
c© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/HASE.2012.35

Supporting Security Assurance in the Context of Evolution:
Modular Modeling and Analysis with UMLsec

Thomas Ruhroth
Technische Universität Dortmund

thomas.ruhroth@cs.tu-dortmund.de

Jan Jürjens
TU Dortmund & Fraunhofer ISST

http://jan.jurjens.de

Abstract—Developing security-critical software correctly and
securely is difficult. To address this problem, there has been a
significant amount of work over the last 10 years on providing
model-based development approaches based on the Unified
Modeling Language which aim to raise the trustworthiness
of security-critical systems. However, the fact that software
continues to evolve on an ongoing basis, even after the
implementation has been shipped to the customer, increases
the challenge since in principle, the software has to be re-
verified after each modification, requiring significant efforts.
In particular, as part of the system evolution, the threat model
can change against which the design has to be verified. This
requires a modular approach to security assurance, since the
threat model has to be substituted independently from the
design model. In this paper, we present such an approach based
on the extension mechanisms available for the Unified Modeling
Language (UML), in particular using so-called profiles. This
modular approach allows us to define analysis models which
can be exchanged easily whenever the threat model changes due
to system evolution. We demonstrate the approach in the face
of a specific security requirement, namely secure information
flow.

I. INTRODUCTION

Software-based systems are becoming increasingly long-
living [1]. This was demonstrated strikingly with the oc-
currence of the year 2000 bug, which occurred because
software had been in use for far longer than its expected
lifespan. Also, software-based systems are getting increas-
ingly security-critical since software now pervades the whole
critical infrastructures dealing with critical data of both
nations and also private individuals. There is therefore a
growing demand for more assurance and verifiable secure
IT systems both during development and at deployment
time, in particular also for long living systems. Yet a long
lived system also needs to be flexible, to adapt to evolving
requirements, usage, and attack models. However, using
today’s system engineering techniques we are forced to trade
flexibility for assurance or vice versa: we know today how
to provide security or flexibility taken in isolation. We can
use full-fledged verification for providing a high-level of
assurance to static requirements, or we can provide flexible
software, developed in weeks using agile methodologies, but
without any assurance. This raises the research challenge of

whether and how we can provide some level of security
assurance for something that is going to change.

Our objective is thus to develop techniques and tools that
ensure “lifelong” compliance to evolving security require-
ments for a long-running evolving software system. This is
challenging because these requirements are not necessarily
preserved by system evolution [2]. In this paper, we present
results towards a security assurance approach which can
deal with evolution and in particular changing threat models.
Most existing assessment methods used in the development
of secure systems are mainly targeted at analyzing a static
picture of the system or infrastructure in question. For exam-
ple, the system as it is at the moment, or the system as it will
be when we have updated certain parts according to some
specifications. In the development of secure systems for
longevity, we also need assurance approaches that can deal
with changing threat models. Consequently, our approach
allows interchanging the used analysis model when evolution
takes place. This is done by making use of the extension
mechanisms available for the Unified Modeling Language
(UML).

Evolution describes the changes of a system in the main-
tenance phase of its lifecycle. Often evolution is driven by
the change of requirements or by changes in the surrounding
environment. Beside the change request by the system users,
changes in security needs or changes in industrial standards
like certification standards are very common triggers for
evolution.

In model based development those security or standard
requirements and properties are often denoted in the models.
So a system architect or a developer can analyze the soft-
ware early in the development process. One technique for
model based security modeling is provided by UMLsec [3].
UMLsec annotates UML diagrams with security information
using stereotypes. Also UMLsec provides so called checks
to ensure the annotated properties.

Unfortunately, most approaches for UML are not prepared
for changes in background definitions for checks. For ex-
ample, whenever a security standard is changed, the old
version of UMLsec needed to be adapted to comply the
new standards.

Many of these problems are caused by two types of exten-

2

sions provided in UML: the lightweight and the heavyweight
extensions. Both types have their drawbacks in supporting
evolution.

The lightweight extension uses stereotypes to annotate
UML elements. Stereotypes are often useful but do not give
the full flexibility to hold all information in the model. The
solution provided by UML is to use a heavyweight extension
by creating a new or extended meta-model. While giving
full flexibility in meta-modeling, the heavyweight extension
is not supported by most existing tools. Thus a full tool
chain for the model based development approach has to be
created.

In this paper we develop a simple and modular approach
to combine the benefits of both extension types. As running
example we use two new profiles for UMLsec. This profiles
extend UMLsec with a notation and analysis of for secure
information flow (SIF) using the modular assembly kit for
security [4]. Since UMLsec already has support for other SIF
techniques, the exchangeable UMLsec profiles give a sound
technique for evolve UMLsec. It does not invalidate old
models and give the possibility to use other notions of SIF.
To archive the interchange of analysis models we defined a
new kind of profiles by combining both kind of extension.
The new kind of profiles have a syntax part, defined by a
lightweight extension and an analysis model defined by an
heavyweight extension.

The analysis model is a special meta-model for the
analysis that is not directly represented in the genuine system
model. It is used additionally to the lightweight extension
to UML and offers many benefits from a heavyweight
extension of UML in a lightweight way. The analysis model,
seen as a heavyweight extension, allows extending the UML
meta-model. The meta-model and the analysis models can
be merged into a resulting analysis model.

After giving a brief introduction to the domain of the
example application and UMLsec, in the third section we
describe the structure of our extension. Then we demonstrate
the approach by defining two UMLsec 2.0 subprofiles.

II. MODEL-BASED SECURITY ASSURANCE
WITH UMLSEC

UMLsec: Model-based Security Engineering (MBSE,
[3], [5]) is a soundly based approach for developing security-
critical software where recurring security requirements (such
as secrecy, integrity, authenticity) and security assumptions
on the system environment can be specified either within a
UML specification or within the source code as annotations
(cf. Fig. 1). Analysis plugins in the associated UMLsec tool
framework [6] (Fig. 2) generate logical formulas formalizing
the execution semantics and the annotated security require-
ments. Automated theorem provers (ATPs) and model check-
ers automatically establish whether the security requirements
hold. If not, a Prolog-based tool automatically generates an
attack sequence violating the security requirement, which

Source Code

(UML) Models

Requirements

Runtime System

Configurations
Configure

Execute

Verify

Verify

Analyze
against

Weave
in

Code-/
Testgen.

Generate/
Verify

Configure

Figure 1. Model-based Security Engineering

can be examined to determine and remove the weakness.
The UMLsec extension is given in form of a UML profile
using the standard UML extension mechanisms. Stereotypes
are used together with tags to formulate the security re-
quirements and assumptions. Constraints give criteria that
determine whether the requirements are met by the system
design by referring to a precise semantics of the used UML
fragment defined in [3] using so-called UML Machines,
which is a kind of state machine with input/output interfaces
and UML-type communication mechanisms. Advanced users
of the UMLsec approach can also implement plugins for
constraints of self-defined stereotypes. The UMLsec ap-
proach has been used in several industrial applications (cf.
[7] and references there).

As UMLsec incorporates many security areas, in UMLsec
the problem of exchanging and combining security ap-
proaches described in the introduction occurs.

In Fig. 3 a simplified part of a WebPaySystem component
is depicted. A Customer can get an invoice and pay this
invoice via a credit card. These credit card information can
be stored. A misbehavior of a customer can be punished.
All these actions are reflected in the operations of the
class. The customer provides two interfaces. The interface
SellerInterface exports the invoice operation and the

UML editor

Java editor

Automated
Theorem

Prover

Refactoring
Engine

Assert’s

Code
with

data flow

"uses"

model
UMLsec

code
Java

fmla
FOL

generator

Attack

prog.
Prolog

Assertion
Generator

Security
Analyzer

Analyzer

Text
Report,
Attack
Trace

Hard−

Model
ened

Figure 2. Model-based Security Tool Suite

3

CustomerInterface provides the operations to store the
credit card information and to pay.

The state chart specifies that if an invoice has been issued,
the customer has to pay this invoice before getting another
invoice.

The idea of security modeling using UMLsec is to
add security information to design and implementation
models. A stereotype is an annotation in UML which
can be parameterized by tags (see Fig. 3). The interface
Customerinterface has two stereotypes. The stereo-
type 〈〈interface〉〉 is a UML stereotype annotation in-
dication that this is an interface. The second stereotype
〈〈SecurityLevel〉〉 is a UMLsec SL stereotype parametrized
by a tag named level which is set to a set containing one
element (customer).

While the syntax has nearly not changed in the new
version of UMLsec, the system of the analysis has changed
rapidly through the introduction of the analysis model and
the new UMLsec 2.0 profiles. The latter parts are explained
in this paper.

The analysis can be automatically performed for many
security properties by the tool CARiSMA [8] or its prede-
cessor UMLsecTool [6].

MAKS: The Modular Assembly Kit for Security
(MAKS) [4], [9] can be used to express secure informa-
tion flow properties in a modular and uniform way. The
fundamental elements are Basic Security Predicates (BSP).
All BSPs are parameterized with a view V , denoting the ele-
ments which are confidential. A MAKS view V = (V,N,C)
[4] is a disjoint partition of the event set E into three sets
V , N , C.

visible invisible
confidential ∅ C
not confidential V N

The set C collects confidential events which should not be
seen. The events of V are visible and hold non confidential
data. Events which cannot be observed and are not confiden-
tial are collected in the set N . The combination of visible
but confidential events makes no sense, because visibility
and confidentiality are contradicting.

The system model is given as a prefix closed set Tr of
all system traces where a trace is a sequence of events E.
The system traces Tr are prefix closed if for all traces also
all prefixes are in Tr. For example, if the sequence 〈abc〉
is in Tr then also the traces 〈ab〉, 〈a〉 and 〈〉 need to be in
Tr.

Using a view V we can define BSPs. One example for
such a BSP is strict removal (SR):

SRV,N,C(Tr) := ∀τ ∈ Tr : τ |V ∪N ∈ Tr

Strict removal describes that all “confidential” events C are
independent of the “visible” V and “neither-nor” events N

and thus no information about confidential events can be
inferred from the others.

BSPs can be combined and be parameterized by views. By
using BSPs many SIF properties can be expressed, includ-
ing many traditional notions. For example non-interference
(NFH,L(Tr) := ∀τ ∈ Tr : τ |L ∈ Tr) can be modeled
using SR [4]:

Let L be a set of low events and H be a set of high events
with L ∪H = E. Then the following equality holds:

SRH,∅,L(Tr) = NFH,L(Tr)

Security Levels and Posets (Partially Ordered Sets):
Many complex systems define security levels to describe
which data can be seen by a user and which not. A widely
known system is the linear system of the NATO defining
the security levels unclassified, classified, secret and top
secret. In general a security level structure is described by
a partially ordered set (A,≤).

If P denotes the set of all permissions, then a security
level can be described as a subset of P . The family of
security levels together with the operation subset ⊂ builds a
poset. This can be depicted as a Hasse Diagram (see Fig.9).
Each connection from a higher x to a lower y node means
x ≤ y.

In this paper the security levels are modeled as sets
of events that are allowed to be seen by users holding
this permission. Therefore the relation between the security
levels is modeled as a poset.

III. SECURITY ASSURANCE IN THE CONTEXT OF
EVOLUTION: EXCHANGEABLE PROFILES

As discussed in the introduction, our goal is to use the
benefits of heavyweight UML extensions but not to loose the
flexibility of lightweight extensions. As a side-condition we
want to minimize the changes of the UMLsec syntax. Thus
we define a new kind of profiles consisting of a lightweight
extension defining the syntax and heavyweight extension
corresponding to the semantics.

The idea of the lightweight extension is to support the
addition of information to a model while the definition of
UML, the meta-model, is neither changed nor parts are
removed. The technique for adding information is to use
stereotypes. They do only add information that can be
ignored by tools not knowing a stereotype.

On one hand lightweight extensions are well supported
by tools but is not expressive enough to easily define the
analysis. On the other hand heavyweight extensions defining
a new meta-model and thus has the full power in changing
the UML meta-model, but is complicated to combine with
existing tool chains.

Our new profiles combine the advantages of both the
lightweight and the heavyweight extension (Fig. 4). Each
analysis profile consists out of a normal lightweight UML
profile defining stereotypes, an analysis model defining a

4

〈〈DefSecurityLevels〉〉{poset = {customer < puser, seller < puser, puser < admin}}
〈〈SIFproperty〉〉{upper = {SR}}

WebPay

Customer

〈〈SecurityLevel〉〉{level = {seller}}invoice();
〈〈SecurityLevel〉〉{level = {customer}}setCCard();
〈〈SecurityLevel〉〉{level = {customer}}pay();
〈〈SecurityLevel〉〉{level = {admin}}punish();

〈〈interface〉〉
〈〈SecurityLevel〉〉{level = {seller}}

SellerInterface
invoice();

〈〈interface〉〉
〈〈SecurityLevel〉〉{level = {customer}}

CustomerInterface
setCCard();
pay();

invoice

pay

setCCardsetCCard

Figure 3. Simple Example of a Web-Payment System using UMLsec

heavyweight extension and a mapping between them. The
stereotype profile is used for modeling and can be used
in tools supporting custom profiles. For complex analysis
the analysis model is used. The analysis model is often an
extension of the basic UML-meta-model. In the analysis
model are data structures for the analysis defined and
constraints are be given using OCL. The profile is completed
by a transformation describing how the annotations given by
stereotypes can be transformed in an analysis model.

The separation supports the exchange of profiles, so the
analysis model can be exchanged without changing the
syntax. In some cases are modifications restricted, e.g., the
SL profile can only be exchanged by a profile including the
parts used by the SIF analysis.

In the next section we demonstrate the use of the new
combined profiles in the new version of UMLsec called
UMLsec 2.0. Figure 4 gives an overview over the profiles
and the approach: Each profile is constructed out of three
parts. The first one is a standard UML profile package
defining stereotypes. The stereotypes can be used to annotate
UML model elements. UML profiles are the basis for the
storage of the information. The annotated models can be
saved and processes with the normally used tools, e.g., by
using the XMI exchange format.

Other parts are used for an analysis and are only used
in the parts performing the analysis. The analysis model
defines a new meta-model defining the structure used for
an analysis. We call it “analysis model” since we are
interested in the analysis of model properties, but it can
be used for arbitrary purposes. To fill the analysis model
with data a transformation is applied generating the object
structure out of the model annotated using stereotypes. This
transformation can directly map the stereotypes to objects
(for example used in the UMLsec 2.0 SIF profile) or it can
have a stepwise transformation like it is used latter in the
SL profile. Both kinds lead to an object structure used for
the analysis. The preferred way for the analysis is to define
checks directly on the analysis model using OCL, but the

approach is not limited to OCL.
A UMLsec profile can use other profiles. We can aggre-

gate commonly used parts in a profile which can be reused.
For example, the security level profile is used in arbitrary
contexts like secure information flow, security classification
of documents or usage control. The composition of UMLsec
profiles is done for each part of the profile separately. The
stereotype names have to be disjoint. Thus all stereotypes
of the profiles can be used in combination. The analysis
models are merged using the merge operation defined in
the UML standard. The instantiation of the model follows
the include relation between the profiles. A transformation
into the analysis model is performed when all used analysis
models are instantiated.

The analysis is triggered by the top profiles, which are
the profiles not used by other profiles. The analysis of used
profiles is not performed by itself. If such an analysis is
needed it must be triggered by the top profile as part of its
own analysis.

Now, having introduced all parts we present this approach
using the new UMLsec profile for the analysis of secure in-
formation flow using MAKS. This analysis uses the security
level profile.

IV. EXCHANGEABLE ANALYSIS MODELS:
MODELING SECURE INFORMATION FLOW

In this section we explain the proposed profile technique
while applying it to UMLsec.

Secure information flow is a good example for apply-
ing of the proposed profile technique: There are different
approaches formalizing SIF properties. Often the different
definitions are conflicting, so in the old UMLsec definition
one approach was chosen to be included. Thus, the old
version of UMLsec only supports the Bell–LaPadula model
[10].

Since security levels are used in in different SIF defini-
tions as well as other security properties, it is convenient to
model the security levels on their own.

5

UMLsec 2.0 SIF

UMLsec 2.0 SL

U
M

L
M

et
a-

M
od

el

UML Stereotype
Package

Analysis Model

Trans-
formation

<<extents>>

<<uses>>

<<SecurityLevel>>

Figure 4. Structure of a UMLsec-Profile

Therefore, we present two UMLsec 2.0 profiles: The SL
profile defines the security levels and the SIF profile defines
secure information flow using MAKS. Each profile defines
some stereotypes used in the modeling as well as an analysis
model used for the analysis. Because the SIF profile uses the
SL profile, we start with the latter.

UMLsec 2.0 SL: Defining security levels usable in other
sub-profiles is the main task of the UMLsec 2.0 SL profile.
We start describing the syntax defined in the SL profile by
giving the stereotypes.

The SL profiles defines two stereotypes (see Fig. 7).
〈〈DefSecurityLevels〉〉 is used to define the security levels.
The actual definition is given in the tag {levelPoset}.
The poset is given by a collection of relations. All possible
security levels are given by collecting the security level
names given in the relations. The poset is defined as the
transitive closure of the given relations. In Fig. 3 for the
package Webpay are security levels defined. The defined
poset has the elements “customer”, “puser”, “seller” and
“admin”.

The second stereotype 〈〈SecurityLevel〉〉 assignes a spe-
cific security level to an element of an UML diagram. In
the example the security level customer is assigned to the
class CustomerInterface.

Many approaches using security level do not work on
the defined levels itself. In the area of security analysis
techniques often a small set of two or three defined security
levels (here we will call them basic security levels or BSL)
are used. Often two basic security levels are defined which
are called high for confidential or secure data and low for
unclassified data. Thus we need to map generic security
levels to the basic security levels used for an analysis. At the
same time we want to retain the connection of the calculated
basic security levels to the original security levels and the
annotated model elements. As result we can track back
problems found in the latter analysis back to the annotated
model.

Connected to
metaclasses
from UML
Infrastructure

SecurityLevel

isWellformed() : bool

BasicSecurityLevel

isWellformed() : bool

SecurityLevelMappings

SecurityLevelMapping

Glue

Figure 5. Analysis Model of UMLsec 2.0 SL Profile

Security Levels Glue Graph Basic Security Levels

admin: SL

puser: SL

seller: SL

customer: SL

confidential: BasicSL

neithernor: BasicSL

visible: BasicSL

:glue

:glue

:glue

:securityLevelMappings

:securityLevelMapping
to other mappings

Figure 6. Example of using UMLsec 2.0 SL Analysis Model.
One mapping is shown explicitly; the others are hidden in the dotted
composite associations. The connections to the meta classes from the UML
Infrastructure are omitted.

Since some approaches like MAKS use more than two
BSLs (e.g. MAKS: “confidential”, “neither-nor“ and ”vis-
ible“) the system in our analysis model is modeled in a
flexible way.

The SL analysis model consists out of three columns (see
Fig. 5 and 6) is using techniques from triple graph grammars
[11]. On the right the basic security levels are modeled. The
framework for arbitrary security levels is defined on the left
side and both columns are connected using glue graphs.

The instances of the class SecurityLevel are the
security levels which are annotated in the UML model. The
security levels form a hierarchy, which is modeled using the
super relation. The hierarchy is sound if it does not contain
circles, which ensures that the hierarchy builds a poset.

To illustrate the SIF modeling, we transform the example
Fig. 3 which is depicted in Fig. 6: On the right side are
the objects representing the values needed by the security
properties to be checked. Since we use MAKS to analyze the
secure information flow, we have three basic security levels
representing the MAKS view: “confidential”, “neither-nor”
and “visible”. On the left side there are instances for the

6

Stereotype Tags Use with
Package SL (Security Level)
SecurityLevel level Operation, Property

Class, Interface
DefSecurityLevels levelPoset Package, (Sub-)System

Component
Package SIF (Secure Information Flow)
SIFproperty upper, Package, (Sub-)System,

lower Component

Figure 7. Stereotypes

Connected to
metaclasses
from UML
Infrastructure

BasicSecurityLevel
(from UMLsec 2.0 SL)

SecurityLevelMappings
(from UMLsec 2.0 SL)

SIFProperty

upper, lower:
collection of BSP

Figure 8. Analysis Model of UMLsec 2.0 SIF Profile

security levels. In the middle a glue graph is connecting the
two layers. Each glue graph element maps all security levels
to the view sets. The class SecurityLevelMappings
collects the valid mappings. Each valid mapping is modeled
by a SecurityLevelMapping where the glue objects
collect the SecurityLevels and establish the mapping
to the BasicSecurityLevels. Each of the glue objects
can be interpreted as one instance of the views needed
to analyze the poset on the left. Information about the
derivation of the mappings is given in the section about the
MAKS analysis.

UMLsec 2.0 SIF: Different secure information flow
properties should be to usable in UMLsec 2.0. For every
SIF notion we need a separate profile. Here we present
the analysis using the Modular Assembly Kit for Security
(MAKS) [4], [9]. The SIF properties are defined by BSPs.
Since these BSPs are well-defined, we use their names to
define the SIF properties of a system. Thus we define a
stereotype 〈〈SIFproperty〉〉 with tags “upper” and “lower”.
Each tag takes a collection of BSPs.

The SIF analysis model uses the SL analysis model, in
Fig. 8 on the left side the classes BasicSecurityLevel
and SecurityLevelMappings are imported from SL.
The new class SIFproperty has a reference to the defin-
ing UML element denoting the scope of the SIF property.
The values of the tags are stored in instance variables.

Up to here we defined the annotations of the model and their
analysis models. In the next step we use the analysis models
to check the security properties.

V. EXCHANGEABLE ANALYSIS MODELS: ANALYSIS OF
SECURE INFORMATION FLOW

In the last section we focused on the modeling of secure
information flow related data and properties. With the data
of the analysis model we can define an analysis which can
use all data of the heavyweight extension’s meta-model.
Each transformation (securityLevelMapping in Fig.6)
in the analysis model leads to a MAKS proof. The main
task is to define the traces for the given UML model. For
a plain class diagram not containing additional information
about the operations, we can only assume that all accessible
operations can occur in an arbitrary order. Since this model
includes all possible traces, all possibilistic secure infor-
mation flow properties hold. Therefore we need additional
information in the model to do a meaningful analysis. One
possibility is to define a state chart, which defines allowed
traces. Thus, we use such a state chart in the example (see
Fig. 3).

Calculation of the Trace Set: The analysis of SIF
properties using MAKS is based on a system model given as
set of traces. This set enumerates all possible valid runs of
the system. Since UML does not define a standard semantics,
we define a semantics for calculating the traces. There are
some proposed semantics like dynamic meta modeling [12]
or CSP-OZ [13]. UMLsec itself uses a semantics given
by a kind of abstract state machines called UML-machines
[3]. These machines can be naturally interpreted as stream
processing functions (SPF) which maps possibly infinite
streams to other streams. Because derivation of SPFs out
of UMLsec is already described in [3], we briefly introduce
these functions and calculate the trace set using them.

The semantics of UMLsec is given by a stream pro-
cessing function [[A]]i,o(I) where A is a class, component
or subsystem. The sets i and o denote the input and the
output channels. Channels correspond to the operations of
a class (or instance of the component or subsystem) and
their possible results. The function itself takes an input I
modeled as a sequence of input events corresponding to the
input channels. The output of the function is a sequence of
output events corresponding to the output events. A trace
is input/output-alternating (alti,o), if each input event is
followed by an output event and vice versa. Each of the
events can be an empty event, e.g., Skip. The intention of
this property is to preserve the logical order in the trace
set. For example every output event must occur after the
corresponding input event. Using this we obtain the traces
by:

Tr := clprefix{tr ∈ E∗|[[A]]i,o(tr|i) = tr|o ∧ alti,o(tr)}

The function clprefix calculates the prefix closure of the
given set.

A trace is in the trace set, if the sequence of the contained
input events can produce the sequence of the output event.

7

2

i,s,

pa,pu 1
3

i,s,pa

i s,pa

i invoice
s setCCard
pa pay
pu punish

Cut high low
C V N

1 pu,i s,pa ∅
2 pu,s,pa i ∅
3 pu i,s,pa ∅

Figure 9. Calculation of Views

An output event can only occur after the corresponding
input event and a stream function always has (a possible
empty output) for every input. We model this using the
alti,o operator. This approach ensures that the trace is an
alternating sequence of input and output events.

In every trace of Fig. 3 after the first invoice event another
invoice event can only appear after at least on pay event
has occurred. Between these events there can be arbitrary
occurrences of setCCard. Some example traces are:

invoice→ pay → invoice→ pay → . . .
invoice→ pay → setCCard→ invoice→ pay → . . .
setCCard→ invoice→ pay

Calculation of MAKS views: Having calculated the
traces, we still need the views for the MAKS analysis. The
views will be calculated from the security level poset. Fig. 9
shows the principle. On the left side there is a Hasse diagram
of the poset defined by the 〈〈DefSecurityLevels〉〉 stereo-
type. For readability the security levels are abbreviated. A
cut through this poset divides the Hasse diagram into two
parts. The events in the lower part are used as visible events.
The other events in the graph are treated as confidential.
Because we have no unlabeled features in classes, the set N
is empty. In the example, there are three valid cuts depicted
in Fig. 9, also showing a table with three views for this
poset. The reduction of the security levels to basic security
levels representation the MAKS views are modeled in the
SL profile’s analysis model. The cuts are done according to
[14].

Now, we combine traces and BSPs to pick up the example:
The view is calculated to:

V = {invoice} (= {i})
N = ∅
C = {punish, pay, setCCard} (= {pu, pa, s})

The BSP named strict removal should be fulfilled. Therefore
we check

SRV,N,C(Tr) = ∀τ ∈ Tr : τ |V ∪N ∈ Tr
= ∀τ ∈ Tr : τ |{invoice} ∈ Tr

invoice

pay

setCCardsetCCard

invoice

pay

Figure 10. Corrected State Chart

using the trace set calculated before. This BSP is not
fulfilled, because no sequence has two consecutive invoice
events. This is an unwanted information flow, because a
seller gains the information, that a customer has paid all
his invoices if the customer can execute the next invoice
event. Since this check failed using the first cut of the three
cuts, we omit the others. To repair this problem, we change
the state chart (Fig. 10).

This ends the example and the description of our ap-
proach. We found an issue and repaired it. Using the
presented technique we can prove that the corrected model
is not leaking unintended information.

In this application we considered a specific security re-
quirement (MAKS style formalization of SIF). What should
be done if the requirement evolves to a new version? If
the definition of the needed information (here SL and BSP
name) does not change, we can simple build a new profile
by coping the (unmodified) stereotype profile and build a
new analysis model together with a new transformation.
Exchanging the profiles takes the changed analysis model
in action. In this case the model need not to be adapted to
execute the check. If more information is needed, also the
syntax need to be adapted. Thus, the separation of syntax and
analysis model gives the flexibility for evolving an analysis
model as well as a full UMLsec profile.

VI. RELATED WORK

There are different approaches to deal with evolution that
are related to our work. Within Software Evolution Ap-
proaches, [15], [16] derives several laws of software evolu-
tion such as “Continuing Change” and “Declining Quality”.
[17] argue that it is necessary to treat and support evolution
throughout all development phases. They extend the UML
meta-model by evolution contracts to automatically detect
conflicts that may arise when evolving the same UML model
in parallel. This work is not security-specific and does not
consider analysis models.

Domain specific languages [18], [19] are focusing on a
similar problem. They can be used to create a family of
languages which are generated at need. Thus they are highly
configurable, but due to a missing analysis model they fail to
provide a modular and customizable semantics and analysis.
Furthermore the use of most existing modeling tools is not
possible. The use of a static and not modular meta-model

8

was used in [20], thus the evolution can not be archived eas-
ily. Aspect oriented modeling [21], [22] gives a possibility
to define internal and external semantics, but focus on code
generation and the analysis is not straightforward.

VII. CONCLUSION

The modular approach and the separation of syntax and
analysis model enables us to exchange UMLsec 2.0 profiles.
A new profile can be evolved out of an existing by enhancing
the syntax and evolution of the analysis model, so that the
impact of a modified certification or security requirement is
separated from the model. The model can be checked and
adapted using the evolved profile. In addition the technique
to combine heavyweight and lightweight extensions enables
us to use the semantic power of the specialized meta-model
but also allows to use modeling tools for the develop-
ment. Using the separation of the syntax definition in the
lightweight extension and the analysis model together with
the modularization support the evolution of certifications
like security certifications. The main idea is to introduce
an analysis model for the representation of the semantic
model. Our approach is completed by a transformation from
the syntax to the analysis model. We showed the principle
using the example of the modeling secure information flow
in UMLsec.

Acknowledgement: This work is partially funded by the
DFG project “SecVolution” which is part of DFG Priority
Program 1593 “Design for Future”.

REFERENCES

[1] M. Lehman, “Software’s future: Managing evolution,” IEEE
Software, vol. 15, no. 1, pp. 40–44, 1998.

[2] H. Lipson, “Evolutionary systems design: Recognizing
changes in security and survivability risks,” Carnegie Mellon
Software Engineering Institute, Tech. Rep. CMU/SEI-2006-
TN-027, September 2006.

[3] J. Jürjens, Secure Systems Development with UML. Springer,
2005.

[4] H. Mantel, “A uniform framework for the formal specification
and verification of secure information flow,” Ph.D. disserta-
tion, Saarland University, Saarbrücken, Germany, 2003.

[5] J. Jürjens, “Sound methods and effective tools for model-
based security engineering with UML,” in ICSE, 2005.

[6] “UMLsecTool,” 2001–2011, http://jan.jurjens.de/umlsectool.

[7] J. Jürjens, J. Schreck, and P. Bartmann, “Model-based security
analysis for mobile communications,” in ICSE. ACM, 2008.

[8] “CARiSMA,” http://vm4a003.itmc.tu-
dortmund.de/carisma/web/doku.php (Accessed July 2011).

[9] H. Mantel, “Possibilistic definitions of security – an assembly
kit,” in Proceedings of the IEEE Computer Security Founda-
tions Workshop. Cambridge, UK: IEEE Computer Society,
July 3–5 2000, pp. 185–199.

[10] D. E. Bell, “Looking Back at the Bell-La Padula Model,” in
Proceedings of the 21st Annual Computer Security Applica-
tions Conference, ser. ACSAC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 337–351.

[11] A. Schürr and F. Klar, “15 years of triple graph grammars,”
in Graph Transformations, ser. LNCS, H. Ehrig, R. Heckel,
G. Rozenberg, and G. Taentzer, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5214, pp. 411–425.

[12] G. Engels, C. Soltenborn, and H. Wehrheim, “Analysis of
UML activities using dynamic meta modeling,” in Formal
Methods for Open Object-Based Distributed Systems, 9th
IFIP WG 6.1 International Conference, FMOODS 2007, E. B.
Bonsangue, Marcello M.; Johnsen, Ed., vol. 4468. Springer,
June 2007, pp. 76–90.

[13] M. Möller, E. Olderog, H. Rasch, and H. Wehrheim, “Inte-
grating a formal method into a software engineering process
with UML and Java,” Formal Aspects of Computing, vol. 20,
no. 2, pp. 161–204, March 2008.

[14] H. Mantel, “Talk, RS3 Tutorial,” summer 2010 in Buchenau.

[15] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski, “Metrics and Laws of Software Evolution – The
Nineties View,” in METRICS’97. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 20–32.

[16] T. Ruhroth and H. Wehrheim, “Model evolution and refine-
ment,” Science of Computer Programming, vol. 77, no. 3, pp.
270 – 289, 2012.

[17] T. Mens and T. D’Hondt, “Automating support for software
evolution in UML,” Automated Software Engineering Journal,
vol. 7, no. 1, pp. 39–59, February 2000.

[18] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM Comput. Surv.,
vol. 37, no. 4, pp. 316–344, Dec. 2005.

[19] S. Anonsen, “Experiences in modeling for a domain specific
language,” in UML Modeling Languages and Applications,
ser. LNCS, N. Jardim Nunes, B. Selic, A. Rodrigues da Silva,
and A. Toval Alvarez, Eds. Springer Berlin / Heidelberg,
2005, vol. 3297, pp. 187–197.

[20] J. Eichler, “Lightweight modeling and analysis of security
concepts,” in Engineering Secure Software and Systems, ser.
LNCS, U. Erlingsson, R. Wieringa, and N. Zannone, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6542, pp. 128–141.

[21] J. Kienzle, J. Gray, D. Stein, W. Cazzola, O. Aldawud, and
T. Elrad, “11th International Workshop on Aspect-Oriented
Modeling,” in Models in Software Engineering, ser. LNCS,
H. Giese, Ed. Springer Berlin / Heidelberg, 2008, vol. 5002,
pp. 1–6.

[22] L. Fuentes and P. Sánchez, “Dynamic weaving of aspect-
oriented executable UML models,” in Transactions on Aspect-
Oriented Software Development VI, ser. LNCS, S. Katz,
H. Ossher, R. France, and J.-M. Jézéquel, Eds. Springer
Berlin / Heidelberg, 2009, vol. 5560, pp. 1–38.

