Security and Compliance in Clouds

Prof. Dr. Jan Jürjens

Fraunhofer Institut für Software- und Systemtechnologie ISST, Dortmund

http://jan.jurjens.de
The NIST Cloud Definition Framework

Deployment Models
- **Private Cloud**
 - Software as a Service (SaaS)
- **Community Cloud**
 - Platform as a Service (PaaS)
- **Public Cloud**
 - Infrastructure as a Service (IaaS)

Essential Characteristics
- On Demand Self-Service
 - Broad Network Access
 - Resource Pooling
 - Rapid Elasticity
 - Measured Service

Common Characteristics
- Massive Scale
- Homogeneity
- Virtualization
- Low Cost Software
- Resilient Computing
- Geographic Distribution
- Service Orientation
- Advanced Security

(Source: NIST, Effectively and Secure using the Cloud Paradigm, 2009)
Security is the Major Issue

Q: Rate the challenges/issues ascribed to the 'cloud'/on-demand model
(1=not significant, 5=very significant)

- Security: 74.6%
- Performance: 63.1%
- Availability: 63.1%
- Hard to integrate with in-house IT: 61.1%
- Not enough ability to customize: 55.8%
- Worried on-demand will cost more: 50.4%
- Bringing back in-house may be difficult: 50.0%
- Regulatory requirements prohibit cloud: 49.2%
- Not enough major suppliers yet: 44.3%

Source: IDC Enterprise Panel, August 2008 n=244
© Fraunhofer ISST
Cloud Security Goals

| Confidentiality | Data processing in the cloud is still unencrypted
| | Encrypted data storage in the cloud: Shared DB
| | Encrypted data exchange with the cloud: Secure Internet Link |
| Availability | Protection of the virtual space of the clouds from e.g. overwrites
	Redundant clouds / data storage
Integrity	Prevent unwanted and unrecognized data modification in the cloud
Authenticity	Authentication of cloud systems to users and vice versa!
Non Repudiation	Business transactions in clouds require signatures
	Independent checks of the signatures
Privacy	Prevent user profiling
	Conflicting with Non Repudiation
Cloud Computing Security Issues

- Mistakes/Attacks from employees of the provider
- Attacks from other customers
- Attacks on the availability
- Mistakes in the provisioning and the management
- Misuse of the provider platform
- Web-Service based attacks

(Source: BSI, IT-Grundschutz und Cloud Computing, 2009)
Security Level Assurance (SLA)

- Precise description of the offered services and the expected limitations!
- Compare different SLAs for my needs.
 - Does a cloud vendor offer an SLA at all?
- What do the numbers mean: 99.8% per anno availability:
 - ~ 17.5 hours per year the cloud is offline!
- What are the penalties for SLA violations?
 - Can I monitor the performance of the cloud?
 - Does an early warning system exist?
- Is the cloud segregated into different security levels?
 - Do I need to separate my data before giving it to the cloud?
 - Should I avoid top secret data to enter the cloud?
Security vs. GRC

- Governance, Risk und Compliance (GRC)
 - Governance: internal company guidelines
 - Compliance: external guidelines, e.g. SOX, EURO-SOX, BASEL II, SOLVENCY II
 - Risk: risk management under consideration of all guidelines

- Security
 - Abstract security objectives, e.g. CIA applied to a company

Security and compliance are closely related but different.
GRC in Clouds

Governance
- Policy design
- Classification schema for data and processes
- Trust chain in a cloud

Risk
- Risk strategy
- Business Impact Analysis
- Threat and Vulnerability Analysis
- Risk Analysis Remediation

Compliance
- Policy enforcement
- Legal compliance (SOX, SOLVENCY II)
- Control implementation

The Cloud offers dynamic resource allocation
→ For GRC in clouds we require the same dynamic
Related Standards

<table>
<thead>
<tr>
<th>Category</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Maturity</td>
<td>Gartner, ISO, eden, Safe Harbor</td>
</tr>
<tr>
<td>Holistic Control Systems</td>
<td>COBIT, COSO</td>
</tr>
<tr>
<td>Security Standards</td>
<td>Common Criteria, Bundesamt für Sicherheit in der Informationstechnik</td>
</tr>
<tr>
<td>Transparency</td>
<td>TRUSTe, ISO, Safe Harbor</td>
</tr>
</tbody>
</table>
Compliance Scenarios

- **Customer -> Cloud:**
 - Security Compliance:
 - Check the security processes of the cloud for compliance with SLA
 - Legal Compliance:
 - Check the business process for SOX, MaRisk compliance

- **Cloud -> Cloud:**
 - Contract Compliance:
 - Check the interaction of two business partners in the cloud

- **Cloud -> Customer:**
 - Security Compliance:
 - Inspect the processes for cloud behavior violation
Architectures for Auditable Business Process Execution (APEX)

- Tool supported method for implementing business processes to IT infrastructure under consideration of compliance policy requirements (like Basel II, Solvency II, ...).
- Analysis is performed on the basis of text documents, models or other data sources.
- Governance, Risk and Compliance (GRC) and measures especially for Cloud Computing for SMEs and large-scale enterprises.
Motivation

- Implementation of compliance regulations is essential:
 - Implementation of EU-Guidelines Basel II, Solvency II till 2012
 - Implementation of MaRisk from BaFin
 - US-market actors require SOX

- Today: time-consuming and expensive manual labour

- Specialists are employed for standard tasks and there is often no time for analysis of special cases e.g. risk of fraud by stuff (spectacular example: Societe Generale 2008: 5 Mrd. Euro loss).

- APEX approach reduces the manual effort and provides time for GRC experts to focus on specific issues
The Idea behind the APEX Approach

- Automation of standard GRC tasks
 - RoI reduction through manual work reduction
 - Experts focus on special cases
- Development of GRC information bases for companies
 - Data sources: Interviews, texts, process mining, and processes
- Risk management concept evaluation
 - Partially automated by APEX framework
- Support by measures for GRC monitoring
 - Implementation of monitoring tools e.g. in web portals
- Data can be also used in BPM sector
The APEX Framework
Log-File Analysis

• Identification of the Four-Eyes-Principle with the help of the following information:
 • Request IDs are conform
 • Owners are different
 • Job was finished at the same point in time
Business Process Mining

Analysis of processes derived with reverse engineering

Event dates

<table>
<thead>
<tr>
<th>Process ID</th>
<th>Activity ID</th>
<th>Consultant</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>John</td>
<td>9-3-10:15.01</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Mike</td>
<td>9-3-10:15.12</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Mike</td>
<td>9-3-10:16.07</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Carol</td>
<td>9-3-10:18.25</td>
</tr>
</tbody>
</table>
Business Process Analysis

- Automated compliance-analysis
- Two approaches:
 1. Text-based analysis of the activity identifier for the automated risk identification
 2. Structural analysis of the process model for compliance-violation-pattern
A text-based analysis of the word in the EPC functions

The functions of the EPC are checked for the words

Identify an compliance relevant task:
Look for words: Credentials, Login, Check, Verification that hint towards an authentication
Structural Analysis of Process Model

- Structural analysis of business process models against compliance patterns
- Example: Check that separation-of-duty is implemented for significant contracts.

Pattern: Separation of duty

v: Vertrag, $a! = b$: Mitarbeiter

v: Vertrag

\vdash Mitarbeiter
Compliance Pyramid

Abstract laws and regulations

Concrete security policy rules

SOX
AktG
KWG VAG
MARisk
Basel II Solvency II
ISO 2700x
BSI-Grundschutzhandbuch

APEX tools

Risk finder

Compliance pattern analyzer
Benefit

Automatically generated compliance report:
- For example: „Compliant wrt: MaRISK VA (yes / no)“
- Lists requirements that may need further investigation
- Suggests measurements to improve alignment with compliance requirements:
 - automated correction
 - manual correction
Possibilities for Cooperation Projects

Offerings:

- Preparation of compliance reports using automated tools
- Data mining of log files
 - Compliance analysis of business process execution
 - Automated process model generation
- Support for business process modelling
- Support for preparation and execution of compliance checks

NB: Possibility for public financial support (e.g. BMBF/EU).
Technical Prerequisites

Ideally:

- System and/or business process documentation
- Interface to extract log data

Note: Our approach can be easily instantiated to a given architecture (via simple architecture specific adapters).

=> No restriction on the architecture to be analyzed.
Some Projects

Pre-cloud:
- German electronic health card architecture (Gesundheitskarte)
- Mobile architectures and policies (O2 (Germany))
- Digital file store (HypoVereinsbank)
- Common Electronic Purse Specifications (global standard for electronic purses, Visa International)
- Intranet information system (BMW)
- Return-on-Security Investment analysis (Munich Re)
- Digital signature architecture (Allianz)
- IT security risk assessment (Infineon)
- Smart-card software update platform (Gemalto)

Cloud:
- Cloud security certification (TÜV-IT, Itesys, LinogistiX)
- Cloud user security assessment (adMERITia, LinogistiX)
Conclusion

Clouds?

Make sure you are secure!

(... and compliant)

Contact: http://jan.jurjens.de