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Abstract. The security of much critical infrastructure depends in part
on cryptographic software coded in C, and yet vulnerabilities continue to
be discovered in such software. We describe recent progress on checking
the security of C code implementing cryptographic software. In particu-
lar, we describe projects that combine verification-condition generation
and symbolic execution techniques for C, with methods for stating and
verifying security properties of abstract models of cryptographic proto-
cols. We illustrate these techniques on C code for a simple two-message
protocol.

1 Introduction

We describe our experience of verifying security properties of cryptographic soft-
ware in C. This problem is far from solved, but we approach it in the context
of much recent progress on theories and tools for reasoning about cryptographic
protocols and their implementations.

The plan of this article (and the invited talk it accompanies) is to explain
two different approaches to the problem in the setting of a simple example.
Section 2 describes this example, a simple client-server protocol, introduced by
Fournet et al. (2011b), which relies on authenticated encryption to achieve both
authentication and secrecy, and outlines the structure of our C programs for the
client and server roles of the protocol.

In Section 3 we describe a method (Aizatulin et al. 2011b) for extracting ab-
stract models of cryptographic code by symbolic execution. The technique yields
models that may be verified with ProVerif (Blanchet 2001) to obtain results in
the symbolic model of cryptography. For some protocols, we may appeal to the
CoSP framework (Backes et al. 2009) to obtain computational soundness.

Next, in Section 4, we describe a method (Dupressoir et al. 2011) for applying
a general-purpose C verifier, specifically VCC (Cohen et al. 2009), to proving
protocol properties using the method of invariants for cryptographic structures
(Bhargavan et al. 2010), a method developed originally for functional code using
the F7 refinement-type checker (Bengtson et al. 2008). For this second method,
we obtain results only in the formal model (although we have work underway on



recasting in VCC recent techniques (Fournet et al. 2011b) for directly obtaining
computational guarantees via F7). Finally, Section 6 concludes.

Our verification work assumes correctness of the code for the underlying
cryptographic algorithms; others have addressed how to verify code of such al-
gorithms (Erkök et al. 2009; Barbosa et al. 2010). Instead, our concern is to check
the correct usage of cryptographic algorithms so as to ensure security properties
of protocols and devices.

We have made our code, our verification tools, and our verification results
available on the web. A package at http://research.microsoft.com/csec in-
cludes the source code for our example and the logs from running our tools, and
also, to replicate our results, instructions for first downloading our tools and
their dependencies, and then re-running verification.

Moreover, as described in Section 6, we have launched a companion web-
site, the Csec Challenge, to curate examples of cryptographic code, including
protocols and software for hardware tokens, as a basis for evaluating different
verification techniques.

Additonal details appear in a technical report (Aizatulin et al. 2011a).

2 Example: Encryption-Based Authenticated RPC

We define an example protocol, together with a deliberately informal statement
of security properties. In later sections we give a specific interpretation of these
properties, for each of our two verification techniques.

2.1 Protocol Description and Security Properties

We consider a protocol, due to Fournet et al. (2011b), that is an encryption-
based variant of the RPC protocol considered in previous papers (Bhargavan
et al. 2010; Dupressoir et al. 2011; Aizatulin et al. 2011b). In the following, the
curly braces {m}k stand for the encryption, using an authenticated encryption
mechanism, of plaintext m under key k while the comma represents an injective
pairing operation in infix form.

We consider a population of principals, ranged over by A and B (and later,
in code, by a and b). The following protocol narration describes the process of
A in client role communicating to B in server role.

Authenticated RPC: RPC-enc

A : event client begin(A,B , req)
A→ B: A, {req , kS}kAB

B : event server reply(A,B , req , resp)
B → A: {resp}kS
A : event client accept(A,B , req , resp)

The key kAB is a unidirectional long-term key shared between A and B, for
A in client role, and B in server role. (Should B wish to play the client role, they
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would rely on a key kBA, distinct from kAB .) The key kS is the session key freshly
generated by A and the payloads req and resp come from the environment.

Our attacker model is a network-based adversary, able to receive, rewrite, and
send messages on the network. When considering security properties, we allow
the possibility that one or more long-term keys kAB is compromised, that is, is
known to the attacker. We write bad(A,B) to mean the key kAB is compromised.

The top-level security properties we wish to establish are of two kinds:

(1) Authentication properties state that each principal can ensure that a received
message was produced by the correct protocol participant before moving on
to the next protocol steps (or that a long-term key between the principals
has been compromised by the attacker). These properties are specified using
event correspondences of the form:

server reply(A,B, req, resp) =⇒ client begin(A,B, req) ∨ bad(A,B)

client accept(A,B, req, resp) =⇒ server reply(A,B, req, resp) ∨ bad(A,B)

The first property states that, whenever the event server reply happens,
either the event client begin has happened with corresponding parameters or
the long-term key is compromised. Similarly, the second property states that,
whenever the event client accept happens, either the event server reply has
happened, or the long-term key is compromised.

(2) Key disclosure, or weak secrecy, properties state that keys are only disclosed
to the attacker if a long-term key has been compromised. We can express
this as follows:

attacker(kAB ) ∨ attacker(kS )⇒ bad(A,B)

We do not consider secrecy of the payloads req and resp, because they are
not generated at random and so formulating a secrecy property for them is
more difficult.

2.2 Implementation

We implement the protocol in C in about 700 lines of code calling to a GCM
library (McGrew and Viega 2005) for encryption and to PolarSSL (PolarSSL) for
random number generation and network communication. The implementation is
executable, and consists of a client and a server that communicate through a
TCP/IP connection. We list a trace of a protocol run below. A sample of the
code appears in Fig. 3.

Server: Now listening on localhost, port 4433.
Server: Accepted client connection.
Client: Preparing to send request: What is the weather like?
and session key: 26427b9510a0285246030e957e25cea3
Client: Sending message: p | 9 | localhost | 6c509cb95d1e0628920006709d...
Server: Authenticated request: What is the weather like?
Server: Authenticated session key: 26427b9510a0285246030e957e25cea3
Server: Preparing response: Look out the window.
Server: Sending encrypted message: ab826de07c761dee8b...
Client: Received and authenticated response: Look out the window.

3



The pairing operator is implemented by concatenating a fixed one-byte tag
’p’, followed by the 4-byte length of the first element of the pair, followed by
the pair elements, in order. More formally, pairing is defined as follows:

(a, b) = ’p’| len(a)|a|b,

where the sign | stands for bytestring concatenation, and len() denotes the partial
function operating on bytestrings that returns the 4-byte network-order repre-
sentation of the length of its argument. The length operation is undefined on
bytestrings of length greater than 232 − 1, therefore we restrict each message to
be of at most that length. More information about network packet formats and
the implementation of the encryption is available in the technical report.

3 Verification by Model Extraction

In this section we describe a verification approach in which a high-level model is
extracted from the code and verified using an existing tool, ProVerif (Blanchet
2001). The full details are described elsewhere (Aizatulin et al. 2011b).

Our starting point is that our implementation code typically contains three
sorts of action: (1) configuration, (2) creating and parsing messages by direct
memory manipulation, and (3) applying cryptographic primitives. This obser-
vation applies to other implementations, such as OpenSSL or PolarSSL. The
memory manipulation code is not encapsulated and is intermingled with the
application of cryptography.

Our intent is to extract the cryptographic core of the protocol, by eliminating
the memory operations via symbolic execution of the C code (King 1976). We
simplify configuration code as well, because we perform the verification for spe-
cific constant values of configuration parameters. The extracted model contains
the cryptographic core of the protocol in the ProVerif modelling language, a form
of the applied pi-calculus (Abadi and Fournet 2001), suitable for verification with
ProVerif.

The method takes as input:

– The C implementations of the protocol participants, containing calls to a
special function event. For instance, before creating the request the client in
our example calls

event3 ( ” c l i e n t b e g i n ” , c l S t a t e . s e l f , c l S t a t e . s e l f l e n , c l S t a t e . o the r ,
c l S t a t e . o t h e r l e n , c l S t a t e . r eque s t , c l S t a t e . r e q u e s t l e n ) ;

This call executes the event client begin(A,B, req) where A, B, and req are
the contents of the buffers clState . self , clState . other, and clState . request.
Security properties are stated in terms of correspondences of these events,
as described in section 2.1.

– An environment process (in the modelling language) which spawns the par-
ticipants, distributes keys, etc.

– Symbolic models of cryptographic functions used by the implementation.
These models are themselves expressed in C via what we call proxy functions,
explained in more detail in Section 3.2.
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C source C virtual machine Intermediate model language

Applied piVerification Result

CIL Symbolic execution

Format abstractionProVerif

Fig. 1. An outline of model extraction

– An intended correspondence or secrecy property to be proved by ProVerif.

The verification steps are outlined in Fig. 1 and are explained by example in
the following sections. The main limitation of the current method is that it deals
only with a single execution path (as determined by a concrete test run of the
code). This limitation is mitigated by the observation that a great majority of
protocols (such as those in the extensive SPORE repository (Project EVA 2007))
follow a fixed narration of messages between participants, where any deviation
from the expected message leads to termination.

3.1 C Virtual Machine (CVM)

We start by compiling the program to a simple stack-based instruction language
with random memory access (CVM, from “C Virtual Machine”). The language
contains primitive operations that are necessary for implementing security pro-
tocols: reading values from the network or the execution environment, choosing
random values, writing values to the network and signalling events.

Our implementation performs the conversion from C to CVM at runtime—
the C program is instrumented using CIL (Necula et al. 2002) so that it outputs
its own CVM representation when run. For example, the following are the CVM
instructions corresponding to a call to malloc in the client:

// client.c:39
LoadStackPtr client.i:m1 len[3638]; LoadInt 8; SetPtrStep; LoadMem; Call malloc proxy

3.2 Extracting an IML Model by Symbolic Execution

Next, we symbolically execute CVM programs to eliminate memory accesses
and destructive updates, to obtain an equivalent program in an intermediate
model language (IML). IML is the applied pi-calculus of ProVerif augmented
with arithmetic operations and bytestring manipulation primitives: b|b′ is the
concatenation of bytestrings b and b′; b{bo, bl} is the substring of b starting at
offset bo of length bl; and len(b) is the length of b (in bytes). A slightly simplified
IML model of both the client and the server is shown in Fig. 2.

The key idea behind the model extraction algorithm is to execute the program
in a symbolic semantics, in which memory locations are associated with symbolic
expressions that describe how the contents of these locations were computed.
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let A =
event client begin(clientID, serverID, request);
new kS1;
let msg1 = ’p’|len(request)|request|kS1 in
let cipher1 = E(key(clientID, serverID), msg1) in
out(c, 5 + len(clientID) + len(cipher1));
out(c, ’p’|len(clientID)|clientID|cipher1);
in(c, msg4);
event client accept(clientID, serverID, request, D(kS1, msg4));

let B =
in(c, msg1);
if ’p’ = msg1{0, 1} then
if len(msg1) ≤ 5 + msg1{1, 4} then
let client1 = msg1{5, msg1{1, 4}} in
let cipher1 = msg1{5 + msg1{1, 4}, len(msg1) − (5 + msg1{1, 4})} in
let msg2 = D(key(client1, serverID), cipher1) in
if ’p’ = msg2{0, 1} then
if len(msg2) ≤ 5 + msg2{1, 4} then
let var2 = msg2{5, msg2{1, 4}} in
event server reply(client1, serverID, var2, response);
let key1 = msg2{5 + msg2{1, 4}, len(msg2) − (5 + msg2{1, 4})} in
let cipher2 = E(key1, response) in
out(c, len(cipher2));
out(c, cipher2);

Fig. 2. The IML model extracted from the C code.

Memory locations are of two kinds: either (1) a stack location, stack v, asso-
ciated to a program variable v, or (2) a heap location, heap i, for i ∈ N returned
by a call to malloc. A pointer is represented symbolically as ptr(loc, e), that is, a
location together with the symbolic offset relative to the beginning of the loca-
tion. All pointer arithmetic is performed on the offset while the location remains
fixed.

The variables in symbolic expressions represent unknown data obtained from
the network, the program environment, or the random number generator. An
application expression op(e1, . . . , en) models computation. Operations can either
be the basic operations of the language or cryptographic primitives. The language
of symbolic expressions additionally contains the bytestring operations of the
IML language.

The symbolic memory is a map from symbolic memory locations to symbolic
expressions. We also maintain a set of known logical facts and an allocation
table (a map from memory locations to length expressions) used for checking
memory safety. As an example, the symbolic memory when entering the function
send request of the client looks as follows:

stack ctx⇒ ptr(heap 1, 0)
heap 1⇒ { request = ptr(heap 2, 0), request len = len(request),

self = ptr(heap 3, 0), self len = len(clientID),
other = ptr(heap 4, 0), other len = len(serverID),
k s = ptr(heap 5, 0), k s len = len(kS),
k ab = ptr(heap 6, 0), k ab len = len(key(clientID, serverID))}

heap 2⇒ request, heap 3⇒ clientID, heap 4⇒ serverID,
heap 5⇒ kS , heap 6⇒ key(clientID, serverID)

The parameter of the function is the structure ctx that holds pointers to
values relevant to the protocol execution: the identities of both the client and
the server (fields self and other), the value of the request (field request), as
well as fields k ab and k s pointing to a long-term key and the session key. The
values request , clientID , serverID , and kS are symbolic variables that have been
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C line symbolic execution steps

i n t s e n d r e q u e s t ( RPCstate ∗ c t x ){
1. u i n t 3 2 t m1 len , m1 e len , f u l l l e n ;

uns igned char ∗ m1, ∗ p , ∗ m1 e ;
m1 len = 1 + ctx→k s l e n

+ s i z e o f ( c t x→r e q u e s t l e n )
+ c tx→r e q u e s t l e n ;

stack m1 len⇒ 1 + len(kS) + 4 + len(request)

2. p = m1 = ma l l oc ( m1 len ) ; stack p⇒ ptr(heap 6, 0)
stackm1⇒ ptr(heap 6, 0)

3. memcpy(p , ”p” , 1) ; heap 6⇒ ’p’
4. p += 1 ; stack p⇒ ptr(heap 6, 1)
5. ∗ ( u i n t 3 2 t ∗) p = ctx→r e q u e s t l e n ; heap 6⇒ ’p’| len(request)
6. p += s i z e o f ( c t x→r e q u e s t l e n ) ; stack p⇒ ptr(heap 6, 5)
7. memcpy(p , c t x→r eque s t , c t x→r e q u e s t l e n ) ; heap 6⇒ ’p’| len(request)|request
8. p += ctx→r e q u e s t l e n ; stack p⇒ ptr(heap 6, 5 + len(request))
9. memcpy(p , c t x→k s , c t x→k s l e n ) ; heap 6⇒ ’p’| len(request)|request|kS

10. f u l l l e n = 1 + s i z e o f ( c t x→s e l f l e n )
+ c tx→s e l f l e n
+ e n c r y p t l e n ( c t x→k ab , c t x→k ab l e n ,

m1, m1 len ) ;

stack full len⇒ 5 + len(clientID)
+ encrypt len(msg1)

where msg1 = ’p’| len(request)|request|kS

11. p = m1 e = ma l l o c ( f u l l l e n ) ; stack p⇒ heap 7
stackm1 e⇒ heap 7

12. memcpy(p , ”p” , 1) ; heap 7⇒ ’p’
13. p += 1 ; stack p⇒ ptr(heap 7, 1)
14. ∗ ( u i n t 3 2 t ∗) p = ctx→s e l f l e n ; heap 7⇒ ’p’| len(clientID)
15. p += s i z e o f ( c t x→s e l f l e n ) ; stack p⇒ ptr(heap 7, 5)
16. memcpy(p , c t x→s e l f , c t x→s e l f l e n ) ; heap 7⇒ ’p’| len(clientID)|clientID
17. p += ctx→s e l f l e n ; stack p⇒ ptr(heap 7, 5 + len(clientID))

18. m1 e l en
= enc r yp t ( c t x→k ab , c t x→k ab l e n ,

m1, m1 len , p ) ;

heap 7⇒ ’p’| len(clientID)|clientID|cipher1
stackm1 e len⇒ len(cipher1)
new fact: len(cipher1) ≤ encrypt len(msg1)
cipher1 = E(key(clientID, serverID),msg1)

19. f u l l l e n = 1 + s i z e o f ( c t x→s e l f l e n )
+ c tx→s e l f l e n + m1 e l en ;

stack full len⇒ 5 + len(clientID)
+ len(cipher1)

20. send (&( c t x→b i o ) ,
&f u l l l e n , s i z e o f ( f u l l l e n ) ) ;

generate IML:
out(c, 5 + len(clientID) + len(cipher1));

21. send (&( c t x→b i o ) , m1 e , f u l l l e n ) ;} generate IML:
out(c, ’p’| len(clientID)|clientID|cipher1 );

Fig. 3. Symbolic execution of the send request function.

created during symbolic execution of the preceding code, by a call to a random
number generator in case of kS or by reading values from the environment in case
of other variables. The value key(clientID , serverID) is a symbolic expression
representing a long-term key. It is generated during symbolic execution of the
call to get shared key .

We examine the symbolic execution of the function send request line by line
in Fig. 3, assuming that we start with the symbolic memory shown above. The
left column shows the source code and the right column shows the corresponding
updates to the symbolic memory as well as the generated IML expressions (in
the last two lines).

For each memory read and write we must find where the pointer offset points
to within the contents of the memory location. This is done with the help of the
SMT solver Yices (Dutertre and de Moura 2006). A detailed explanation of
Fig. 3 is given in the technical report (Aizatulin et al. 2011a).
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The soundness of the C to IML translation is established in Aizatulin et al.
(2011b). There we define a language-agnostic notion of embedding that allows
to include, say, a C program as a subprocess of a pi-calculus process. Formally,
an environment PE is a process containing a hole [] and the embedding PE [P ] of
a process P into PE is defined by replacing all instances of [] with P . Both CVM
and IML (and thus also C and the pi-calculus) are given computational semantics
and the security is defined in terms of the probability that a trace property is
violated. The soundness theorem states that if a single-path C program P yields
an IML model P̃ then for any IML environment PE the process PE [P ] is no less
secure (up to a fixed polynomial) than PE [P̃ ]. An example of an environment
process PE is shown in Section 3.3. The ability to specify an environment of a
C program in the pi-calculus allows us to do threat modelling without having to
add concurrency to the C language itself.

3.3 Translating to Pi-Calculus by Message Format Abstraction

The extracted IML model is much simpler than the original C code—it uses no
mutable memory. Unfortunately it is still too low-level to be given to ProVerif
because of the bytestring manipulation primitives. The key observation for the
next step is that the symbolic expressions that use concatenation are used to
construct tuples and the symbolic expressions that use substring extraction are
used to extract fields from tuples. The strategy will thus be to introduce new
operation symbols, replacing the bytestring-manipulating expressions. Of course
we shall need to prove that the substituted expressions satisfy the algebraic laws
that are expected of tuples.

As an example, consider the client request message

’p’| len(clientID)|clientID |
E(key(clientID , serverID), ’p’| len(request)|request |kS).

By introducing conc1(b1, b2) = ’p’| len(b1)|b1|b2 the request message becomes
conc1(clientID , E(key(clientID , serverID), conc1(request , kS)). Similarly the part
of the IML process

if msg1{0, 1} = ’p’ then if len(msg1) ≤ 5 + msg1{1, 4} then

let client1 = msg1{5,msg1{1, 4}} in . . .

can be rewritten to let client1 = parse1(msg1) in . . . by defining

parse1(b) = if ¬((b{0, 1} = ’p’) ∧ (len(b) ≤ 5 + b{1, 4})) then ⊥ else b{5, b{1, 4}}

and adding the rewrite rule parse1(conc1(x, y)) = x. Similarly we extract a func-
tion parse2 with the property parse2(conc1(x, y)) = y. This yields the following
pi-calculus processes for the client and the server:

let A =
event client begin(clientID, serverID, request);
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new kS1;
let msg1 = conc1(clientID, E(key(clientID, serverID), conc1(request, kS1))) in
out(c, msg1);
in(c, msg1);
event client accept(clientID, serverID, request, D(kS1, msg1)); 0.

let B =
in(c, msg1);
event server reply(parse1(msg1), serverID, parse1(D(key(parse1(msg1),serverID), parse2(msg1))),response);
let msg2 = E(parse2(D(key(parse1(msg1), serverID), parse2(msg1))), response) in
out(c, msg2); 0.

In addition to the models for the client and server the ProVerif input contains
a handwritten environment process that describes the interaction of clients and
servers and binds their free variables. (The client A has free variables clientID
and serverID, while the server B has free variable serverID.) Our environment in-
cludes dynamic key compromise and models dynamic key lookup using a private
function key:

free request, response.
process

! (in(c, clientID); in(c, serverID); !A)
| ! (in(c, serverID); !B)
| ! (in(c, (clientID, serverID)); event bad(clientID, serverID); out(c, key(clientID, serverID)))

Finally the ProVerif input contains user-supplied equations for cryptographic
operations and the required security properties:

fun E/2. private fun key/2. reduc D(k, E(k, x)) = x.

query ev:client accept(client, server, req, resp)==> ev:server reply(client, server, req, resp) | ev:bad(client,
server).

query ev:server reply(client, server, req, resp)==> ev:client begin(client, server, req) | ev:bad(client, server).
query attacker:key(client, server)==> ev:bad(client, server).
query attacker:kS1[clientID = client; serverID = server]==> ev:bad(client, server).
query ev:client accept(client, server, req, resp)==> ev:bad(client, server).

These properties correspond to Section 2.1. The first two properties are the
authentication correspondences. The next three properties are the secrecy of the
long-term key, and the session key, and of the payloads. The values in the square
brackets bind the keys and the payloads to the client and server identities under
which they are created. For instance, the value kS1[clientID = client; serverID
= server] is the session key created after having received client as clientID and
server as serverID. The last property is used to check the sanity of the model by
checking the reachability of the final state; unlike the other properties, we intend
that it be false. If it is false, it means there is an execution of the protocol that
reaches the end, the client accept event, without compromise of the long-term
key.

The soundness result proved in Aizatulin et al. (2011b) says that an IML
process P is no less secure (up to a fixed polynomial) than the pi process P̃ that
it translates to. The result requires that the substituted expressions actually do
behave like their symbolic counterparts. This relies on the following properties,
all of which are proved automatically in our implementation:

– The ranges of all constructor operations should be disjoint. This is assumed
for cryptographic primitives and proved for the newly introduced concatena-
tion operations by enforcing the use of distinct tags for each concatenation,
such as the tag ’p’ in conc1.
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– The rewrite rules like parse1(conc1(x, y)) = x above should be satisfied. This
is proved by substituting the definitions of parse1 and conc1 and simplifying
the resulting expression to x.

– The parser should fail (that is, return ⊥) for any bytestring that is not in the
range of the corresponding concatenation function. As proved in (Aizatulin
et al. 2011b), this is satisfied whenever the parser checks all the tag fields
and checks the consistency of the length fields with the actual length of the
message.

3.4 Verification with ProVerif

Running ProVerif with the above input successfully verifies the properties:

> proverif −in pi pvmodel.out | grep RESULT
RESULT ev:client accept(...)==>ev:server reply(...) | ev:bad(...) is true.
RESULT ev:server reply(...)==>ev:client begin(...) | ev:bad(...) is true.
RESULT attacker:key(client 534,server 535)==>ev:bad(client 534,server 535) is true.
RESULT attacker:kS1 28[...]==>ev:bad(clientID 26[...],server 362) is true.
RESULT ev:client accept(client 32,server 33,req 34,resp 35)==>ev:bad(client 32,server 33) is false.

The ProVerif result may be interpreted in two ways. The first interpretation
would establish the security in the computational model as developed in Aizat-
ulin et al. (2011b) by appealing to a computational soundness result like Backes
et al. (2009). In such a model the attacker is an arbitrary machine that exchanges
bytestrings with the C program or the executing pi process. Unfortunately, such
results often place substantial restrictions on the cryptographic operations used
by the protocol as well as the structure of the protocol itself. In particular, keys
travelling over the network (like kS in our protocol) and key compromise are
difficult. We are not aware of any computational soundness result that applies
to the protocol analysed in this paper.

Instead, in this case we rely on a second interpretation with respect to a sym-
bolic model of cryptography, as in Dupressoir et al. (2011). In this interpretation
the attacker is weaker—in our case it is restricted to be a pi-calculus process that
interacts with our protocol process. Furthermore the properties are guaranteed
to hold only for those traces in which there are no collisions, that is, where syn-
tactically distinct symbolic expressions evaluate to different bytestrings. Due to
the limitations of such an interpretation and the limitations of computational
soundness results, we are working on verification of the models directly in the
computational setting using CryptoVerif.

To summarize, our first approach automatically extracts a verifiable model
in pi calculus from protocol code in C. We assume that the protocol follows a
single path, with any deviation leading to immediate termination. Given this
assumption, which holds of our example protocol, the extracted model captures
all runs of the protocol code, and we prove correspondence and secrecy properties
of the model.

10



4 Verification using a General-Purpose Verifier

Our second approach to C protocol verification relies on stating and proving in-
variants of program data structures using the general-purpose verifier VCC (Co-
hen et al. 2009). We adapt to C the method of invariants on cryptographic
structures first developed in the setting of F7 (Bhargavan et al. 2010; Fournet
et al. 2011a).

Our formulation of trace-based security goals is superficially different but in
fact equivalent to that of the previous section. For secrecy, we prove properties
of the cryptographic invariants. For authentication, instead of relying on global
correspondence assertions, we prove the correction of assertions embedded in our
code according to the following variation of our protocol narration.

Authenticated RPC: RPC-enc

A : event Request(A,B , req)
A→ B: A, {req , kS}kAB

B : assert Request(A,B , req) ∨ Bad(A,B)
B : event Response(A,B , req , resp)
B → A: {resp}kS
A : assert Response(A,B , req , res) ∨ Bad(A,B)

The original work on cryptographic invariants in F7 introduces inductive
definitions simply by listing Horn clauses. In our work with VCC, we express the
symbolic algebra and its cryptographic invariants as explicit Coq definitions. For
the sake of brevity these definitions are omitted from our previous publication
(Dupressoir et al. 2011). In this paper, we take the opportunity to explain the
Coq definitions in detail in the following section, before describing how to embed
the development into VCC, so as to prove a security theorem about the C code.

4.1 Coq Development: Symbolic Algebra and Level Predicate

This section describes a type term of symbolic cryptographic expressions, a type
log of sets of events during runs of a protocol, and a type level, either Low or High.
Given these types, we make an inductive definition of a predicate Level l t L,
meaning that the term t may arise at level l after the events in log L have
happened. The set of terms at level Low is an upper bound on any attacker’s
knowledge, while the set of terms at level High is an upper bound on any prin-
cipal’s knowledge. (The set of High terms is a strict superset of the Low terms.)
We make these definitions in the Coq proof assistant, and use it to check secu-
rity theorems. Subsequently, we import the definitions and theorems into VCC,
confident in their soundness.

First, we define the term type, with constructors to build literal terms from
bytestrings, to injectively pair two terms (the (·, ·) operation), and to perform
symmetric authenticated encryption ({·}·). (To accommodate other protocols,
we may extend the type with constructors for other standard cryptographic
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primitives, such as asymmetric encryption and signature, and HMAC computa-
tions.)

We define an auxiliary type usage, whose values describe the purposes of
freshly generated bytestrings of the protocol. These may be guesses generated
by the attacker, or protocol keys, or nonces sent as messages to help us specify
secrecy properties. There are two kinds of key usage, for long-term keys and
session keys, and there are two kinds of nonces, for request and response messages
that are meant to remain secret.

Inductive term :=
| Literal: (bs: bytes)
| Pair: (t1 t2: term)
| SEnc: (k p: term).

Inductive nonceUsage :=
| U Request: (a b: term)
| U Response: (a b req: term).

Inductive sencKeyUsage :=
| U RPCKeyAB: (a b: term)
| U RPCSessionKey: (a b req: term).

Inductive usage :=
| AttackerGuess
| Nonce: nonceUsage
| SEncKey: sencKeyUsage.

Next, we introduce the log type as being a set of events, where there are
four constructors of the event type: (1) an event New (Literal bs) u means that
the fresh bytestring bs has one of the key or nonce usages u; (2) an event
Request a b req means that client a intends to send server b the request req;
(3) an event Response a b req resp means that server b has accepted the request
req from client a and intends to reply with response resp; (4) an event Bad a b
means that any long-term keys between client a and server b are compromised.
We also define a predicate Good L to mean that the New events in L ascribe a
unique usage to each nonce or key, and apply only to bytestring literals.

Inductive ev :=
| New: (t: term) (u: usage)
| Request: (a b req: term)
| Response: (a b req resp: term)
| Bad: (a b: term).

Definition log := ListSet.set event.
Definition Logged (e: ev) (L: log) :=
ListSet.set In e L.

Definition log leq (L L’: log) :=
∀x, Logged x L →Logged x L’.

Definition Good (L: log) :=
(∀ t u, Logged (New t u) L →
∃bs, t = Literal bs) /\

(∀ t u1 u2, Logged (New t u1) L →
Logged (New t u2) L →u1 = u2).

A central idea of cryptographic invariants is that each key usage has an
associated payload property, which relates keys and payloads to which honest
principals can apply the corresponding cryptographic primitive. The payload
property RPCKeyABPayload a b m L says that a long-term key shared between
a and b may encrypt a payload m when m is a pair composed of a request
from a to b on which the Request event has been logged in L, together with
a session key for a and b generated specifically for that request. The payload
property RPCSessionKeyPayload a b req m L says that a session key key may
encrypt a payload m if it has been logged as a response to req. We combine
these two payload properties in the definition below of canSEnc, which serves
as a precondition, in code, to the encryption function when called by honest
participants.
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Definition RPCKeyABPayload (a b m: term) (L: log) :=
∃req, ∃k,
m = Pair req k /\
Logged (Request a b req) L /\
Logged (New k (SEncKey(U RPCSessionKey a b req))) L.

Definition RPCSessionKeyPayload (a b req m: term) (L: log) :=
Logged (Response a b req m) L.

Definition canSEnc (k p: term) (L: log) :=
(∃ a, ∃b, ∃req,

Logged (New k (SEncKey(U RPCSessionKey a b req))) L /\
RPCSessionKeyPayload a b req p L) \/

(∃ a, ∃b,
Logged (New k (SEncKey(U RPCKeyAB a b))) L /\
RPCKeyABPayload a b p L).

Another central idea is that each nonce or key has a compromise condition,
which needs to be fulfilled before a literal given that usage can be released to
the attacker. Implicitly, bytestrings with usage AttackerGuess are always known
to the attacker. Our next two predicates define the compromise conditions for
other sorts of nonce and key.

Definition nonceComp (n: term) (L: log) :=
(∃ a, ∃b, Logged (New n (U Request a b)) L /\ Logged (Bad a b) L) \/
(∃ a, ∃b, ∃req, Logged (New n (Nonce(U Response a b req))) L /\ Logged (Bad a b) L).

Definition sencComp (k: term) (L: log) :=
(∃ a, ∃b, Logged (New k (SEncKey(U RPCKeyAB a b))) L /\ Logged (Bad a b) L) \/
(∃ a, ∃b, ∃req, Logged (New k (SEncKey(U RPCSessionKey a b req))) L /\ Logged (Bad a b) L).

Given these auxiliary predicates, we now define the Level predicate. We in-
tend that given a log L, any term t sent or received on the network satisfies
Level Low t L, while if t is data manipulated internally by principals, we must
have Level High t L. (The Level predicate consolidates both the Pub and Bytes
predicates from Dupressoir et al. (2011); specifically, Level Low is a predicate
equivalent to Pub, and Level High is a predicate equivalent to Bytes.) It eas-
ily follows from the definition that any term satisfying Level Low also satisfies
Level High (but not the converse, because for example uncompromised keys and
nonces satisfy Level High but not Level Low). We also prove that Level l is a
monotonic function of its log argument for all l.

Inductive level := Low | High.
Inductive Level: level →term →log →Prop :=
| Level AttackerGuess: ∀l bs L, (∗ AttackerGuesses are always Low ∗)
Logged (New (Literal bs) AttackerGuess) L →
Level l (Literal bs) L

| Level Nonce: ∀l bs L nu, (∗ Nonces are Low when compromised ∗)
Logged (New (Literal bs) (Nonce nu)) L →
(l = Low →nonceComp (Literal bs) L) →
Level l (Literal bs) L

| Level SEncKey: ∀l bs L su, (∗ SEncKeys are Low when compromised ∗)
Logged (New (Literal bs) (SEncKey su)) L →
(l = Low →sencComp (Literal bs) L) →
Level l (Literal bs) L

| Level Pair: ∀l t1 t2 L, (∗ Pairs have same level as their components ∗)
Level l t1 L →
Level l t2 L →
Level l (Pair t1 t2) L
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| Level SEnc: ∀l l’ k p L, (∗ SEnc with plaintext matching payload property ∗)
canSEnc k p L →
Level l’ p L →
Level l (SEnc k p) L

| Level SEnc Low: ∀l k p L, (∗ SEnc with compromised or Low key ∗)
Level l k L →
Level l p L →
Level l (SEnc k p) L

Theorem Low High: ∀t L, Level Low t L →Level High t L.
Theorem Level Positive: ∀l t L L’, log leq L L’ →Level l t L →Level l t L’.

As mentioned previously, we state secrecy properties of the protocol as con-
sequences of the invariants respected by the code. We prove in the following two
theorems that fresh nonces used as requests and responses are kept secret unless
keys are compromised. We actually state the contrapositive: that if Level Low
holds on the nonce (intuitively, if the nonce is not secret), then the long-term
key is compromised. The proof is an almost direct application of the inversion
principle for the Level Nonce inductive rule above: the only way for a nonce to
be Low is for its compromise condition to hold.

Theorem SecrecyRequest: ∀a b req L,
Good L →
Logged (New req (Nonce(U Request a b))) L →
Level Low req L →
Logged (Bad a b) L.

Theorem SecrecyResponse: ∀a b req resp L,
Good L →
Logged (New resp (Nonce (U Response a b req))) L →
Level Low resp L →
Logged (Bad a b) L.

These secrecy properties state the absence of a direct flow of a nonce to the
opponent, unless the associated key is compromised. We do not address here
how to show noninterference properties, the absence of indirect flows.

Finally, we state our correspondence properties for the request and response
methods. We embed the assertions from the narration at the start of this section
within the code at the points that the request and response messages have been
validated; to verify these assertions we rely on the following theorems about
our cryptographic invariants. The first states that if there is a public message
encrypted with the long-term key, then either the plaintext is a well-formed
request or the key is compromised. The second states that if there is a public
message encrypted under a session key, then either the plaintext is a well-formed
response or the corresponding long-term key is compromised.

Theorem AuthenticationRequest: ∀a b req kAB k L,
Good L →
Logged (New kAB (SEncKey(U RPCKeyAB a b))) L →
Level Low (SEnc kAB (Pair req k)) L →
Logged (Request a b req) L /\
Logged (New k (SEncKey(U RPCSessionKey a b req))) L) \/
Logged (Bad a b) L.

Theorem AuthenticationResponse: ∀a b req resp k L,
Good L →
Logged (New k (SEncKey(U RPCSessionKey a b req))) L →
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Level Low (SEnc k resp) L →
Logged (Response a b req resp) L) \/
Logged (Bad a b) L.

In these authentication theorems, we do not expect request and response mes-
sages to be freshly generated nonces. Therefore, the authentication results can
be used in all possible applications of the protocol, even those applications that
do not make use of the secrecy property.

4.2 VCC Theory of Symbolic Cryptography

As in Dupressoir et al. (2011), we import the definitions and theorems into
VCC as first order program constructs. We refer readers to the previous work
for more details on this translation. The VCC language has evolved since the
status reported in Dupressoir et al. (2011) and now includes support for datatype
declarations, which we exploit to provide cleaner, simpler, and more efficient
declarations for the inductive datatypes.

For example, this small code snip-
pet defines the term algebra using
VCC’s inductive datatype syntax.

( da ta t ype term {
case L i t e r a l ( By t eS t r i n g s ) ;
case Pa i r ( term t1 , term t2 ) ;
case SEnc ( term k , term p ) ; })

An alternative to importing the inductively defined predicates such as Level
into VCC would be to develop the security proof directly in VCC. We prefer to
use Coq as it has better developed support for inductive reasoning, and because
by doing the proof in Coq, we prove security theorems once and may use them to
prove several implementations, indeed even implementations written in different
languages (for example, both F# and C).

We rely on ghost state to represent the event log; the Coq predicate Good
is an invariant on the log. We also rely on ghost state to associate concrete
bytestrings in the C program with the terms developed in Coq. As discussed in
our prior paper, inconsistencies may arise if two distinct terms correspond to
the same concrete bytestring. We assume an implementation of cryptography
that keeps track at run-time of all operations performed, linking symbolic terms
to the concrete results obtained, and aborts the execution whenever it happens
that two distinct terms are represented by the same bytestring.

However, in this particular implementation, we inline the pairing operations
to allow for various performance optimizations. As a result, the hybrid wrapper
approach described by Dupressoir et al. (2011) cannot be directly applied to
the code discussed here. Instead, we write and verify MakePair and DestructPair
ghost functions that will be called once the concrete pairing is complete. Provided
that the byte string passed as argument has the correct format for a pair (as
described in Line 10), it will update the table (or detect a collision) accordingly.
A simplified contract for MakePair is shown below.

( ghos t v o i d MakePair ( By t eS t r i n g b1 , By t eS t r i n g b2 , By t eS t r i n g b , \ c l a im c )
( a lways c , (& t a b l e )→\ c l o s e d && t a b l e c l a i m s t a b l e ( ) )
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( r e q u i r e s b == concat ( f r om a r r a y ( (BYTE∗) ”p” ,1 ) ,
concat ( i n t b y t e s ( b1 . l eng th , 4 ) , concat ( b1 , b2 ) ) ) )

( e n s u r e s t a b l e .B2T [ b ] == Pa i r ( t a b l e .B2T [ b1 ] , t a b l e .B2T [ b2 ] ) ) ;

4.3 Attacker Model and Security Results

Attacker model The attacker is given complete control over the network (all
messages are exchanged through the attacker, who controls scheduling and can
eavesdrop and modify messages as symbolic terms), can setup and run new
instances of the protocol roles, either with Low requests or freshly generated
High requests, can compromise long-term keys, and has complete control over
the scheduling of instructions. We formalize the attacker, as in Dupressoir et al.
(2011), by providing an attacker interface, called the shim, that is verified to
maintain the cryptographic invariants whilst providing the attacker with the
intended capabilities.

v o i d t o L i t e r a l (BYTE∗ bu f f e r , u i n t 3 2 t l e n g t h ) ;
v o i d p a i r (BYTE∗ b1 , u i n t 3 2 t b1 l en , BYTE∗ b2 , u i n t 3 2 t b2 l en , BYTE∗ b ) ;
v o i d d e s t r u c t (BYTE∗ bu f f e r , u i n t 3 2 t l eng th , BYTE∗∗ b1 , BYTE∗∗ b2 ) ;
v o i d sEnc ryp t (BYTE∗ key , u i n t 3 2 t k e y l e n , BYTE∗ p l a i n , u i n t 3 2 t p l a i n l e n ,

BYTE∗∗ c i phe r , u i n t 3 2 t ∗ c i p h e r l e n ) ;
v o i d sDec rypt (BYTE∗ key , u i n t 3 2 t k e y l e n , BYTE∗ c i phe r , u i n t 3 2 t c i p h e r l e n ,

BYTE∗∗ p l a i n , u i n t 3 2 t ∗ p l a i n l e n ) ;

s e s s i o n ∗ s e t u p s e c r e t s (BYTE∗ a l i c e , u i n t 3 2 t a l i c e l e n ,
BYTE∗ bob , u i n t 3 2 t bob l en ) ;

s e s s i o n ∗ s e t u p p u b l i c (BYTE∗ a l i c e , u i n t 3 2 t a l i c e l e n ,
BYTE∗ bob , u i n t 3 2 t bob l en ,
BYTE∗ r eque s t , u i n t 3 2 t r e q u e s t l e n ) ;

channe l g e tC l i e n tChann e l ( s e s s i o n ∗ s ) ;
channe l g e tS e r v e rChanne l ( s e s s i o n ∗ s ) ;
v o i d w r i t e ( channe l c , BYTE∗ bu f f e r , u i n t 3 2 t l e n g t h ) ;
v o i d r ead ( channe l c , BYTE∗∗ bu f f e r , u i n t 3 2 t ∗ l e n g t h ) ;

Security of authenticated encryption-based RPC The final security re-
sult, once the protocol code and the shim have been verified, can be stated as
follows.

Theorem 1. For all attack programs P written as a well-formed sequence of
calls to functions in the shim, the correspondence assertions and secrecy in-
variants hold in all states until two distinct terms are associated with the same
bytestring.

The simple functions that do no pairing (such as the message processing
functions send response and recv response ) were verified with limited manual
effort (less than an hour’s work on top of the memory safety for adding the
required annotations) and efficiently (less than 10 seconds of verification time)
by VCC. Other functions, in particular send request and recv request require
a lot more time and annotations (and currently some additional assumptions).
However, the cryptographic verification itself is rather quick, and most of the
verification time, as reported by VCC’s verification debugging tools, is spent
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discharging memory-safety proof conditions introduced when passing unstruc-
tured byte arrays through function boundaries. We also prove more than simple
memory-safety and cryptographic properties, establishing a well-formedness re-
sult on the protocol context that is passed around as the unique argument, and
recording all cryptographic properties of each field on successful return. This
property could then be used to prove security and functional properties at the
level of an application using the protocol, or to compose protocols together.

4.4 Discussion

Our approach with VCC allows us to prove memory safety and symbolic security
of C code, that is, safety of the protocol code against a network-based adversary
in the symbolic model of cryptography. It does not prevent attacks outside this
model, such as computational or physical attacks.

We presented our Coq definitions for a particular protocol. It would be useful
future work to generalize our definitions to form a domain-specific language for
protocols, in which message formats, events, payload conditions, compromise
conditions, and other protocol-specific parameters could be expressed, and from
which proofs and perhaps some protocol code, such as routines to marshal and
unmarshal messages, could be extracted.

5 Related Work

We describe the main prior work on C. For recent surveys of related work in
higher-level languages, see Fournet et al. (2011a) and Hriţcu (2011).

Csur (Goubault-Larrecq and Parrennes 2005) pioneered the extraction of
a verifiable model from cryptographic code in C. Csur extracts a set of Horn
clauses from a C program for the Needham-Schroeder protocol, which are then
solved using a theorem prover. We improve upon CSur in two ways in particular.
First, in the approach presented in Section 3, we have an explicit attacker model
with a standard computational attacker. The attacker in CSur is essentially
symbolic—it is allowed to apply cryptographic operations, but cannot perform
any arithmetic computations. Second, we handle authentication, as well as se-
crecy properties. Adding authentication to CSur would be hard, as it relies on
a coarse over-approximation of C code.

Software model checking techniques have been applied to cryptographic code
in C. Godefroid and Khurshid (2002) use genetic algorithms to explore the
state spaces of concurrent systems, with an implementation of the Needham-
Schroeder protocol as an example; neither systematic nor randomg testing could
find Lowe’s attack, but it was found by random search guided by applications
of application-independent heuristics. Godefroid et al. (2005) apply DART, di-
rected automated random testing, to the same implementation code, and are
able to find Lowe’s attack via a systematic search. ASPIER (Chaki and Datta
2009) uses software model checking to verify bounded numbers of sessions of
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the main loop of OpenSSL. The model checking operates on a protocol descrip-
tion language, which is rather more abstract than C; for instance, it contains no
pointers and does not deal with messages of variable length.

(Udrea et al. 2006) reports on the Pistachio approach which verifies the
conformance of an implementation with a set of rules manually extracted from
a specification of the communication protocol. It does not directly support the
verification of security properties.

The frameworks SAGE (Godefroid et al. 2008) and KLEE (Cadar et al. 2008)
use symbolic execution to generate test cases with high path coverage. After
obtaining a symbolic summary of the program these frameworks apply an SMT
solver to find inputs leading to a bad state. In contrast, our approach generates
models for input to a high-level cryptographic verification tool to prove absence
of attacks. In contrast to SAGE or KLEE, our symbolic execution covers all
possible concrete executions along a single path. We rely on symbolic pointers
to manipulate data, the length of which is not known in advance, as is typical
in network protocols.

Corin and Manzano (2011) report an extension of KLEE that allows KLEE to
be applied to cryptographic protocol implementations. Similarly to the approach
presented in Section 3, KLEE is based on symbolic execution; the main difference
is that Corin and Manzano treat every byte in a memory buffer separately and
thus only supports buffers of fixed length.

Finally, in recent work, Polikarpova and Moskal (2012) develop a stepwise
refinement approach to verifying invariants of security code using VCC.

6 Conclusions, and the Csec Challenge

This paper summarizes the positive results of two recent papers on verifying
security properties of cryptographic software in C.

One particular surprise, in our experience, was that although there are many
large C codebases (tens of thousands of lines of code) that implement protocols
such as TLS or IPsec, there are very few small and readily-available bench-
mark problems on which to evaluate new verification techniques. Hence, we
have launched the Csec Challenge, a collection of challenge problems, including
source code, intended security properties, and the results obtained by various
verification tools. We aim to collect both small benchmark problems and larger
widely-deployed codebases. Our collection is available at http://research.

microsoft.com/csec-challenge/. We hope to create a community resource
to help evaluate the next generation of verification tools for cryptographic code
in C.
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