
Preserving Validity of Batch-job Nets
under Change at Run-time

Chris Apfelbeck, Martin Fritz
Custom Solution Development

Application Services Capgemini
Düsseldorf, Germany

{chris.apfelbeck,martin.fritz}@capgemini.com

Jan Jürjens∗†, Johannes Zweihoff†
∗Fraunhofer ISST, Dortmund, Germany
†Chair of Software Engineering

Technical University of Dortmund
Dortmund, Germany

{jan.jurjens,johannes.zweihoff}@cs.tu-dortmund.de

Abstract—In this paper, we develop an approach to preserve
validity of executable batch-job specifications during changes
at run-time based on Petri-nets. The approach in particular
supports changing batch-job specifications while they are being
executed, which makes it particularly important to ensure that
the change preserves the critical properties. The approach
supports verification of the batch-job specifications that are
subject to change against these properties and correction of
those batch-job specifications that become invalid by the change.
The developed approach was implemented and validated in an
industrial application context.

I. INTRODUCTION

Changes made to software systems and architecture at
run-time are challenging and critical because errors have an
immediate impact on the system behavior [1]. If such an
error acts unrecognized in a presently executed system, this
can be a significant risk. Therefore it is essential to validate
changes to be done before they are carried out to prevent errors
from execution. This is particularly challenging if the changes
should be carried out while the system is being executed. This
raises the question how can we apply changes to a running
system without putting it at risk.

We consider this problem in the context of batch processing
(BP). BP implements the automated handling of data and
tasks without the need of an interacting user. The processing
can be done without supervision and independently from
working hours in an enterprise. BP was first used in times of
centralized computing systems and allowed a high utilization
of the requested computing resources [2]. But BP is still
of importance because of additional advantages like cost
reduction, application efficiency, and process integration [3].

The approach for batch processing and the specification
of the batches used in this paper supports in addition to
processing of batch-jobs also the representation of batch de-
pendencies. These dependencies are for example concurrency,
mutual exclusion or serial sequences of batches. The modeling
of such dependencies is formally done by the modeling
notation of Petri-nets [4], which is extended and adjusted for
modeling batch dependencies, resulting in so-called batch-
nets. An instance of the batch-net runs on a server and has
a state in accordance with the status of the scheduled batches.

In order to avoid having to restart the instance when a
change has to be made, one needs to let the change take
place at while the batch instance is being executed. However,
changes may lead to unintentional side effects (e.g. a deadlock
which may stop the whole system). It is therefore important to
validate the changed batch-net before it is synchronized with
the server instance.

In this paper, we present an approach which supports a
validation of the change of the instance at run-time. The
validation and its result depends on the current state of the
batch-net. In case of a negative result, the approach provides
a suggestion for how to repair the invalid batch-net and its
current state, which makes sure that a valid batch-net is
running on the server even after the change.

The approach presented here has been implemented and
validated in an industrial application context in a large con-
sulting and IT-service provider, namely Capgemini. Capgemini
uses QuasarBatch [5] in several of its software development
projects, to model and organize batch jobs. QuasarBatch is part
of the Capgemini Standard Platform TECBASE. TECBASE
consists of a number of reusable components, such as logging,
persistence and security, embedded in a standard architecture
used in productive environments. QuasarBatch is a proprietary
implementation of the concept of batch-processing utilizing
the concept of Petri-nets in accordance with Quasar [5].
Quasar itself is a programming language independent collec-
tion of concepts, ideas, terminology, interfaces and compo-
nents. In addition to the processing of batch-jobs, QuasarBatch
also supports the representation of batch dependencies.

The remainder of the paper is structured as follows. In
section II we define the batch-net modeling notation based on
Petri-nets. We then identify critical properties in the context
of batch-processing models in section III. For each of these
properties, we show how to check that a given change does
not violate the property. In section IV, we present an approach
which supports repairing a batch-net, which has become
invalid through a change. We then validate our research in
section V and embed it in the context of related work in
section VI. In section VII we come to a conclusion and discuss
possible future research.

II. BATCH-NETS

Petri-nets: We recall the definition of Petri-nets (cf. [4]).

Definition 1. A Petri-net is a 6-tuple,
PN = (P, T, F,K,W,M0) where:
P = {p1, · · · , pm} is a finite set of places,
T = {t1, · · · , tn} is a finite set of transitions,
F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
K : S → N ∪ {∞} : capacity of the places,
W : F → N : is a weight function,
M0 : S → N0 : is the initial marking,
P ∩ T = ∅ and P ∪ T 6= ∅.
A net structure N = (P, T, F,K,W) without specific initial
marking M0 is denoted by N ; a Petri-net with a given initial
marking by (N,M0). A marking of the net is denoted by M .
M(N) denotes the set of all markings on N .

A transition t of the net N marked with M can fire if and
only if the following inequalities hold:

∀s ∈ •t : M(s) ≥W (s, t),

∀s ∈ t• : M(s) +W (t, s) ≤ K(s).

Here •t := {p|(p, t) ∈ F} denotes all incoming places of t
and analogous t• := {p|(t, p) ∈ F} all outgoing places. M(s)
is the number of tokens on the place s with respect to a given
marking M . If a transition t is able to fire, we call it enabled
and denote it by M [t〉. When a transition fires, tokens are
created and consumed in the outgoing and incoming places
according to the weight function on the arcs and the capacity
of the places. The transformation of the marking from M to
M ′ caused by the firing of transition t is denoted by M [t〉M ′.
The new marking M ′ is defined as follows:

M ′(s) =

M(s)−W (s, t), if s ∈ •t\t•,
M(s) +W (s, t), if s ∈ t • \ • t,
M(s)−W (s, t) +W (t, s), if s ∈ t • ∩ • t,
M(s), else.

If M ′ is obtained from M by transformation t, then we also
use Mt as notation for the new marking M ′. Furthermore a
resulting marking is defined for sequential firing of transitions.
Let w = (ti)i∈{1,··· ,n} ⊆ T be a finite sequence of transitions,
then M

′′ ∈ M is a resulting marking of M0 under w if the
following holds:(

w = � ∧M
′′
= M0

)
∨(

∃M ′ ∈M(N) : M0[t1, · · · , tn−1〉M ′ ∧M ′[tn〉M
′′
)
,

where � is the empty transition. In this case w is called
enabled, M0[w〉 for short, and we call w a firing sequence.
The set of all firing sequences is denoted:

Occ(N,M0) := {w|M0[w〉}.

The set of all reachable markings starting from the initial
marking M0 in the Petri-net N is denoted by

[M0〉N := {M0w|w ∈ Occ(N,M0)}.

If it is clear which Petri-net is meant, we also write more
briefly [M0〉. A transition t of a Petri-net is called potentially
firable, if there is a resulting marking from M0 so that t is
enabled. If a transition t is not potentially firable, i.e. there is
no marking in [M0〉 so that t is enabled, we denote t as dead.

An important property of a Petri-net for our approach is the
existence of a home state:

Definition 2. With home state we denote a marking M ∈ [M0〉
which is reachable from any other marking M ′ ∈ [M0〉:

∀M ′ ∈ [M0〉 : M ∈ [M ′〉.
We will also need the concept of a self-loop:

Definition 3. A place p and a transition t form a self-loop, if
p is both incoming and outgoing place of t.

Batch nets: To model batch dependencies with Petri-
nets, we need some extensions regarding the scheduling of
batch jobs. The idea is to couple the execution of a batch job
to the firing of a transition. Additionally, we need to limit
the execution of a batch job to specific time points (i.e. the
transition may only fire at predefined time points), which is not
supported by ordinary Petri-nets. The modification we made to
Petri-nets is the introduction of special batch transitions, timer
places and conditional arcs. The timer places ensure that we
have full control of the scheduling of the batch-net if and only
if the timer places do not have incoming arcs. This kind of
extended Petri-net is called a batch-net in the following. This
extension is used within the industrial environment TECBASE
for modeling batch-job dependencies using batch-nets. We
now give a formal definition as an extension of Petri-nets
which reflects the above listed considerations.

Definition 4. A batch-net is a 7-tuple,
B = (P ∗, T ∗, F ∗, C,K,W,M0) where:
P ∗ = P ∪ PT is the set of all places with P = {p1, · · · , pm}
the set of ordinary places and PT = {pT1 , · · · pTn} the set of
timer places mentioned above.
T ∗ = T∪TB is the set of all transitions with T = {t1, · · · , tk}
the set of ordinary transitions and TB = {tB1 , · · · , tBl } the set
of batch transitions.
F ∗ ⊆ (P ∗ × T ∗) ∪ (T ∗ × P) is the set of all arcs.
C = F ∗ → X : mapping of arcs to a set X = {x1, · · · , xj}
of conditions.
K,W,M0 : compare Def. 1.
P ∗ ∩ T ∗ = ∅ and P ∗ ∪ T ∗ 6= ∅.

We now explain the semantics of these modifications.
A timer place can generate tokens autonomously (in contrast

to an ordinary place). This happens in regular predefined time
intervals using the format used to define cron-jobs in Unix
[6]. This format allows the specification of the minutes, hours,
days of a month, months, and working days at which the place
should create a token (for which wildcards (*) can also be
used). Using this format, one can define time points, sets of
time points, and time intervals (see table I for examples). In
the graphical representation of the batch-net, the timer place
will be annotated with the letter “T” (see figure 1a).

m h D M W meaning
* * * * * every minute, every day
0 23 * * 6 every Saturday 11 p.m.
0, 30 12-15 * * 1-5 every working day, every half our

from 12 a.m. to 3:30 p.m.

TABLE I: Example: Definition of time intervals (m= minute,
h=hour, D=day of month, M=month, W=weekday.

Additionally to the ordinary transitions we introduced spe-
cial batch transitions. The behavior of such transitions when
firing is similar to classical transitions. When firing, a batch
transition additionally starts a batch job. The tokens in the
outgoing places will be created only when the batch job is
done. In contrast, classical transitions create and consume
tokens without delay. In the graphical representation the batch
transition will be annotated with the letter “B” (see figure 1a).

In batch-nets it will be necessary to react on the result
of a batch execution. For example the execution of a batch
job could lead to an error, or the batch job might take too
much time. Therefore we extended the Petri-net concept by
conditional arcs, represented by the Condition Function C in
Definition 3, which maps every arc to a set of conditions.
Transitions with outgoing conditional arcs are called condi-
tional transitions (see figure 2a for an example).

Remark 1. In this paper we only make use of unbounded ca-
pacities in the batch-nets: K(p∗) =∞ ∀p∗ ∈ P ∗. The reason
is that the analysis techniques described in section III need
this precondition. Murata [4] describes a transformation from
Petri-nets with bounded capacity to Petri-nets with unbounded
capacity. In this way it is ensured that the precondition is not
a restriction to our approach.

Transformations to ordinary Petri-nets: To check the
properties to retain under change, we transform the batch-nets
to ordinary Petri-nets in order to check the properties with
known algorithms for Petri-nets. As we will see, these trans-
formations are no restriction of generality for our approach.

First we determine how to treat the timer places when
analyzing the batch-net. Timer places create tokens in regular
time intervals. At the initial marking M0, the timer places are
empty (see figure 1b). If timer1 was an ordinary place, the

(a) Exemplary timer place and batch tran-
sition

(b) Original batch-net

(c) Transformation A

(d) Transformation B

Fig. 1: Batch-nets and transformations to Petri-nets

transition t1 would be dead. Because timer1 is a timer place,
after a certain time a token will be created so that t1 is able
to fire. To simulate in an ordinary Petri-net, that at a given
timer place a token can be created at a certain moment, we
put a transition without incoming arcs right before the timer
place. Such a transition can fire at every moment and thus
creates a token on the timer place. In the following definition
we formalize this method and denote it by transformation A
(compare figure 1c).

Definition 5. Transformation A creates a transition t with
t• = s for every place s which represents a timer place in the
batch-net. Furthermore it defines M(s) = 0 for every such s,
where M is the current marking of the batch-net.

An alternative way to transform a timer place is to replace
it by an ordinary place and put a token on it. In this way
the transition t1 is also able to fire at every moment, as
desired. This second transformation is necessary since not
every property-related analysis leads to a correct result with
both transformations. In the following definition we formalize
this alternative method and denote it by transformation B
(compare figure 1d).

Definition 6. Transformation B substitutes every place s which
represents a timer place in the batch-net by an ordinary one.
Furthermore it defines M(s) = 1 for every such s, where M
is the current marking of the batch-net.

Next, the transformation of batch transitions is very simple,
because we merely regard the batch transition as an ordinary
one. However, we need to take into account that possibly
batches are currently being executed at the transition. As a
consequence, the tokens in the incoming place have already
been consumed and the tokens in the outgoing place have not
been created yet. Therefore, a corresponding number of tokens
is created in all outgoing places of active batch transitions.
This way, we can analyze batch transitions even at run-time.

Third, we consider conditional arcs, which are not included
in ordinary Petri-nets. For every arc of a conditional transition
we create a new Petri-net. This net is a clone of the original
net, except that only one of the conditional arcs is included in
each net (as an ordinary arc) and the other arcs are removed.
We call this process isolating and the resulting nets virtual
nets. Figure 2 illustrates the isolation of arcs a, b and c. If in
the virtual net several conditional arcs occur, the process must
be performed recursively for every virtual net already created.
For each additional transition with n outgoing conditional arcs,
the number of virtual nets to be created is thus multiplied
by n. When analyzing a batch-net (as explained in the next
section), every virtual net is checked with respect to the
regarded property and subsequently the results are put together
to obtain the result for the batch-net. For each property, it will
be easily seen, that if the property holds for each virtual net it
holds consequently for the batch-net. In this way we can use
analysis techniques known for Petri-nets, to analyze batch-nets
for critical properties.

(a) Original batch-net (b) Virtual net with cond. arc (c) Virtual net with cond. arc (d) Virtual net with cond. arc

Fig. 2: Conditional arcs and virtual nets

III. BATCH NETS: CRITICAL PROPERTIES

We now present six critical properties a batch-net has to
fulfill initially and under change, to make sure, the batch-job
it specifies is executed correctly and consistently, even under
change. For each property we explain how to check it. In case
of invalidity we apply countermeasures which we present in
the next section. The below introduced critical properties have
arisen from application context over time and where given by
the industrial partner. It has been found that users who are
not experts in batch-process modeling, often make mistakes
concerning these properties. That is the reason why we picked
precisely these ones.

E1: No-incoming-arcs-on-timer-places: The timerplaces
must not have incoming arcs: An incoming arc means, that
other transitions can create tokens in that timer place, which is
not desired, since it counteracts the idea of a scheduled batch-
net. This property (named E1) follows immediately from the
definition of the arcs F ∗ of the batch-nets:

F ∗ ⊆ (P ∗ × T ∗) ∪ (T ∗ × P).

Nevertheless, after a batch-net is changed, we need to check
that this property still holds, which is straightforward since we
only have to check every timer place on its own for whether
there are incoming arcs or not. For that reason, we do not
need any transformation defined in the previous section, when
analyzing for this property.

E2: Incoming-arc-for-transitions: In a batch-net, every
transition should have at least one incoming place.

∀t∗ ∈ T ∗ ∃ p∗ ∈ P ∗ : (p∗, t∗) ∈ F ∗

A transition without incoming place can fire at any time,
which contradicts the basic idea of a batch-net. We refer to
this property as E2 in the following. Property E2 is easy to
check by regarding every transition one after the other and test,
whether there is at least one incoming place. As a conclusion,
we do not need any transformation to check for property E2.

E3: No-dead-transitions: An important goal in batch-net
modeling is to not have any dead transitions in the net, which
could lead to a dead-lock of the whole batch-net. The property
E3 denotes the absence of dead transitions:

t∗ ∈ T ∗ ⇒ ∃M ∈ [M0〉 : M [t∗〉.

To analyze this property in a batch-net, we first transform
away the timer places using transformation A. Thus we ensure
that every reachable marking is considered when searching for
dead transitions, since the new created transition is able to
fire infinitely. To analyze batch-nets with conditional arcs, we

construct a virtual net for every conditional arc as explained in
section II. For every virtual net, a coverability tree is computed
to determine the dead transitions in the virtual nets [4]. A
virtual net in which a transition t is not dead exists, if and only
if, there is a firing sequence in the batch net, which enables
the transition t, assuming that the affiliated condition holds.
The other way around, we conclude that a transition which is
dead in every virtual net, is dead in the original net (for the
given marking). Thus we can determine the dead transitions
in batch-nets using approaches for ordinary Petri-nets.

E4: Absence-of-conflicts: A conflict in Petri-nets arises,
when several transitions are activated but not every transition
is able to fire. After activating one particular transition, the
others could be dead, which should be prevented as mentioned
above. More generally, batch-nets should model deterministic
behavior. Instead, conditional arcs are the appropriate way to
split the control flow and to react to several conditions. Thus
we aim to exclude conflicts as formalized by property E4:

∀p∗ ∈ P ∗ with
∣∣{t∗ ∈ T ∗

∣∣(p∗, t∗) ∈ F ∗}
∣∣ > 1 :

p∗ is part of a self-loop with t∗ ∀t∗ with ∃ (p∗, t∗) ∈ F ∗.

To be able to search for conflicts in a batch-net using the
corresponding methods for Petri-nets, we transform the timer
places to ordinary ones, using either transformation A or B
and remove the conditions from the conditional arcs. The
absence of conflicts is checked by determining the number of
outgoing transitions for every place. If it is greater than one,
it is checked whether the transition is in a self-loop with the
corresponding place. If that is not the case, a conflict exists.
For this analysis technique it is clear, that it doesn’t matter
which transformation we use since the transformation has no
influence on the number of outgoing arcs of an ordinary place.

E5: Bounded: Since we want the batch-net to stop after
all batch jobs are done, it should not be possible to accumulate
tokens in a place, because this could lead to a non-terminating
batch-net. Hence, we require the batch-net to be bounded, as
formalized by property E5:

∀p∗ ∈ P ∗ ∃ k ∈ N :
∣∣M(p∗)

∣∣ ≤ k ∀ M ∈ [M0〉.

The normal run of a batch-net is as follows: The batch-net is
started and works off every single batch job in one run. As a
consequence, not more than one token is needed at any place.
This is the reason, why we use transformation B for the timer
places when analyzing for property E5. The only exception
are timer places, since an unbounded number of tokens can
be created there, according to the definition of a timer place

(this corresponds to a queue). But this fact does not influence
the analysis process for this property and thus, the choice for
transformation B is satisfied. To deal with conditional arcs, the
virtual nets are computed and tested one by one for property
E5. If all virtual nets are bounded, then the original net is
bounded too. Assuming, the batch-net B is unbounded. Then,
a virtual net exists which is unbounded, because there must be
a subnet, in which infinitely many tokens can be accumulated.
Vice versa, we see that the original net is bounded, if all virtual
nets are bounded. The previous property is closely linked to
the next one.

E6: Home states: In every batch-net, there should exist a
marking which characterizes that all batch jobs are done and
that the batch-net waits for new tokens in the timer places.
For this, we can use the concept of home states introduced
in section II. We need a special home state, where the batch-
net will cease activity and waits for new tokens in the timer
places. The property E6 formalizes the existence of such a
state:

∃ home state M,∀p ∈ P with M(p) > 0 : p• = ∅

Home states only exist if the batch-net is bounded. Hence
we only have to analyze the batch-net for home states if it
is bounded. Thus we use transformation B to remove timer
places just as for the analysis for property E5. A home state,
which is found in every virtual net, is a home state in the
original batch-net. To calculate home states in the batch-net,
we used the algorithm presented in [7]. The precondition for
this algorithm is a bounded Petri-net. This is the reason why
the calculation of home states follows a successful analysis
for property E5 (Bounded).

A beneficial consequence from property E6 is the fact, that
no undesired deadlock can exist in the batch-net. Because of
the definition of a home state M , marking M is reachable from
any other marking of the batch-net. If only one home state
exists, this home state actually is a deadlock. But since we
are waiting for new impulses from the timer places, when the
home state is reached, the deadlock is desired. We formalize
the absence of deadlocks:
∀M ∈ [M0〉 such that M is not a home state,∃t ∈ T ∗ : M [t〉

The above listed six properties, which were given by the in-
dustrial partner, are the necessary ones to ensure the operation
of the batch-nets in the application context. Other properties
are considerable and can be integrated in our approach we
present in the following.

IV. RESTORING CRITICAL PROPERTIES
AFTER CHANGE

In this section, we show how to ensure that the run-time
changes to the batch-net preserve the critical properties. A
particular challenge here is, that the changes are applied at run-
time, while the batch-net is executed on the server. Thus, we
have to make sure that we transmit only changes to the server
instance that do not violate the properties. For every critical
property, we define property restoring transformations so that
the changes can take place without violating the property.

Rollback to a previous safe marking: A first measure to
get the changed batch-net in a valid state, is to reset the net,
so that it is executed from a previous marking, which satisfies
the critical properties. For this, the firing of the transitions is
stepwise reversed, according to the history of the batch-net,
and the resulting markings checked for the critical properties.
If a previous marking exists, so that every property is fulfilled,
the marking is suggested to the user as a resolving measure.
We call this process rollback to a marking M . Consider the
example in figure 3a. In this simple batch-net, a branch is
added at run-time (places and transitions with bold lines) so
that transition t4 is not able to fire any more. After the
rollback (see figure 3b), transition t4 can again be fired.

E1: Correct invalid timer places: If property E1 is not
fulfilled there is at least one timer place with an incoming arc.
We provide a transformation, which restores this property by
redirecting these arcs to a dummy place (see figure 4 for the
corresponding algorithm). This ensures the correct functioning
of the timer place, because the timer place is now able to create
tokens at a given time. Furthermore, the redirected arcs now
create tokens on the dummy-place, which can be taken into
account in an analysis.

E2: Correct invalid transitions: If there is a transition
without incoming arc, property E2 is violated. To correct this
violation, we provide a transformation which creates a place
with a token on it and connects it with an arc to the invalid
transition. The corresponding algorithm is shown in figure 5.

E3: Avoid dead transitions by creating tokens: This
transformation is applied, if dead transitions are found in the
changed version of the batch-net. Using a heuristic method, the
transformation creates tokens on a minimal set of places, so
that the dead transitions are enabled. We call these places acti-
vating places. For reasons of simplicity, we only regard batch-
nets with arcs of capacity 1 and we do not regard conditional
arcs separately in the following explanation. Furthermore, we
assume that the batch-net is free of conflicts.

To motivate the algorithm which finds the minimal set of
places, consider figure 6a. It is easily seen, that both t1 and
t2 each lack a token for firing. A token in s1 and firing of

(a) Bold places and transitions are added,
t4 is dead

(b) The firing of t2 and t1 was reversed,
now t4 is potentially firable

Fig. 3: Rollback to a marking M

for all pt ∈ PT with ∃t∗ ∈ T ∗ so that (t∗, pt) ∈ F ∗do
Place p = new Place
P ∗ = P ∗ ∪ {p}

for all t∗ ∈ T ∗ with (t∗, pt) ∈ F ∗do
F ∗ = F ∗ ∪ {(t∗, p)}
F ∗ = F ∗\{(t∗, pt)}

Fig. 4: Create dummy place

for all t∗ ∈ T ∗ with @p∗ ∈ P ∗ so that (p∗, t∗) ∈ F ∗ do
Place p = new Place
F ∗ = F ∗ ∪ {(p, t∗)}
M(p) = 1

Fig. 5: Correct invalid transitions

t1 creates the token on s2 needed for firing t2. That is the
reason why it suffices to create a token on s1 to make all
transitions potentially firable.

The general method to determine the minimal set thus
traverses from the dead transitions to the root places. In figure
6b the situation is a bit more complicated. Here, we have to
trace all dead transitions back to the reachable root places. In
figure 6c, we see the reachability trees of all dead transitions.

(a) Exemplary net for the marking gener-
ating algorithm

(b) Another exemplary net for the marking
generating algorithm

(c) Reachability tree from dead transitions
to root node in a Petri-net

(d) Same net as 6b but with token on s4

Fig. 6: Avoidance of dead transitions by creating tokens

Input: Petri-net PN, set of dead transitions Tt

Output: set of the root nods of the reachability trees
procedure C r e a t e T r a c e T r e e s (PN, Tt)
W ← ∅
for all t ∈ Tt do

if Tt ⊆W then
return W

end if
W ←W ∪ CreateTree(PN, t, ∅)

end for
return W

end procedure

Fig. 7: Computing the reachability trees

Input: Petri-net PN, current transition k, visited places Pb

Output: node of a tree
function C r e a t e T r e e (PN, k, Pb)

if k ∈ Pb then
return ∅

end if
if • k = ∅ then

return k
else

for all k∗ ∈ •k do
if k∗ ∈ P ∧M(k∗) > 0 then

return ∅
else k∗ ∈ P then

Pb ← Pb ∪ k∗

end if
add C r e a t e T r e e (PN, k∗, Pb) as childnode to b

end for
return b

end if
end function

Fig. 8: Computing single tree starting from a particular place

To identify the activating places from the reachability trees,
we unite the leaves of the trees. In this case, this yields the
places s1 and s4.

This method works for batch-nets without loops. If the
batch-net contains loops, we have to take this fact into account
when computing the reachability trees. In this case, it suffices
to create one token at a place within the loop.

In figure 7, 8, and 9 we give the algorithms explained above,
as pseudo-code.

Since we regard batch-nets during their execution, we need
to consider batch-nets in which tokens are already created,
which may reduce the number of tokens still to be created.

This is the situation in figure 6d. t3 and t4 are now
potentially firable and transition t2 just needs a token on place
s2 to be potentially firable. This fact is taken into account in
the algorithm shown in figure 8.

E4: Create self-loops to eliminate conflicts: If a place
p is in conflict with several transitions, the critical property
E4 is violated. Several transitions are activated, but not every
transition is able to fire. We resolve this conflict by providing
a transformation which integrates the affected transitions into
a self-loop with the place p. In this way E4 is restored and

Input: Petri-net PN, set of dead transitions Tt

Output: set of activating places Pa

procedure D e t e c t A c t i v a t i n g P l a c e s (PN, Tt)
W ← ∅
Pa ← ∅
W ← CreateTraceTrees(PN, Tt)
for w ∈W do
Pa ← Pa ∪ leafs of w

end for
Pa ← Pa\ leafs on a loop
return Pa

end procedure

Fig. 9: Determining the activating places

for all p∗ ∈ P ∗ :
∣∣{t∗ ∈ T ∗∣∣(p∗, t∗) ∈ F ∗}

∣∣ > 1 do
for all such t∗ do
F ∗ = F ∗ ∪ {(t∗, p∗)}

Fig. 10: Create self-loops for eliminating conflicts in batch-net

the batch-net is free of conflicts. The corresponding algorithm
is shown in figure 10.

E5: Determine loops to ensure a bounded batch-net:
To motivate the transformation to restore E5, we consider a
simple example for an unbounded batch-net (figure 11a). It
is easily seen that t1, s3, t2 and s1 form a loop. s2 is an
outgoing place of transition t1 which is located in the loop. In
this way, an infinite set of tokens can be created on the place
s2. We consider this in the following definition and theorem.

Definition 7. Given a Petri-net P , a simple loop L = (S
′
, T

′
)

is a subset S
′ ⊆ S such as T

′ ⊆ T with ∀t ∈ T
′
:
∣∣ • t∣∣ =

1 ∧ •t ⊆ S
′

and ∀s ∈ S
′
: ∃t ∈ •s : t ⊆ T

′
.

Because every simple loop L can iterate infinitely, an infinite

(a) Simple loop (b) Broken up simple loop

(c) Example of home state pre-
venting conditional arc

(d) Reunification of the arcs
leads to home state

Fig. 11: Examples for restoring critical properties

Input: Batch-net B
Output: Set of all loops Wp

procedure DETERMINEALLLOOPS(B)
visited places Pv ← ∅
temporal set of loops W ∗

p ← ∅
Wp ← ∅
while Pv 6= P do
p← random place in P\Pv

W t
p ← DETERMINELOOPS(B, ∅, p)

if W t
p 6= ∅ then

Wp ←Wp ∪W ∗
p

Pv ← Pv ∪ all places in W ∗
p

else
Pv ← Pv ∪ p

end if
end while
return Wp

end procedure

Input: Batch-net B, current path w, current place p
Output: Set of loops depending on w and p

procedure DETERMINELOOPS(B,w, p)
if s ∈ w then

return path from p to the last place of path w
end if
if | • p| = 0 then

return ∅
end if
for all t ∈ •p do

if | • t| > 1 then
return ∅

else
w ← extend w to • t
return Ws ∪ DETERMINELOOPS(B,w, p)

end if
end for

end procedure

Fig. 12: Determining loops that have to be broken up

number of tokens can be generated on every place leaving the
loop. That is what is formalized in the following theorem.

Theorem 1. Given a Petri-net P such as a simple loop L =
(S

′
, T

′
). Then in every place s ∈ S\S′

with ∃t ∈ •s : t ∈ T
′
,

an unbounded number of tokens can be created.

The algorithm, which is based on this theorem, iterates over
the places till for every place it is determined, whether it
belongs to a loop or not. If all loops are discovered, every loop
will be broken up in a random place. For this, the incoming arc
of this place is deleted. The randomly chosen place is trans-
formed into a timer place, which is provided with a random
time interval. In this way, an unbounded number of tokens
can still be created on the outgoing place. We remark, that
the batch-net created this way is not necessarily semantically
identical. In the implementation of this countermeasure, the
user will be informed about induced semantic changes. For
the above example, the broken up loop is shown in figure
11b. In figure 12, we give the algorithm to determine loops
that have to be broken up.

E6: Determine home state preventing conditional arcs:
In a valid batch-net, conditional arcs are the only possibility

to split the control flow. Accordingly, the conditional arcs may
prevent the existence of a home state. To illustrate this fact, we
consider the net shown in figure 11c. It is easily seen, that the
Petri-net has no home state, because the token on s1 moves,
depending on the condition, either to s2 or to s3. The problem
can be resolved by bringing the two branches together again
(see figure 11d). This transformation is applicable to Petri-nets
where the subnets of the conditional arcs are a sequence of
places and transitions connected each by one arc.

V. VALIDATION OF THE APPROACH

We now demonstrate how we implemented the run-time
change to the batch-net. For this, the algorithms for generation
of conflict resolving measures are embedded in the application
context. They are used in the context of the BatchNet editor
which supports change of batch-net instances at run-time. In
the following, we first present the general structure of the
workflow of the tool for an overview. Then we introduce
the underlying technical components of the application and
conclude with some implementation details about the analysis-
process.

Functional requirements: Once the tool is started, the
user connects to an application server. On this server, an
instance of the batch-net is hosted. When connected, the batch-
net located on the server is imported into the tool and instanti-
ated with the current marking. Now the user can make changes
to the local copy of the batch-net. If the user wants to transmit
the changed net to the server, it is validated with respect to
the properties introduced in section III. If the analysis-process
is successful, the changes are transmitted immediately. If the
analysis-process is not successful, possible conflict resolving
measures are presented to the user, as explained in section
IV. The measures can then be applied or be discarded by the
user. The validation check of the net distinguishes validity with
respect to the initial marking and to the current marking. For
the first case, the changes are stored to the underlying XML-
file. For the second case, the changes are done to the run-time
instance on the server.

Technical components: To illustrate the implementation
in a more fine grained way, we show how the implementation
is subdivided into several components and how they relate to
each other (compare figure 13). The user of the tool interacts
with the BatchNet editor-component. The BatchNet editor
realizes the change to the local copy of the batch-net. It is
synchronized with the Quasar application-component via the
interfaces Read net and Write net of Quasar application. In
this way the batch-net instance with the current marking can
be imported into the BatchNet editor and validated changes
can be written down to the running instance in the Quasar
application. The changes made by the user are validated by the
Validation algorithms-component which provides the Validate
net interface to the BatchNet editor. To analyze the batch-
net instances, it is necessary to transform the regarded batch-
nets to corresponding Petri-nets as explained in section II.
Therefore the PetriNet model-component provides a Convert
from BatchNet interface, so that Validation algorithms works

Fig. 13: Architecture of the tool shown as a UML-component
diagram

primarily on Petri-nets. The batch-net, which is shown to the
user in the BatchNet editor, is exported in the background to
an XML-file according to the BatchNet metamodel. The other
way around, the batch-net instance can be filled with an XML-
file in a proprietary format.

Implementation details: The analysis-process of the
changed batch-net is embedded in three abstract layers.
Namely analyzer layer, comparer layer and feature layer.
The analyzer layer consists of the interface Analyzable,
its abstract implementation AbstractAnalyzer and the
concrete implementations of the abstract class. Analyzable
defines only the method Analyzable.analyze() as
entry point and returns a Result object which contains
information regarding the analysis. In AbstractAnalyzer,
the abstract implementation of Analyzable, the analysis-
process is divided into three steps. First of all the batch-net
is transformed in an ordinary Petri-net by the class
BatchNetTransformation. Several Petri-nets originate
if and only if the batch-net contains conditional arcs. How
batch-nets are transformed into ordinary Petri-nets is defined
in section II. For each of the converted Petri-nets the method
AbstractAnalyzer.analyzeSingleNet(PetriNet
net) is called. This method is abstract, this means that every
concrete subclass of AbstractAnalyzer has to fill this
method with code. This code is the implementation of the
analysis-processes given in section III. At last, the results of
the analysis-processes of the individual nets need to be merged
into one result valid for the original net. This happens in the
method AbstractAnalyzer.aggregateResults().
The method per property is discussed in section III.
The comparer layer is necessary to compare

Fig. 14: A net with a trap

the results of the analysis for the initial and the
current marking. The basis for this is the class
AbstractComparer which is connected with two
objects of type Result. One for the initial marking and
one for the current one. Important in this class is the method
AbstractComparer.getResult(Current-PetriNet,
boolean useInitialMarking). It is implemented by
the subclasses and returns the result of the respective analysis
with the initial and the current marking.
The feature layer is responsible for the interconnection of
the actual analysis-process and the user interface. We do not
consider it in this paper.

Evaluation: While we tested our approach on several
batch-nets, it turned out that it does not work optimal for
batch-nets with traps. A trap is a subset of places P

′ ⊆ P
with P

′• ⊆ •P ′
. Lucidly it is a part of the net where tokens

get in but not out (compare figure 14). The places s1 and
s2 form a trap. If the reachability trees are build from t1
or t2 respectively, t1-s3-t2-s2 is discovered as a loop.
Accordingly on s2 or s3 a token is created as a conflict
resolving measure. Additionally s1 is recognized as activating
place. As a consequence the token on s2 or s3 is not needed
and thus our method does not compute an optimal solution.

Practical validation: Our approach was tested and im-
plemented at Capgemini, a large consulting and IT-service
provider. Part of the IT-services at Capgemini is the devel-
opment of individual software and package-based solutions
within the department of custom solutions development. In
this department the TECBASE was introduced, which uses
the concepts and services for software-architectures provided
by Quasar [5]. Quasar itself is mainly used in a project
for a logistics-service provider. The batch-component, we
presented in this paper, is in use in this application context
to model batch-dependencies based on Petri-nets. This shows
that our approach is not just a theoretical concept but a serious
technique used in productive invironments.

Run-time of the analysis-process: We tested the imple-
mentation of the analysis-process of our approach with several
randomly generated Petri-nets. We measured the time, needed
to compute the countermeasures in dependence of the number
of nodes N and the maximum number of tokens T of a single
place in the Petri-net. Each value listed is the average of ten
test-runs for each configuration of N and T . The configuration
of N and T was chosen according to comparable sizes coming
from real batch-job applications. The Petri-nets were generated
according to the following scheme:

20 40 60 80 100
0

100

200

300

400

500

N

m
s

T=1
T=3
T=5

Fig. 15: Measured run-time in dependence of the number of
nodes N ∈ {10, 50, 100} in the Petri-net

• Every node in the net is randomly chosen to be a place
or a transition.

• Every place gets either no arc or one arc to a random
transition.

• Every transition gets 0 to (N − #transitions) arcs to
randomly chosen places.

• On every place up to T tokens are created randomly.
The measured run-time in milliseconds is shown in figure 15.
In figure 15, we fixed the number of tokens T for each graph,
to show the dependence of the run-time from the number N of
nodes in the Petri-net. By increasing the number of nodes in
the net by an order of magnitude comparable to real batch-job
applications, the run-time rises significantly. The application of
the analyses-process showed, that the run-time of our approach
is short enough to make it applicable to real batch-nets.

VI. RELATED WORK

Similar to our concept of batch-nets, Hanisch defined Petri-
nets with timed arcs in context of batch process control [8],
[9]. In contrast to our approach, he defines timed arcs and not
timed places. The behavioral outcome of this concept is the
same, compared to our definition, but he does not extend Petri-
nets by means of conditional arcs and special batch transitions.
The emphasis lies in the analysis of the extended Petri-net
concept rather than the change at run-time. Chang et al. [10]
map UML activity diagrams with time properties to timed
coloured Petri-nets to model and evaluate real-time systems.

The survey [11] presents modeling techniques for Petri-nets
in different contexts and quantitative and qualitative analysis
of Petri-nets applied to batch processes, as well as supervisory
and coordinate control and planning and scheduling.

Andreu et al. deal with the problem to concurrent operate
with continuous and discrete models [12]. They analyze how
the hierarchical approach, used in discrete manufacturing
systems, can be extended to batch systems. An event generator
is utilized to guarantee consistency between the continuous
model of the process and the discrete model of the plant.

Ghaeli et al. present a heuristic search algorithm for short-
term scheduling of batch plants based on the reachability
tree in timed Petri-nets [13]. Van der Aalst discusses the
use of Petri-nets in the context of workflow management and
introduces workflow management as an application domain for
Petri-nets. He presents results with respect to the verification
of workflows and highlights some Petri-net based workflow
tools [14], [15]. Lloyd and Salleh proposed a design scheme
of the batch process plant modeled by timed Petri-nets [16].

Wrt. change at run-time, [17] considers the dynamic change
bug to support workflow change with an approach for com-
puting a safe change region in a workflow, a specialization of
Petri-nets. This work does not regard the change of a net which
is currently running. Llorens and Oliver utilize reconfigurable
Petri-nets to model and verify dynamic changes to concurrent
systems [18]. A configuration of a software system is repre-
sented by such a reconfigurable Petri-net and a mechanism
is presented which enables the system to change from one
configuration to another. Oreizy et al. present an architecture-
based approach for run-time software system reconfiguration,
highlighting the beneficial role of architectural styles and
software connectors [19].

Compared to the above mentioned approaches, the emphasis
of our approach lies on the change to a batch-net at run-time,
which has not yet been considered by these works.

VII. CONCLUSION

In many application areas, e.g. for logistics-service
providers, competitive pressure leads to the necessity to re-
spond more quickly to changed conditions. That is the reason
why changes to a running instance of a batch-job net had to
be made possible. In this paper we showed that it is feasible to
change the running instance of a batch-net, without introducing
unintentional structures. Because our approach makes use of
the concept of Petri-nets, it can not easily be generalized to
other domains using other concepts. In this paper we presented
six critical properties a batch-net has to fulfill at run-time. For
each property, we presented an algorithm that checks for the
property. The critical properties we derived from domain needs
are preserved under change by suggesting countermeasures to
the user in case of an invalid batch-net. Because our approach
was implemented in a real industrial environment, we ensured
that it is not just a theoretical concept but a valuable contri-
bution to facilitate the organization of batch jobs. To compute
the virtual nets, to analyze batch-nets with conditional arcs, is
very expensive, because it has to happen recursively. But the
batch-nets coming from application context are not so big so
that it will be a serious problem for the computing time or
computing resources. Since the heuristic method to determine
the minimal set of enabling places does not lead to the optimal
solution in every case further research in this area is necessary.
For further future work, we are planning to apply this work
within the domain of security-critical information systems [20]
by focussing on secure information flow properties [21], and
to create a link to the source code level using techniques from
program comprehension [22].

Acknowledgement: This research is funded by the DFG
project SecVolution (JU 2734/2-1 and SCHN 1072/4-1) which
is part of the priority programme SPP 1593 “Design For Future
- Managed Software Evolution”.

Index Terms—petri-net; batch-net; run-time change; evolution;

REFERENCES

[1] P. Oreizy and R. N. Taylor, “On the role of software architectures in
runtime system reconfiguration.” in IEE Proceedings - Software, 1998,
pp. 137–145.

[2] IBM Corporation, “Mainframes working after hours: Batch process-
ing,” http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.
ibm.zos.zmainframe/zconc batchproc.htm, 2014/11/20.

[3] ORACLE, “Oracle SOA Suite and The Modernization of Job Schedul-
ing,” http://www.oracle.com/technetwork/topics/modernization/uc4.pdf,
2014/09/30.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[5] G. Engels, M. Kremer, T. Nötzold, T. Wolf, K. Prott, J. Hohwiller,
A. Hofmann, A. Seidl, D. Schlegel, and O. Nandico, “Quasar 3.0 -
A situational approach to Software Engineering,” 2012.

[6] M. S. Keller, “Take command: cron: Job Scheduler,” Linux Journal, vol.
1999, no. 65es, 1999.

[7] P. Wang, Z. Ding, and H. Chai, “An algorithm for generating home states
of Petri-Nets,” Journal of Computational Information Systems, vol. 7,
no. 12, pp. 4225–4232, 2011.

[8] H.-M. Hanisch, “Analysis of Place/Transition Nets with Timed Arcs and
its Application to Batch Process Control,” in Application and Theory of
Petri-nets, ser. LNCS. Springer, 1993, vol. 691, pp. 282–299.

[9] ——, “Coordination Control Modelling in Batch Production Systems
by Means of Petri-nets,” Computers & chemical engineering, vol. 16,
no. 1, pp. 1–10, 1992.

[10] X. Chang, L. Huang, J. Hu, C. Li, and B. Cao, “Transformation from
activity diagrams with time properties to Timed Coloured Petri Nets,”
in Computer Software and Applications Conference (COMPSAC), 2014
IEEE 38th Annual, July 2014, pp. 267–272.

[11] T. Gu and P. A. Bahri, “A survey of Petri net applications in batch
processes,” Computers in Industry, vol. 47, no. 1, pp. 99–111, 2002.

[12] D. Andreu, J.-C. Pascal, H. Pingaud, and R. Valette, “Batch Process
Modelling Using Petri Nets,” in 1994 IEEE International Conference
on Systems, Man, and Cybernetics, 1994. Humans, Information and
Technology., vol. 1, Oct 1994, pp. 314–319 vol.1.

[13] M. Ghaeli, P. A. Bahri, P. Lee, and T. Gu, “Petri-Net based formulation
and algorithm for short-term scheduling of batch plants,” Computers &
chemical engineering, vol. 29, no. 2, pp. 249–259, 2005.

[14] W. M. van der Aalst, “The Application of Petri-nets to Workflow
Management,” Journal of circuits, systems, and computers, vol. 8, no. 01,
pp. 21–66, 1998.

[15] W. M. Van Der Aalst, “Workflow Verification: Finding Control-Flow
Errors using Petri-net based Techniques,” in Business Process Manage-
ment. Springer, 2000, pp. 161–183.

[16] S. Lloyd and Y. M. Salleh, “Modeling and control design of batch
process plant by Timed Petri-net,” in 30th IEEE Conference on Decision
and Control. IEEE, 1991, pp. 1531–1536.

[17] W. M. van der Aalst, “Exterminating the Dynamic Change Bug: A
concrete Approach to support Workflow Change,” Information Systems
Frontiers, vol. 3, no. 3, pp. 297–317, 2001.

[18] M. Llorens and J. Oliver, “Structural and Dynamic Changes in Concur-
rent Systems: Reconfigurable Petri-nets,” Computers, IEEE Transactions
on, vol. 53, no. 9, pp. 1147–1158, 2004.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Runtime Software Adap-
tation: Framework, Approaches, and Styles,” in Companion of ICSE.
ACM, 2008, pp. 899–910.

[20] E. Fernández-Medina, J. Jürjens, J. Trujillo, and S. Jajodia, “Model-
driven development for secure information systems,” Information &
Software Technology, vol. 51, no. 5, pp. 809–814, 2009.

[21] J. Jürjens, “Secure information flow for concurrent processes,” in CON-
CUR 2000, ser. LNCS, vol. 1877. Springer, 2000, pp. 395–409.

[22] D. Ratiu, M. Feilkas, and J. Jürjens, “Extracting domain ontologies
from domain specific APIs,” in 12th European Conference on Software
Maintenance and Reengineering (CSMR 08), 2008, pp. 203–212.

