a simplified UML semantics. Some of the other UML con-
structs can be reduced as usual to the subset the tool supports. In particular,
composite and history states are not allowed, events cannot be deferred, and
only asynchronous communication is supported at present.

Adversary To apply formal verification methods for verifying security properties
of an open, distributed system, it is necessary to model all possible interactions
between the system and the outside world. This includes behavior of an adver-
sary trying to break or compromise the system. The adversary model is defined
through certain basic capabilities, depending on the physical properties of the
system, and on the strength of the adversary that is considered. This is speci-
fied in UMLsec using a function mapping an adversary type A and a stereotype
s characterizing a physical property of the system in the deployment diagram
(such as 〈〈 Internet 〉〉) to a set of threats ThreatsA(s) ⊆ {delete, read, insert} (see
[Jür02]). Each of the threats is implemented by a possible adversary action in the
system model. The behavior of the adversary is modeled by a separate Promela
proctype process definition and instantiated with a separate execution thread.



never { T0_init: if :: known_DV_Bob_nonce == true -> goto accept_all;

:: (1) -> goto T0_init;

fi;

accept_all: skip}

Fig. 9. Never Claim in Promela

– read gives the adversary the capability to read the information from the
communication link and store it in the internal variables.

– insert allows the adversary to insert his own messages into the communica-
tion link. The message is created from the information known to the adver-
sary, constructed from the initial adversary knowledge and the information
learned by the adversary from the previous communication.

– delete allows the adversary to remove a message from the communication
link.

In our example, the adversary capabilities are limited to the subset {read,

insert}, which results into the loop given in Fig. 10 in pseudocode. Note that in
this case, the adversary cannot drop the message which is received, but always
forwards it to the intended receiver, according to the missing delete capability.

Security requirement The security requirement from the UML model, expressed
in our example by the stereotype 〈〈 secrecy 〉〉 on the variable m of the Responder

class, is translated into the never claim construct in the Promela code, saying
that the adversary should never get to know the secret values. It defines a process
which runs in parallel with the rest of the system and monitors this property.
The never claim for our example is presented in Fig. 9.

Verification results For space restrictions we cannot include the full Promela
code for our example. It can however be downloaded from [UML]. Spin completes
verification of this simple example within a minute after detecting a flaw in the
protocol. Part of the Spin output is shown in Fig. 11, the complete verification

loop { do this { read message from Bob

send it to Alice

analyze and save the message }

or this { generate a message from knowledge

send it to Bob }

or this { read message from Alice

send it to Bob

analyze and save the message }

or this { generate a message from knowledge

send it to Alice } }

Fig. 10. Example Adversary



Depth= 80 States= 122065 Transitions= 165114 Memory= 22.422

pan: claim violated! (at depth 82)

pan: wrote pan_in.trail (Spin Version 4.1.1 -- 2 January 2004)

Fig. 11. Fragment of the Spin output

result also can be found at [UML]. In the attack found in this simple example,
the adversary sends his own key to Bob, pretending to be a legitime protocol
participant, and receives back the secret value, encrypted under the key. The
adversary can easily decrypt the message and obtain the plain text secret value.
If we restrict the adversary from writing messages to the communication link,
another attack is still found: the adversary records the key passed from Alice to
Bob in the first protocol step, and uses it to decipher the message in the second.

As part of the verification process, Spin produces a trail file, which records
the sequence of actions of the potential attack. This information can be used by
the system developer to improve the protocol.

Related Work There are several tools for automated verification of UML mod-
els. The vUML Tool [LP99] analyzes the behavior of a set of interacting objects,
defined in a similar way. The tool can verify various properties of the system,
including deadlock freeness and liveliness, and find problems like entering a for-
bidden state or sending a message to a terminated object. The HUGO Project
[SKM01] checks the behavior described by a UML Collaboration diagram against
a transitional system comprising several communicating objects; the functional-
ity of each object is specified by a UML Statechart diagram. Work on how to
use XMI to provide tool support for UML includes [Ste03] (including an exam-
ple using the Edinburgh Concurrency Workbench for analyzing UML models).
[CBC+01] applies model checking to the formal verification of concurrent object-
oriented systems, using the model checker SPIN. It uses an extension of the SPIN
notation Promela with additional primitives needed to model concurrent object-
oriented systems, such as class definition, object instantiation, message send, and
synchronization. [EKHL03] presents automated verification of UML models us-
ing the model-checker FDR. [CRS04] presents a simulation framework for UML
models based on a UML semantics using Abstract State Machines (ASMs).

To our knowledge, none of the existing bindings of UML to model checkers
can be easily extended to analyze UMLsec models. The first reason is the support
for security constructs. The second issue is the translation of complex data types,
which is necessary for supporting the cryptography extension.

There is an increasing interest in using UML for the development of security-
critical systems. For example, [KRFL04] describes an approach for specificating
role-based access control policies in UML design models. It allows developers to
specify patterns of violations against the policies. [BP04] presents an approach
for the specification of user rights using UML. The approach is based on a
first-order logic with a built-in notion of objects and classes with an algebraic



semantics and can be realized in OCL. [HW04] defines a Security assessment
Object Language to specify security requirements in UML.

4 Conclusion and Future Work

We presented work to support model-based development using UML by provid-
ing tool-support for the analysis of UML models against difficult system require-
ments. We described a UML verification framework supporting the construction
of automated requirements analysis tools for UML diagrams which is connected
to industrial CASE tools using XMI. As an example for its usage, we presented
verification routines for verifying UMLsec models. Their aim was firstly to con-
tribute towards usage of UMLsec in practice. Secondly, the verification frame-
work should allow advanced users of the UMLsec approach to themselves im-
plement verification routines for the constraints of self-defined stereotypes. We
focussed on an analysis plug-in that utilises the model-checker Spin to verify
systems which may use cryptographic algorithms.

The tools we presented are used in industrial projects involving a car man-
ufacturer, a bank, and a telecommunications company. Several security design
weaknesses could be demonstrated which have lead to changes in the designs of
the systems that are being developed.

The verification framework has proven to be sufficiently flexible and expres-
sive to support analysis plug-ins for a variety of checks. With respect to the
tool-binding to the Spin model-checker presented here the Promela code that is
generated consists to a large extent of general definitions and security analysis
machinery which are always present. Thus the size and complexity of the code
scale sufficiently well with increasing size of models. Although we focused on a
core definition of the diagrams we used, the tools can be extended to support
more complex features. The tools presented here can be downloaded from [UML]
as open-source. A support mailinglist for users and developers is available.

In future work, our usage of model-checking can be further optimized in
performance to deal with the state explosion problem inherent in model-checking;
additionally, we work on the usage of automated theorem provers. We aim to
to include feedback from the model checker back into the UML model. Also,
we aim to further support extensibility of the approach by allowing advanced
users to define stereotypes, tags, and first-order logic constraints which are then
automatically translated for verification on a given UML model.

Acknowledgments Fruitful collaborations with about 25 students performing
Masters and Bachelors theses and study projects on the construction and use of
the UMLsec tools are very gratefully acknowledged; see [UML] for details. Spe-
cial thanks go to Alexander Knapp for very helpful explanations on his work.

References

[BP04] R. Breu and G. Popp. Actor-centric modeling of user rights. In Wermelinger
and Margaria [WM04], pages 165–179.



[CBC+01] Seung Mo Cho, Doo-Hwan Bae, Sung Deok Cha, Young Gon Kim,
Byung Kyu Yoo, and Sang Taek Kim. Applying model checking to concurrent
object-oriented software. In ISADS 1999, pages 380–383. IEEE Computer
Society, 2001.

[CRS04] A. Cavarra, E. Riccobene, and P. Scandurra. A framework to simulate UML
models: moving from a semi-formal to a formal environment. In SAC, pages
1519–1523. ACM, 2004.

[Dir02] R. Dirckze. Java Metadata Interface (JMI) API 1.0 Specification. Avail-
able at http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html,
June 2002.

[EKHL03] G. Engels, J. Küster, R. Heckel, and M. Lohmann. Model-based verification
and validation of properties. Electr. Notes Theor. Comput. Sci., 82(7), 2003.

[Gen03] Gentleware. http://www.gentleware.com (February 2004), 2003.
[HJ03] S. Höhn and J. Jürjens. Automated checking of SAP security permissions.

In 6th Working Conference on Integrity and Internal Control in Information
Systems (IICIS), Lausanne, Switzerland, November 13–14, 2003. IFIP, Kluwer.

[HMR+98] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch.
Tool supported specification and simulation of distributed systems. In In-
ternational Symposium on Software Engineering for Parallel and Distributed
Systems, pages 155–164, 1998.

[Hol03] G. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.
[HW04] S. Houmb and R. Winther. Security assessment object language (SOL). Soft-

ware and Systems Modeling, 2004. Special issue on the CSDUML workshop,
to be published.

[Jür02] J. Jürjens. UMLsec: Extending UML for secure systems development. In J.-
M. Jézéquel, H. Hußmann, and S. Cook, editors, UML 2002 – The Unified
Modeling Language, volume 2460 of LNCS, pages 412–425. Springer, 2002.

[Jür04] J. Jürjens. Secure Systems Development with UML. Springer, 2004.
[KRFL04] D. Kim, I. Ray, R. France, and Na Li. Modeling role-based access control

using parameterized UML models. In Wermelinger and Margaria [WM04],
pages 180 – 193.

[LP99] J. Lilius and I. Porres. Formalising UML state machines for model checking.
In R. France and B. Rumpe, editors, UML’99, volume 1723 of LNCS, pages
430–445. Springer, 1999.

[Mat03] M. Matula. Netbeans Metadata Repository (MDR). Available from
http://mdr.netbeans.org, 2003.

[Obj02] Object Management Group. OMG XML Metadata Interchange (XMI) Spec-
ification. Available at http://www.omg.org/cgi-bin/doc?formal/2002-01-01
(February 2004), January 2002.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21:120–126,
1978.

[SKM01] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines and
collaborations. In S.D. Stoller and W. Visser, editors, Workshop on Software
Model Checking, volume 55 of ENTCS. Elsevier, 2001.

[Ste03] P. Stevens. Small-scale XMI programming; a revolution in UML tool use?
Journal of Automated Software Engineering, 10(1):7–21, 2003. Kluwer.

[UML] http://www4.in.tum.de/̃ umlsec.
[WM04] M. Wermelinger and T. Margaria, editors. 7th International Conference on

Fundamental Approaches to Software Engineering (FASE), volume 2984 of
LNCS. Springer, 2004.


