
Systematic Development of UMLsec Design
Models Based On Security Requirements

Denis Hatebur1,4 and Maritta Heisel1 and Jan Jürjens2,3 and Holger Schmidt2

1 Software Engineering, Department of Computer Science and Applied Cognitive
Science, Faculty of Engineering, University Duisburg-Essen, Germany

2 Software Engineering, Department of Computer Science, TU Dortmund, Germany
3 Fraunhofer Institut für Software- und Systemtechnik, Germany

4 Institut für technische Systeme GmbH, Germany
{denis.hatebur,maritta.heisel}@uni-due.de

{jan.jurjens,holger.schmidt}@cs.tu-dortmund.de

Abstract. Developing security-critical systems in a way that makes sure
that the developed systems actually enforce the desired security require-
ments is difficult, as can be seen by many security vulnerabilities arising
in practice on a regular basis. Part of the difficulty is the transition from
the security requirements analysis to the design, which is highly non-
trivial and error-prone, leaving the risk of introducing vulnerabilities.
Unfortunately, existing approaches bridging this gap largely only pro-
vide informal guidelines for the transition from security requirements to
secure design.
We present a method to systematically develop structural and behavioral
UMLsec design models based on security requirements. Each step of our
method is supported by model generation rules expressed as pre- and
postconditions using the formal specification language OCL. Moreover,
we present a concept for a CASE tool based on the model generation
rules. Thus, applying our method to generate UMLsec design models
supported by this tool and based on previously captured and analyzed
security requirements becomes systematic, less error-prone, and a more
routine engineering activity.
We illustrate our method by the example of a patient monitoring system.

1 Introduction

When building secure systems, it is instrumental to take security requirements
into account right from the beginning of the development process to reach the
best possible match between the expressed requirements and the developed soft-
ware product, and to eliminate any source of error as early as possible. Knowing
that building secure systems is a highly sensitive process, it is important to ac-
complish the transition from security requirements to secure design correctly,
i.e., without introducing vulnerabilities.

In fact, there already exist a number of approaches to security requirements
analysis (see [3] for an overview) and secure design (e.g., [10, 9]). Although this
can be considered a positive development, the different approaches are mostly
not integrated with each other. In particular, existing approaches on bridging
the gap between security requirements analysis and design only provide informal
guidelines for the transition from security requirements to design. Carrying out

the transition manually according to these guidelines is highly non-trivial and
error-prone, which leaves the risk of inadvertently introducing vulnerabilities.
Ultimately, this would lead to the security requirements not being enforced in
the system design (and later its implementation).

We present a method to systematically develop structural and behavioral
design models based on security requirements. We use a security requirement
analysis method [6, 13] inspired by Jackson [8] that uses the UML (Unified Mod-
eling Language)5 profile UML4PF [5] to capture, structure, and analyze security
requirements. We extend this approach by a detailed procedure for developing
UMLsec [9] design models from previously captured and analyzed security re-
quirements. Our method is supported by model generation rules expressed as
pre- and postconditions using the formal specification language OCL (Object
Constraint Language)6. We present a concept for a CASE tool based on the
model generation rules. Since our rules are specified in a formal and analyzable
way, the implementation of this tool can be checked automatically for correctness
with respect to the model generation rules. Consequently, applying our method
to generate UMLsec design models supported by our tool and based on pre-
viously captured and analyzed security requirements becomes systematic, less
error-prone, and a more routine engineering activity. We illustrate our method
by the example of a patient monitoring system.

The rest of the paper is organized as follows: Section 2 introduces our security
requirements engineering approach. We give a brief introduction into UMLsec in
Sect. 3, which we use in Sect. 4 to systematically develop UMLsec design models
based on previously captured and analyzed security requirements. We consider
related work in Sect. 5. In Sect. 6, we give a summary and directions for future
research.

2 Environment Description and Security Requirements
Analysis

We propose a requirements engineering approach inspired by Jackson [8]. We
illustrate this approach using the example of a patient monitoring system, which
displays the vital signs of patients to physicians and nurses, and controls an
infusion flow according to previously configured rules. In this setting, the dis-
play data and the configuration rules are transmitted over an insecure wireless
network. We use this case study as a running example throughout this paper.

Security requirements can only be guaranteed for a certain context. There-
fore, it is important to describe the environment, since software (called machine)
is built to improve something in its environment. A context diagram represents
the environment in which the machine will operate. Figure 1 shows the con-
text diagram of the PatientMonitoringSystem (PMS) case study in UML notation
with stereotypes defined in the UML profile UML4PF [5]. This profile is avail-
able online via http://swe.uni-due.de/en/research/tool/. Stereotypes give
a specific meaning to the elements of a UML diagram they are attached to, and
they are represented by labels surrounded by double angle brackets.

The machine is stereotyped �machine�, and in our example in Fig. 1 it is
represented by the class PatientMonitoringSystem. A context diagram structures

5 http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
6 http://www.omg.org/docs/formal/06-05-01.pdf

2

http://swe.uni-due.de/en/research/tool/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/docs/formal/06-05-01.pdf

Fig. 1. Context Diagram of Patient Monitoring System

the environment using domains and interfaces. Domains describe entities in the
environment. Jackson distinguishes the domain types biddable domains that are
usually people, causal domains that comply with some physical laws, and lexical
domains that are data representations. The domain types are modeled by the
stereotypes�BiddableDomain� and�CausalDomain� being subclasses of the
stereotype �Domain�. A lexical domain (�LexicalDomain�) is modeled as a
special case of a causal domain. To describe the problem context in more detail,
connection domains may be necessary. Connection domains establish a connec-
tion between other domains by means of technical devices. They are modeled
as classes with the stereotype�ConnectionDomain�. Connection domains are,
e.g., video cameras, sensors, or networks. A special type of connection domain
is the display domain [2] for representing a display providing information. Dis-
play domains are modeled as classes with the stereotype �DisplayDomain�.
The context diagram in Fig. 1 shows the biddable domains Patient and Physi-
ciansAndNurses, and the causal domains O2Sensor, HeartbeatSensor, InfusionPump,
and Terminal. These causal domains are also connection domains, and the Termi-
nal is a display domain.

Interfaces connect domains, and they contain shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the like. They are observ-
able by at least two domains, but controlled by only one domain, as indicated
by an exclamation mark. These interfaces are represented as associations, and
the name of the associations contain the phenomena and the domain controlling
the phenomena. For example, in Fig. 1 the notation HS!{Heartbeat} means that
the phenomenon Heartbeat is controlled by the domain HeartbeatSensor.

Developers must elicit, examine, and describe the relevant properties of each
domain. These descriptions form the domain knowledge. The domain knowledge
consists of assumptions and facts. Assumptions are conditions that are needed,
so that the requirements are accomplishable. Usually, they describe required user
behavior. For example, it must be assumed that a user ensures not to be observed
by a malicious user when entering a password. Facts describe fixed properties of
the problem environment, regardless of how the machine is built.

Domain knowledge and requirements are special statements. A statement is
modeled as a class with a stereotype. In this stereotype, a unique identifier and
the statement text are contained as stereotype attributes. When a requirement

3

No Requirement �refersTo� �constrains�
R1 The vital signs should be displayed, and an

alarm should be raised if the vital signs ex-
ceed the limits.

Patient, Configu-
ration

Terminal

R2 Physicians and nurses can change the con-
figuration.

PhysiciansAnd-
Nurses

Configuration

R3 The infusion flow is controlled according to
the configured doses for the current vital
signs.

Patient, Configu-
ration

InfusionPump

Tab. 1. Functional Requirements of Patient Monitoring System

No Security Statement �com-
ple-
ments�

�refersTo� �con-
strains�/
Mechanism

1 Configuration should be
protected from modification for
Patient against Attacker or
PhysiciansAndNurses should be
informed.

R2 Configuration is asset,
Terminal and WLAN
know asset, Patient is
stakeholder, against
Attacker

Terminal-
Display/
MAC of SSL

2 Alarm and Vital Signs should be
protected from modification for
Patient against Attacker or
PhysiciansAndNurses should be
informed.

R1 Alarm and Vital Signs
are assets, Terminal
and WLAN know
asset, Patient is
stakeholder, against
Attacker

Terminal-
Display/
MAC of SSL

3 Configuration, Alarm, and Vital
Signs should be protected from
disclosure for Patient against
Attacker.

R1, R2 Configuration, Alarm,
and Vital Signs are
assets, Patient is
stakeholder, against
Attacker

WLAN/
encryption
of SSL

4 The Shared Keys should be
distributed to Terminal and
PMS (for Patient) and Attacker
should not be able to access
Shared Keys.

R1, R2 Shared Keys are
assets, Patient is
stakeholder, against
Attacker

WLAN/
key
exchange of
SSL (KE)

Tab. 2. Security Requirements of Patient Monitoring System

is stated, this means that something in the world should be changed by integrat-
ing the machine to be developed into it. Therefore, each requirement constrains
at least one domain. This is expressed by a dependency from the requirement
to a domain with the stereotype �constrains�. A requirement may refer to
several domains in the environment of the machine. For example, security re-
quirements have to refer to an attacker of a certain strength. These references are
expressed by a dependency from the requirement to a domain with the stereo-
type �refersTo�. The domains referred are also given in the requirements
description. Table 1 lists the functional requirements of the PMS case study.

Security requirements are associated with functional requirements, which we
express using the stereotype �complements�. For the functional requirements
listed in Tab. 1, we initially identified some security requirements, as shown in
Tab. 2 in rows 1-3, expressed as proposed in [5]. The required integrity (rows 1

4

No Security Statement �com-
ple-
ments�

�refersTo� �constrains�/
Mechanism

1 The KE keys should be
distributed to Terminal and
PMS for Patient, and Attacker
should not be able to access
Shared Keys.

R1, R2 KE keys are
assets, Patient is
stakeholder,
against Attacker

WLAN/
manual import in
physically protected
area

2 Infusion Flow and
PatientMonitoringSystem
should be protected from
modification for Patient
against Attacker or Patient
should know.

R1, R2,
R3

Infusion Flow and
Patient-
Monitoring-
System are
assets, Patient is
stakeholder,
against Attacker

Infusion Pump,
PatientMonitoring-
System/
physical protection
(e.g., EMF) and
protection by Patient

3 Infusion Flow and
PatientMonitoringSystem
should be protected from
disclosure for Patient against
Attacker.

R1, R2,
R3

Infusion Flow and
Patient-
Monitoring-
System are
assets, Patient is
stakeholder,
against Attacker

Infusion Pump,
PatientMonitoring-
System/
physical protection
(e.g., EMF) and
protection by Patient

4 Terminal should be protected
from modification for Patient
against Attacker or
PhysiciansAndNurses should
know.

R1, R2 Terminal is asset,
Patient is
stakeholder,
against Attacker

Terminal/
physical protection
(e.g., EMF) and
protection by
PhysiciansAndNurses

5 Terminal should be protected
from disclosure for Patient
against Attacker.

R1, R2 Terminal is asset,
Patient is
stakeholder,
against Attacker

Terminal/
physical protection
(e.g., EMF) and
protection by
PhysiciansAndNurses

Tab. 3. Security Domain Knowledge of Patient Monitoring System

and 2) supports the safety of the system and the required confidentiality (row 3)
is necessary for privacy reasons. We decide on generic mechanisms that repre-
sent solutions of these requirements. To implement these mechanisms, additional
domains have to be introduced, and additional requirements have to be fulfilled.

We choose the security mechanism MAC (Message Authentication Code)
for integrity and symmetric encryption for confidentiality. For the mechanisms
MAC and encryption, a Shared Key known by the Terminal and by the PMS is
necessary. As required in Tab. 2 in row 4, this Shared Key must be distributed to
the Terminal and to the PMS. The integrity and confidentiality of the Shared Key
must be preserved. This will be implemented using a key exchange protocol. For
the key exchange, additional secrets (KE keys) are necessary.

The KE keys should be distributed manually as described in Tab. 3 in row 1.
Integrity and confidentiality of the Infusion Flow and the PatientMonitoringSystem
should be ensured by physical protection (e.g., by reducing electromagnetic field
(EMF) radiation and by protection against EMF radiation) and protection by
Patient (e.g., Patient prevents physical access to the Infusion Flow) (Tab. 3 in rows 2

5

and 3). Integrity and confidentiality of the Terminal should be ensured by physical
protection (e.g., by reducing electromagnetic field radiation and by protection
against EMF radiation) and protection by PhysiciansAndNurses (Tab. 3 in rows 4
and 5).

For reasons of space, we do not depict the UML diagrams equipped with the
mentioned stereotypes capturing these security requirements and the security
domain knowledge. Instead, we present an overview of the security requirements
and the security domain knowledge in Tabs. 2 and 3. These statements are the
starting point for developing the design of the machine, which we achieve using
UMLsec.

3 UMLsec
UMLsec constitutes a UML profile to develop and analyze security models.
UMLsec offers new UML language elements, i.e., stereotypes, tags, and con-
straints, to specify typical security requirements such as secrecy, integrity, and
authenticity, and attacker models. Examples for pre-defined UMLsec stereotypes
are �critical� to label security-critical parts of UML diagrams, �secure
dependency� to ensure that dependent parts of models preserve the security
requirements relevant for the parts they depend on, �secure links� to in-
troduce attacker models, and �data security� to analyze behavior models
with respect to confidentiality and integrity requirements. The aforementioned
stereotypes are used in the next section for creating UMLsec design models based
on results from security requirements engineering. A detailed explanation and a
formal foundation of the tags and stereotypes defined in UMLsec can be found
in [9].

Based on UMLsec models and the semantics defined for the different UMLsec
language elements, possible security vulnerabilities can be identified at a very
early stage of software development. One can thus verify that the desired secu-
rity requirements, if fulfilled, enforce a given security policy. This verification is
supported by a tool suite, which is available online via http://www.umlsec.de/.

4 From Security Requirements to UMLsec Design
Models

In this section, we connect the security requirements engineering approach pre-
sented in Sect. 2 with secure design based on UMLsec. We first present a pro-
cedure to generate UMLsec diagrams describing the environment in Sect. 4.1.
Second, we introduce a procedure to generate UMLsec diagrams describing se-
curity mechanisms in Sect. 4.2. These procedures are supported by model gen-
eration rules, which we express using the formal specification language OCL.
More precisely, the model generation rules consist of OCL pre- and postcondi-
tions. They can be considered as patterns that describe how existing security
measures and cryptographic protocols can be developed based on results from
security requirements engineering.

We finally present in Sect. 4.3 work in progress on the construction of a tool
that realizes the aforementioned procedures to develop UMLsec design models
based on security requirements.

4.1 UMLsec Deployment Diagrams for Environment Descriptions
According to our security requirements engineering approach as illustrated in
Sect. 2, describing the operational environment of a secure software system is

6

http://www.umlsec.de/

of great importance. In fact, the environment description is also necessary for
secure design: security-critical design decisions should lead to the fulfillment
of the security requirements in the given environment. However, in a different
environment, the same design decisions might lead to an insecure system.

In the following, we present a procedure to develop deployment diagrams en-
riched with UMLsec elements from context diagrams and security requirements.
For each step, an operation name with parameters is provided. These operations
represent model generation rules.

1. Create a UML package named adequately that contains a deployment dia-
gram (it is required that such a diagram does not yet exist and that exactly
one context diagram exists).
createDeploymentDiagram(diagramName: String)

2. Add the �secure links� stereotype to the package and assign a certain
type of attacker (e.g., default or insider as described in [9, Chapter 4.1]) to
the {adversary} tag. Decide which attacker type is appropriate based on
threats modeled in the context diagram and domain knowledge collected dur-
ing security requirements engineering. For example, default attackers cannot
execute attacks in a LAN environment, but insider attackers can. Hence, if
the context diagram describes an attack in a LAN environment, the attacker
is of type insider.
addSecureLinksStereotype(inDiagram: String, adv: String)

3. Each domain contained in the context diagram (it is required that exactly
one context diagram exists and that the deployment diagram exists) that is
not a biddable domain is represented as a node in the deployment diagram.
createNodes(inDiagram: String)

4. Moreover, each domain that is part of another domain in the context diagram
is represented either as a nested node or class.
createNestedNodes(domainNames: String[]) or createNestedClasses(
domainNames: String[])

5. Each connection between the aforementioned domains is represented as a
communication path and a dependency:

(a) We create a communication path stereotyped according to the com-
munication type as described in Tab. 4. Note that only one of the
UMLsec stereotypes is allowed for each communication path. Moreover,
the defined mapping for context diagram stereotypes also applies to sub-
stereotypes. For example, �wireless� is a sub-stereotype of �net-
work connection�, and therefore, �wireless� can be mapped to
�Internet�, �LAN�, and �encrypted�, too.
We create communication paths for all relevant associations, and we also
associate a communication type where no decision is necessary (cre-
ateCommunicationPaths(inDiagram: String)). For all network con-
nections (retrievable with getNetworkConnections(): String[]), the
developer has to choose between �Internet�, �LAN�, or �Encryp-
ted� (setCommunicationPathType(inDiagram: String, assName:
String, type: String)).

(b) We create a dependency stereotyped according to the control direction
of the interfaces in the security requirement diagram and according to
the following rules:

7

Context Diagram UMLsec Deployment Diagram

�physical� �wire� (physical protection against default adversary
is assumed)

�ui� not considered since biddable domains are not part of
deployment diagrams

�remote call� see �network connection�
�network -
connection�

�Internet�, �LAN�, �encrypted� depending on
the domain knowledge collected during security require-
ments engineering

Tab. 4. From Context Diagrams to UMLsec Deployment Diagrams

Fig. 2. UMLsec Deployment Diagram Representing the Target State of Patient Moni-
toring System

– The domain controlling the interface is translated into the target of
the dependency.

– If more than one observing domains exist, the same number of de-
pendencies must be introduced.

– If a confidentiality statement constraining the connection domain of
the corresponding connection in the security requirement diagram
exists, then the dependency is stereotyped �secrecy�.

– If an integrity statement referring to the connection domain of the
corresponding connection in the security requirement diagram exists,
then the dependency is stereotyped �integrity�.

createDependencies(inDiagram: String)

The result of applying this method to the context diagram of the patient
monitoring system shown in Fig. 1 is presented in Fig. 2. This UMLsec de-
ployment diagram can be created following the command sequence depicted in
Listing 1.1.

We now present the OCL specification of the model generation rule for
step 5. Listing 1.2 contains the specification for step 5, generating the com-
munication paths and stereotypes for those associations that can be derived
directly. The first two formulas of the precondition of the model generation
rule createCommunicationPaths(inDiagram: String) state that there does
not exist a package named equal to the parameter diagramName (lines 2-3 in

8

createDep loymentDiagram (’ PMS Deployment ’) ;
a ddSe cu r eL i n k sS t e r e o t yp e (’ PMS Deployment ’ , ’ d e f a u l t ’) ;
c r ea t eNodes (’ PMS Deployment ’) ;
c r e a t eN e s t e dC l a s s e s ({ ’ Con f i g u r a t i o n ’}) ;
ge tNetworkConnect ions () ; −− r e t u r n s { ’PMS!{Alarm , V i t a l S i g n s } ,T!{ c o n f i g } ’}
c reateCommunicat ionPaths (’ PMS Deployment ’) ;
setCommunicat ionPathType (’ PMS Deployment ’ , ’PMS!{Alarm , V i t a l S i g n s } ,

T!{ c o n f i g } ’ , ’ enc rypted ’) ;
c r e a t eDependenc i e s (’ PMS Deployment ’) ;

Listing 1.1. Generating a UMLsec Deployment Diagram

1 c reateCommunicat ionPaths (inDiagram : S t r i n g)
2 PRE Package . a l l I n s t a n c e s () −>s e l e c t (name=diagramName)
3 −>s i z e ()=1 and
4 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e d S t e r e o t y p e s ()
5 . name −>i n c l u d e s (’ ContextDiagram ’)) −>s i z e ()=1 and
6 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e d S t e r e o t y p e s ()
7 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i e n tDependency
8 . t a r g e t −>s e l e c t (o c l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
9 −>s e l e c t (not endType . g e tApp l i e d S t e r e o t y p e s () . name

10 −>i n c l u d e s (’ BiddableDomain ’)
11) . g e tApp l i e d S t e r e o t y p e s () −>f o r A l l (r e l a s s s t |
12 not r e l a s s s t . name −>i n c l u d e s (’ u i ’) and
13 not r e l a s s s t . g e n e r a l . name −>i n c l u d e s (’ u i ’) and
14 −− s i m i l a r f o r ’ event ’ , ’ c a l l r e t u r n ’ , ’ stream ’ , ’ shared memory ’
15)
16 POST Package . a l l I n s t a n c e s () −>s e l e c t (name=inDiagram) . ownedElement
17 −>s e l e c t (o c l I sTypeOf (CommunicationPath))

. oc lAsType (CommunicationPath
18 . endType . name =
19 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e d S t e r e o t y p e s ()
20 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i e n tDependency
21 . t a r g e t −>s e l e c t (o c l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
22 −>s e l e c t (not endType . g e tApp l i e d S t e r e o t y p e s () . name
23 −>i n c l u d e s (’ BiddableDomain ’)) . endType . name and
24 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e d S t e r e o t y p e s ()
25 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i e n tDependency
26 . t a r g e t −>s e l e c t (o c l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
27 −>s e l e c t (not endType . g e tApp l i e d S t e r e o t y p e s () . name
28 −>i n c l u d e s (’ BiddableDomain ’)) −>f o r A l l (r e l a s s |
29 Package . a l l I n s t a n c e s () −>s e l e c t (name=inDiagram) . ownedElement
30 −>s e l e c t (o c l I sTypeOf (CommunicationPath))

. oc lAsType (CommunicationPath)
31 −>e x i s t s (cp |
32 cp . name = r e l a s s . name and
33 cp . endType . name = r e l a s s . endType . name and
34 (cp . g e tApp l i e d S t e r e o t y p e s () . name −>i n c l u d e s (’ p h y s i c a l ’) imp l i e s
35 r e l a s s . g e tApp l i e d S t e r e o t y p e s () . name −>i n c l u d e s (’ w i re ’)) and
36 (cp . g e tApp l i e d S t e r e o t y p e s () . g e n e r a l . name −>i n c l u d e s (’ p h y s i c a l ’)

imp l i e s
37 r e l a s s . g e tApp l i e d S t e r e o t y p e s () . name −>i n c l u d e s (’ w i re ’))
38)
39)

Listing 1.2. createCommunicationPaths(inDiagram: String)

Listing 1.2), and that there exists a package that contains a diagram stereo-
typed �ContextDiagram� (lines 4-5). The third formula of the precondition
expresses that associations between transformed domains do not contain any
of the �ui�, �event�, �call return�, �stream�, �shared memory�,
stereotypes and subtypes (lines 6-15). If these conditions are fulfilled, then the
postcondition can be guaranteed, i.e., names of nodes connected by each commu-

9

nication path are the same as the names of domains connected by an association
in the context diagram (lines 16-29), and there exists for each relevant association
contained in the context diagram a corresponding and equally named communi-
cation path in the deployment diagram that connects nodes with names equal to
the names of the domains connected by the association. These communication
paths are stereotyped�wire� if the corresponding associations are stereotyped
�physical� or a subtype (lines 30-39).

4.2 UMLsec Class and Sequence Diagrams for Security Mechanism
Descriptions

In the following, we show how to specify security mechanisms by developing
UMLsec diagrams based on security requirements. For each communication path
contained in the UMLsec deployment diagram developed as shown in Sect. 4.1
that is not stereotyped �wire�, we select an appropriate security mechanism
according to the results of the problem analysis, e.g., MAC for integrity, sym-
metric encryption for security, and a protocol for key exchange, see Tab. 2).
A security mechanism specification commonly consists of a structural and a be-
havioral description, which we specify based on the UMLsec�data security�
stereotype. To create security mechanism specifications, we developed a number
of model generation rules, for example:

– Securing data transmissions using MAC: createMACSecuredTransmission(
senderNodeName: String, receiverNodeName: String, newPackage: String)

– Symmetrically encrypted data transmissions: createSymmetricallyEncryp-

tedTransmission(senderNodeName: String, receiverNodeName: String,

newPackage: String)

– Key exchange protocol: createKeyExchangeProtocol(initiatorNodeName:
String, responderNodeName: String, newPackage: String)

Model generation rules can be regarded as patterns for security mechanism
specifications. Each of the aforementioned model generation rules describes the
construction of a package stereotyped�data security� containing structural
and behavioral descriptions of the mechanism expressed as class and sequence
diagrams. Moreover, the package contains a UMLsec deployment diagram devel-
oped as shown in Sect. 4.1.

We explain in detail the model generation rule createKeyExchangeProto-
col(initiatorNodeName: String, responderNodeName: String, newPack-
age: String) shown in Listing 1.3. We use this protocol to realize the secu-
rity requirement given in Table 2, row 4, of the patient monitoring system. We
use the protocol that secures data transmissions using MACs for the security re-
quirements in rows 1 and 2, and we use the protocol for symmetrically encrypted
data transmissions for the security requirement in row 3.

The precondition of the model generation rule for key exchange protocols
states that nodes named initiatorNodeName and responderNodeName exist
(lines 2-3 in Listing 1.3). The communication path between these nodes (line 8)
should have the stereotype �encrypted�, �Internet�, or �LAN� (lines 9-
10). Additionally, a package named newPackage must not exist (line 11). If these
conditions are fulfilled, then the postcondition can be guaranteed. The first part
of the postcondition describes the construction of a class diagram, and the sec-
ond part specifies the construction of a sequence diagram. The following class
diagram elements are created as shown in the example in Fig. 3:

10

1 c r ea t eKeyExchangePro toco l (i n i t i a to rNodeName : S t r i ng , responderNodeName :
S t r i ng , newPackage : S t r i n g) ;

2 PRE Node . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName) −>s i z e ()=1 and
3 Node . a l l I n s t a n c e s () −>s e l e c t (name=responderNodeName) −>s i z e ()=1 and
4 l e t c p t y p e s : Bag (S t r i n g) =
5 CommunicationPath . a l l I n s t a n c e s ()−>s e l e c t (cp |
6 cp . endType−>i n c l u d e s (Node . a l l I n s t a n c e s ()

−>s e l e c t (name=in i t i a to rNodeName)−>asSequence ()−> f i r s t ())
and

7 cp . endType−>i n c l u d e s (Node . a l l I n s t a n c e s ()
−>s e l e c t (name=responderNodeName)−>asSequence ()−> f i r s t ())

8) . g e tApp l i e d S t e r e o t y p e s () . name
9 i n

10 cp type s−>i n c l u d e s (’ enc rypted ’) or cp type s−>i n c l u d e s (’ I n t e r n e t ’)
or cp type s−>i n c l u d e s (’LAN’) and

11 Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) −>s i z e ()=0
12

13 POST Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) −>s i z e ()=1 and
14 −− . . . S t e r e o t y p e wi th a t t r i b u t e s e x i s t s
15 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (o c l I sTypeOf (C l a s s)) −>s i z e ()=1 and
16 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=responderNodeName)

−>s e l e c t (o c l I sTypeOf (C l a s s)) −>s i z e ()=1 and
17 −− . . . d ependenc i e s w i th s e c r e c y and i n t e g r i t y between i n i t i a t o r

and r e s ponde r (both d i r e c t i o n) c r e a t e d . . .
18 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (o c l I sTypeOf (C l a s s)) . ownedAt t r i bu t e
19 −>s e l e c t (name=’ i n v (K T) ’) . t ype −>s e l e c t (name = ’ Keys ’) −> s i z e ()

= 1 and
20 −− . . . o t h e r a t t r i b u t e s e x i s t . . .
21 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (o c l I sTypeOf (C l a s s)) . ownedOperat ion
22 −>s e l e c t (name=’ resp ’)
23 −>s e l e c t (member−>f o r A l l (o c l I sTypeOf (Parameter))) . member −>f o r A l l (

par |
24 par−>s e l e c t (name−>i n c l u d e s (’ shrd ’)) −>one (

oc lAsType (Parameter) . t ype . name−>i n c l u d e s (’ Data ’)) xo r
25 par−>s e l e c t (name−>i n c l u d e s (’ c e r t ’)) −>one (

oc lAsType (Parameter) . t ype . name−>i n c l u d e s (’ Data ’))
26) and
27 −− . . . o t h e r o p e r a t i o n s e x i s t
28 −− . . . s t e r e o t y p e and tag s f o r i n i t i a t o r and r e s ponde r c l a s s e x i s t
29 l e t i n t e r a : Bag (I n t e r a c t i o n) =
30 Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) . ownedElement

−>s e l e c t (o c l I sTypeOf (C o l l a b o r a t i o n))
31 . ownedElement −>s e l e c t (o c l I sTypeOf (I n t e r a c t i o n))

. oc lAsType (I n t e r a c t i o n)
32 i n
33 i n t e r a . ownedElement −>s e l e c t (o c l I sTypeOf (L i f e l i n e))

. oc lAsType (L i f e l i n e) . name −>i n c l u d e s (i n i t i a to rNodeName) and
34 i n t e r a . ownedElement −>s e l e c t (o c l I sTypeOf (L i f e l i n e))

. oc lAsType (L i f e l i n e) . name −>i n c l u d e s (responderNodeName) and
35 i n t e r a . ownedElement −>s e l e c t (o c l I sTypeOf (Message))

. oc lAsType (Message) . name
−>i n c l u d e s (’ i n i t (N i , K T , S ign (i n v (K T) ,T : : K T)) ’) and

36 i n t e r a . ownedElement −>s e l e c t (o c l I sTypeOf (Message))
. oc lAsType (Message) . name
−>i n c l u d e s (’ r e s p ({ Sign (i n v (K P i) , k j : : N ’ : : K’ T)} K ’ T ,
S ign (i n v (K CA) , P i : : K P i)) ’) and

37 i n t e r a . ownedElement −>s e l e c t (o c l I sTypeOf (Message))
. oc lAsType (Message) . name −>i n c l u d e s (’ xchd ({ s i } k) ’) and

38 −− . . . c o n d i t i o n s i n sequence diagram e x i s t

Listing 1.3. createKeyExchangeProtocol(initiatorNodeName: String,
responderNodeName: String, newPackage: String)

– exactly one package named newPackage (line 13)
– stereotype �data security� and tags (adversary) for this package

11

«data security»

PMS KeyExchProt

«critical»
Terminal

 S_: Data
 s_: Data
 N_: Data
 K_T: Keys
 inv(K_T): Keys
 K_CA: Keys
 i: Integer

 + resp(shrd, cert)

«critical»
PatientMonitoringSystem

 K_P: Keys
 inv(K_P): Keys
 K_CA: Keys
 k_: Keys
 j: Integer

 + init(n, k, cert)
 + xchd(mstr)

 «critical»
 secrecy = {inv(K_P),k_}
 integrity = {K_P,inv(K_P),K_CA,k_,j}

 «critical»
 secrecy = {s_,inv(K_T)}
 integrity = {s_,N_,K_T,inv(K_T),K_CA,i}
 authenticity = (k,P_i)

«primitiveType»
Data

«primitiveType»
Keys

«primitiveType»
Expressions

 «data security»
 adversary = default

«send, secrecy, integrity»

«send, secrecy, integrity»

Fig. 3. Class Diagram of Key Exchange Protocol for Patient Monitoring System

– classes for initiator and responder named initiatorNodeName and respon-
derNodeName (lines 15-16)

– dependencies with �secrecy� and �integrity� between initiator and
responder (both directions)

– attributes for initiator and responder classes (lines 18-20)
– methods with parameters for initiator and responder class (lines 21-27)
– stereotype �critical� and corresponding tags (e.g., secrecy) for initiator

and responder classes

The following sequence diagram elements are created as shown in the example
in Fig. 4:

– lifelines for initiator and for responder in an interaction being part of a
collaboration that is part of the created package (lines 29-34)

– messages in sequence diagram (lines 35-37)
– conditions in sequence diagram

A detailed description of this protocol pattern is given in [9, Chapter 5.2].
Figure 3 shows the class diagram and Fig. 4 the sequence diagram developed

for the patient monitoring system according to this model generation rule. They
are created with createKeyExchangeProtocol(’Terminal’, ’PatientMoni-
toringSystem’, ’KeyExchProt’). In the created model, the tag {secrecy} of
the�critical� class Terminal contains the secret s , which represents an array
of secrets to be exchanged in different rounds of this protocol. It also contains the
private key inv(K T) of the Terminal. Next to these assets, the {integrity} tag
additionally contains the nonces N used for the protocol, the public key K T of
the Terminal, the public key K CA of the certification authority, and the round it-
erator i. These tag values are reasonable because the security domain knowledge
in Tab. 3, rows 2 and 3 states that the PatientMonitoringSystem with its contained
data is kept confidential and its integrity is preserved. The tag {authenticity}
expresses that the PatientMonitoringSystem P i is authenticated with respect to
the Terminal. This is ensured by the domain knowledge in Tab. 3, row 1. The
tag {secrecy} of the �critical� class PatientMonitoringSystem contains the

12

sd PMS KeyExchProt

Terminal PatientMonitoringSystem

init(N_i,K_T,Sign(inv(K_T),T::K_T))

resp({Sign(inv(K_P_i),k_j::N'::K'_T)}_K'_T,
Sign(inv(K_CA),P_i::K_P_i)) [snd(Ext

(K'_T,c_c))=K'_T]

xchd({s_i}_k)

[fst(Ext
(K_CA),c_S=S_i)

and snd(Ext
(K'_S_i,Dec(inv

(K_T),c_k)))=N_i]

Fig. 4. Sequence Diagram of Key Exchange Protocol for Patient Monitoring System

session keys k and the private key inv(K P) of the PatientMonitoringSystem. The
{integrity} tag consists of assets similar to the ones of the same tag of the
Terminal. The tag {authenticity} is not used, since two-sided authentication
is not necessary. Integrity and confidentiality of the data stored in the Patient-
MonitoringSystem (private key inv(K P), the public key K P, the public key K CA
of the certification authority, and the round iterator j) is covered by the domain
knowledge in Tab. 3, rows 4 and 5.

The sequence diagram in Fig. 4 specifies three messages and two guards, and
it considers the ith protocol run of the Terminal, and the jth protocol run of the
PatientMonitoringSystem. The sequence counters i and j are part of the Terminal
and the PatientMonitoringSystem, respectively. The init(. . .) message sent from the
Terminal to the PatientMonitoringSystem initiates the protocol. If the guard at the
lifeline of the PatientMonitoringSystem is true, i.e., the key K T contained in the
signature matches the one transmitted in the clear, then the PatientMonitoringSys-
tem sends the message resp(. . .) to the Terminal. If the guard at the lifeline of the
Terminal is true, i.e., the certificate is actually for S and the correct nonce is
returned, then the Terminal sends xchd(. . .) to the PatientMonitoringSystem. If the
protocol is executed successfully, i.e., the two guards are evaluated to true, then
both parties share the secret s i.

The key exchange protocol only fulfills the corresponding security require-
ments if integrity, confidentiality, and authenticity of the keys are ensured. Ac-
cording to our pattern system for security requirements engineering [5], applying
the key exchange mechanism leads to dependent statements about integrity, con-
fidentiality, and authenticity of the keys as stated in Tab. 3.

4.3 Tool Design

We are currently constructing a graphical wizard-based tool that supports a
software engineer in interactively generating UMLsec design models. The tool
will implement the model generation rules presented in the previous subsections
to generate UMLsec deployment, class, and sequence diagrams. A graphical user
interface allows users to choose the parameters, and it ensures that these pa-
rameters fulfill the preconditions. For example, users can choose the value of
the second parameter of the model generation rule setCommunicationPath-
Type(inDiagram: String, assName: String, type: String) based on the

13

return values of the rule getNetworkConnections(). Our tool will automati-
cally construct the corresponding parts of the UMLsec model as described in
the postcondition. Since our model generation rules are specified with OCL in
a formal and analyzable way, our tool implementation can be checked automat-
ically for correctness with respect to our specification based on an appropriate
API such as the Eclipse implementation for EMF-based models 7. In addition
to realizing the OCL specification, the tool will support workflows adequate to
generate the desired UMLsec models, e.g., as depicted in Listing 1.1.

In summary, we presented in this section a novel integrated and formal ap-
proach connecting security requirements analysis and secure design.

5 Related Work

The approach presented in this paper can be compared on the one hand-side to
other work bridging the gap between security requirements engineering secure
design, and on the other hand-side to work on transforming UML models based
on rules expressed in OCL.

Relatively little work has been done on the first category of related work, i.e.,
bridging the gap between security requirements analysis and design. Recently,
an approach [12] to connect the security requirements analysis method Secure
Tropos by Mouratidis et al. [4] and UMLsec [9] is published. A further approach
[7] connects UMLsec with security requirements analysis based on heuristics. In
contrast to our work, these approaches only provide informal guidelines for the
transition from security requirements to design. Consequently, they do not allow
to verify the correctness of this transition step.

The second category of related work considers the transformation of UML
models based on OCL transformation contracts [1, 11]. We basically use parts of
this work, e.g., the specification of transformation operations using OCL pre- and
postconditions. Additionally, our model generation rules can be seen as patterns,
since they describe the generation of completely new model elements according
to generic security mechanisms, e.g., cryptographic keys.

6 Conclusions and Future Work

We presented in this paper a novel method to bridge the gap between security
requirements analysis and secure design. We complemented our method by for-
mal model generation rules expressed in OCL. Thus, the construction of UMLsec
design models based on results from security requirements engineering becomes
more feasible, systematic, less error-prone, and a more routine engineering ac-
tivity. We illustrated our approach using the sample development of a patient
monitoring system.

In the future, we would like to elaborate more on the connection between
the presented security requirements engineering approach and UMLsec. For ex-
ample, we intend to develop a notion of correctness for the step from security
requirements engineering to secure design based on the approach presented in
this paper.

7 Eclipse Modeling Framework (EMF):http://www.eclipse.org/modeling/emf/

14

http://www.eclipse.org/modeling/emf/

References

[1] E. Cariou, R. Marvie, L. Seinturier, and L. Duchien. OCL for the specifica-
tion of model transformation contracts. In Proceedings of the Workshop on OCL
and Model Driven Engineering at the International UML Conference LNCS 3273.
Springer, 2004.

[2] I. Côté, D. Hatebur, M. Heisel, H. Schmidt, and I. Wentzlaff. A systematic ac-
count of problem frames. In Proceedings of the European Conference on Pattern
Languages of Programs (EuroPLoP), pages 749–767. Universitätsverlag Konstanz,
2008.

[3] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt. A comparison of
security requirements engineering methods. Requirements Engineering – Special
Issue on Security Requirements Engineering, 15(1):7–40, 2010.

[4] P. Giorgini and H. Mouratidis. Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowl-
edge Engineering, 17(2):285–309, 2007.

[5] D. Hatebur and M. Heisel. A UML profile for requirements analysis of dependable
software. In E. Schoitsch, editor, Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP) (LNCS 6351), pages
317–331. Springer, 2010.

[6] D. Hatebur, M. Heisel, and H. Schmidt. Analysis and component-based real-
ization of security requirements. In Proceedings of the International Conference
on Availability, Reliability and Security (AReS), pages 195–203. IEEE Computer
Society, 2008.

[7] S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schneider. Eliciting security
requirements and tracing them to design: An integration of common criteria,
heuristics, and UMLsec. Requirements Engineering – Special Issue on Security
Requirements Engineering, 15(1):63–93, 2010.

[8] M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[9] J. Jürjens. Secure Systems Development with UML. Springer, 2005.
[10] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-based modeling

language for model-driven security. In Proceedings of the International Conference
on the Unified Modeling Language (UML), pages 426–441, London, UK, 2002.
Springer.

[11] T. Millan, L. Sabatier, T.-T. Le Thi, P. Bazex, and C. Percebois. An OCL ex-
tension for checking and transforming uml models. In Proceedings of the WSEAS
International Conference on Software Engineering, Parallel and distributed Sys-
tems (SEPADS), pages 144–149, Stevens Point, Wisconsin, USA, 2009. World
Scientific and Engineering Academy and Society (WSEAS).

[12] H. Mouratidis and J. Jürjens. From goal-driven security requirements engineering
to secure design. International Journal of Intelligent Systems – Special issue on
Goal-Driven Requirements Engineering, 25(8):813 – 840, June 2010.

[13] H. Schmidt. A Pattern- and Component-Based Method to Develop Secure Soft-
ware. Deutscher Wissenschafts-Verlag (DWV) Baden-Baden, April 2010.

15

	Systematic Development of UMLsec Design Models Based On Security Requirements

