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ABSTRACT
Design flaws in object-oriented programs may seriously cor-
rupt code quality thus increasing the risk for introducing
subtle errors during software maintenance and evolution.
Most recent approaches identify design flaws in an ad-hoc
manner, either focusing on software metrics, locally res-
tricted code smells, or on coarse-grained architectural anti-
patterns. In this paper, we utilize an abstract program
model capturing high-level object-oriented code entities, fur-
ther augmented with qualitative and quantitative design-
related information such as coupling/cohesion. Based on
this model, we propose a comprehensive methodology for
specifying object-oriented design flaws by means of com-
pound rules integrating code metrics, code smells and anti-
patterns in a modular way. This approach allows for ef-
ficient, automated design-flaw detection through incremen-
tal multi-pattern matching, by facilitating systematic infor-
mation reuse among multiple detection rules as well as be-
tween subsequent detection runs on continuously evolving
programs. Our tool implementation comprises well-known
anti-patterns for Java programs. The results of our experi-
mental evaluation show high detection precision, scalability
to real-size programs, as well as a remarkable gain in effi-
ciency due to information reuse.

CCS Concepts
•Software and its engineering → Maintaining software;
Object oriented development; Software evolution;

Keywords
design-flaw detection, continuous software evolution, object-
oriented software architecture

1. INTRODUCTION
Object-oriented programming offers software developers

rich concepts for structuring initial program designs, in order
to cope with the inherent complexity of nowadays large-scale
software systems. In this regard, design patterns serve as
default architectural templates for solving reoccurring pro-
gramming tasks in compliance with object-oriented design
principles like separation of concerns [1]. As nowadays soft-
ware systems tend to become more and more long-living,
their initial code bases have to be continuously maintained,
improved and extended over a long period of time. In prac-
tice, corresponding evolution steps are frequently conducted
in an ad-hoc (and often even undocumented) manner (e.g.,
in terms of fine-grained manual program edits). As a re-
sult, the initial program design may be prone to continuous
erosion, eventually leading to structural decay whose nega-
tive side-effects are usually summarized under the notion of
software aging [2]. In particular, design flaws potentially in-
fecting object-oriented programs may seriously corrupt code
quality, thus increasing the risk for introducing subtle errors
during software maintenance and evolution [3, 4, 5].

Object-oriented refactorings have been proposed as ef-
fective counter-measure against design flaws by means of
behavior-preserving program transformations to be repeat-
edly interleaved with object-oriented development workflows
[6, 7, 8]. In fact, a manual identification of problematic code
structures to be removed by applying appropriate refactor-
ings is tedious, error-prone, or even impossible for larger-
scale software projects. Various approaches have been re-
cently proposed to assist and/or automate the identification
of design flaws in object-oriented programs. The different at-
tempts may be roughly categorized into three kinds of symp-
toms, potentially indicating object-oriented design flaws [9].
• Software metrics assess quality problems in program

designs by means of quantified measures on structural
code entities (e.g., high coupling and/or low cohesion
of classes) [10, 11].
• Code smells qualify problematic, locally restricted code

structures and anomalies in-the-small, i.e., at class-
/method-/field-level (e.g., relatively large classes) [12,
13, 14, 15, 16].
• Anti-patterns qualify architectural decay in the large,

involving several classes spread over the entire program
(e.g., God Classes) [17, 3, 18].
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Based on this taxonomy, a precise and reliable identification
of actual occurrences of design flaws in real-world programs
requires arbitrary combinations of software metrics with ad-
justable thresholds, as well as code smells and anti-patterns
into compound detection rules [9]. However, most existing
approaches lack a comprehensive formal foundation and uni-
form, yet modular representation of such design-flaw detec-
tion rules. Instead, specifically tailored detection routines
are applied for every design flaw individually, and being
re-evaluated from scratch for every program version anew
during software evolution [11].

In this paper, we present a comprehensive methodology
for specifying and automatically detecting design flaws in
object-oriented programs. The approach utilizes a unified
abstract program model comprising those high-level object-
oriented code entities being relevant for a concise specifi-
cation of well-known design flaws [19, 20]. Based on this
model, compound design-flaw detection rules integrate soft-
ware metrics, code smells and anti-patterns, and allow for
arbitrary combinations thereof. The modular nature of the
rule language allows for sharing similar symptoms among
multiple design-flaw rule specifications. The corresponding
pattern-matching routines derived from those rules incre-
mentally augment the underlying abstract program model
with qualitative and quantitative design-related information.
This technique builds the basis for efficient design-flaw de-
tection by systematically facilitating reuse of information
among multiple detection rules, as well as between subse-
quent detection runs on continuously evolving programs. To
sum up, we make the following contributions.
• A comprehensive rule-based methodology for object-

oriented design-flaw specification based on a unified
program model, integrating the entire spectrum of pos-
sible symptoms.
• An efficient technique for concurrently detecting mul-

tiple design flaws on continuously evolving programs
based on incremental multi-pattern matching.
• A tool implementation automating the detection of

well-known object-oriented code smells and anti-pat-
terns in Java programs.
• Evaluation results gained from experimental applica-

tions of our tool to real-world Java programs. The
results demonstrate high detection precision and scal-
ability to real-size programs, as well as a remarkable
gain in efficiency due to information reuse.

Please note that our tool implementation, as well as all ex-
perimental data sets, are available on our GitHub site1.

2. BACKGROUND
Consider the sample Java program in Figure 1, serving as

our running example in the remainder of this paper. The ex-
ample comprises an extract from the source code of a simpli-
fied object-oriented catalog-software of a video-rental shop.
The program design is further illustrated by the class dia-
gram in Figure 2. Originally, the rental shop only possessed
early horror classics, like The Blob from 1958. Later on,
they decided to reward customers for frequent rentals by
providing free bonus movies, like the ’refactored’ remake of
The Blob from 1988. Therefore, a software developer ex-
tended the existing shop system by adding the source code
parts highlighted in gray in Figure 1. His design decision was

1http://github.com/Echtzeitsysteme/hulk-ase-2016

1 public class Shop {
2 private String shopName = "DemoShop";
3 private List customer = new ArrayList ();
4 private List movies = new ArrayList ();
5 public void addCustomer(String name){...}
6 public void addMovie(String title , int year){...}
7 public void rentMovie(Customer cu, Movie mo){...}

9 public void addCustomer(String name , int bonus){
10 Customer movie = new Customer ();
11 movie.setName(name);
12 movie.setBonus(bonus);
13 this.customer.add(customer)
14 }
15 public void addBonusMovie(String title , int year ,

int level){ .. }
16 public void rentBonusMovie(Customer customer ,

BonusMovie movie){...}
17 public void updateBonus(Customer customer , Movie

movie){...}
18 public int calculateBonusPoints(BonusMovie movie ,

int bonus){...}

19 }
20 public class Customer {
21 private String name;
22 protected List rents = new ArrayList ();

23 private int bonus;
24 public void setBonus(int bonus) {
25 this.bonus = bonus;
26 }
27 public String getBonus (){
28 return bonus;
29 }

30 public void setName(String name) {...}
31 public String getName (){...}
32 }
33 public class Movie {...}

35 public class BonusMovie {...}

Figure 1: Source Code of the Video Rental System

to add a new sub-class BonusMovie (line 35) to represent free
bonus movies. To store the achieved bonus points of each
customer, he added a field bonus as well as a corresponding
getter and a setter method for this field (lines 24 to 29) to
the class Customer. In lines 9 to 18, the creation and calcula-
tion of new bonus movies and the required bonus points are
implemented by four additional methods in the class Shop.
During a subsequent maintenance phase, a senior developer
reviewed the evolved software system by re-investigating the
class diagram in Figure 2 (again, highlighted in gray) to get
an overview of the edits performed.

During code review, the senior developer relies on quan-
titative software metrics (e.g., number of class members) as
well as qualitative characteristics of single classes, methods
and fields. The recognition of such local symptoms of par-
ticular object-oriented entities (i.e., so-called code smells)
therefore relies on manual judgments based on the available
metric values. In this particular case, the senior developer
considered the Shop class to be significantly larger than the
other classes. In addition, the methods of class Shop inten-
sively call getters and setters of other classes that, in turn,
do not implement actual functionality, but rather only hold
program data. Moreover, different methods in Shop do not
call each other as they have different concerns, but mainly
call methods in other classes, resulting in low cohesion of
class Shop (cf. the review notes in Figure 2, bottom left),
but high couplings of that class with other classes.

The presence of a predominant class like Shop, obliged
with too much responsibility and degrading other classes
to the mere task of storing data, constitutes a misuse of
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Figure 2: Class Diagram of the Running Example

object-oriented encapsulation concepts. This specific combi-
nation of symptoms therefore indicates a well-known object-
oriented design flaw, usually referred to as The Blob anti-
pattern [17]. As a consequence, software maintenance in
subsequent evolution steps may be seriously obstructed and
error-prone. For instance, suppose that the video shop later
plans to offer on-line streaming, which is however excluded
from the bonus system. This new functionality shall be nat-
urally implemented in a new sub-class of the central Shop
class. But, concerning the current implementation in Fig-
ure 2, this would mean that methods for handling the bonus
system are also included in this new class, thus leading to
erroneous behavior.

As illustrated by this example, manually performing com-
prehensive and precise design-flaw detection is tedious, error-
prone, and becomes infeasible in a real-world software devel-
opment scenario comprising hundreds of thousands of lines
of source code and multiple developers involved. In this re-
gard, design-flaw identification needs to be assisted and, at
least up to some extent, automated. In particular, a compre-
hensive design-flaw specification and detection framework
has to integrate the following techniques, corresponding to
the aforementioned different kinds of symptoms.
• Selection and computation of quantifiable software

metrics with adjustable thresholds,
• identification of code smells by means of fine-grained

properties of object-oriented entities, including soft-
ware metrics and locally restricted structural patterns
occurring in particular classes, methods or fields, and
• detection of architectural anti-patterns, composed of

various code smells and coarse-grained global program
structures, as well as (static) semantic code patterns.

Revisiting our running example, the identification of the de-
sign flaw The Blob in the evolved program involves various
code smells. First, the central class constitutes a so-called
Controller Class, i.e., a class with a predominant amount of
outgoing method calls to members of other classes, clearly
exceeding the amount of incoming calls. Moreover, the cen-
tral class constitutes a Large Class with Low Cohesion, i.e.,
having a high amount of outgoing method calls compared
to those targeting the same class. The other classes cen-
tered around this central class serve as Data Classes, as
their methods are mostly getters/setters providing accesses
to fields storing program data. In this regard, the central
class further takes the role of a Data Class User by mak-
ing intensive use of Data Classes. Each of these code smells
may be characterized by utilizing different kinds of estab-
lished software metrics [21, 22, 23], amongst others:

Figure 3: Modular Description of The Blob Anti-
Pattern

• #II/#OI: number of incoming/outgoing method in-
vocations of a class,
• LCOM5: a popular variant of the Lack-of-Cohesion-

of-Methods metric,
• #F/#M: number of fields/methods in a class, and
• #SM/#GM: number of setters/getters in a class.

Based on these metrics, the aforementioned code smells may
be described as follows.
• Data Class. A Data Class has a high ratio between

the number of its getter-setter methods and all of its
methods, denoted as

#SM+#GM

#M
,

compared to all other classes in the program.
• Large Class. A Large Class has a significantly higher

number of members (fields and methods), denoted as
#F + #M , compared to the average of all classes in
the program.
• Low Cohesion. A class with Low Cohesion has a

significantly higher LCOM5 value compared to the av-
erage of all classes in the program.
• Controller Class. A Controller Class has a signifi-

cantly smaller ratio between the number of incoming
and outgoing method invocations, denoted as

#OI

#II
,

compared to the average of all classes in the program.
• Data Class User. A Data-Class User has signifi-

cantly more accesses to Data Classes compared to the
average of all classes in the program.

Finally, specifying fully-fledged architectural anti-patterns
requires arbitrary combinations of code smells with global
program structures and (static) semantic information. For
instance, concerning the The Blob anti-pattern of our run-
ning example, we observe that the description and, there-
fore, the detection of some code smells being part of a The
Blob anti-pattern implicitly depend on each other (e.g., in
terms of “consists-of” relationships), thus inducing a (par-
tial) (de-)composition hierarchy among the different symp-
toms constituting a design-flaw specification. Figure 3 visu-
alizes such a modularized description of the The Blob anti-
pattern, making explicit the dependency hierarchy among
the respective software metrics and code smells, as initially
proposed in [9].

In practice, not only one, but multiple different design
flaws have to be taken into account during software main-
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Figure 4: Modular Description of the Swiss Army
Knife Anti-Pattern

tenance. Although differing in subtle details, the variety of
design flaws documented in the literature usually share, up
to a certain level of detail, similar symptoms. To this end,
descriptions of anti-patterns may also include references to
(parts of) other anti-patterns. For example, The Blob con-
tains the anti-pattern God Class as integral part of its spec-
ification. A God Class is characterized as a relatively Large
Class which monopolizes control over system behavior and
unifies different system concerns [24]. This is indicated by
the code smells Large Class, Controller Class and Low Co-
hesion in the description shown in Figure 3 [5].

Besides referencing entire anti-pattern descriptions within
other anti-patterns, the same may be done on a more fine-
grained level by reusing code-smell specifications in differ-
ent anti-patterns, as demonstrated by the Swiss Army Knife
anti-pattern in Figure 4. Intuitively, a Swiss Army Knife is
a Large Class which has been designed to act as a super-
interface for a huge variety of foreseeable default tasks [17].
In contrast to The Blob, a Swiss Army Knife does not take
control over control-flows in the system—it rather fills the
role of a universal toolkit. This role is captured by the
Internal Overloading code smell, which means that there
are many overloaded method implementations with identi-
cal names, but different signatures, one for each possible
caller-context. To express further characteristics of a Swiss
Army Knife, we are able to reuse code smells already spec-
ified for God Class and The Blob, namely Controller Class
(a Swiss Army Knife does not have this property, also in-
dicated on the corresponding edge in Figure 4) and Large
Class. As illustrated by this example, modular description
hierarchies not only permit conjunction (AND), but like-
wise negation (NOT) and disjunction (OR) of design-flaws,
as well as arbitrary combinations thereof.

Reconsidering our example, not all the symptoms lead-
ing to The Blob appear at the same time as result of one
single evolution step; instead, certain code smells may have
already been introduced in steps preceding the extension
shown in Figure 2. For instance, class Movie has been a
Data Class and Shop a Controller Class with Low Cohesion
already before the extension took place (i.e., white parts in
Figure 2). After the extension (gray parts in Figure 2) has
been performed, new Data Classes appear in the system,
thus finally leading to The Blob. The intermediate infor-
mation may therefore be collected and preserved over con-
secutive evolution steps to facilitate continuous design-flaw
detection without re-evaluating the entire set of symptoms
of compound design-flaws from scratch.

To summarize, a comprehensive methodology for a formal-
ized specification and automated detection of design-flaws in
object-oriented programs has to satisfy the following three
requirements R1–R3.

(R1) Formal specification framework for modular descrip-
tion and systematic integration of different styles of
established design-flaw symptoms, defined on a unified
representation of object-oriented programs.

(R2) Automated derivation of incremental design-flaw de-
tection routines, exploiting information reuse derived
for multiple design flaws with similar symptoms while
continuously investigating evolving programs.

(R3) Integration into existing software development work-
flows by making detection results accessible in a com-
prehensible manner, thus further supporting refactor-
ing decisions [25].

3. RULE-BASED DESIGN-FLAW SPECIFI-
CATION AND INCREMENTAL DETEC-
TION

In this section, we present a rule-based framework for
specifying and detecting object-oriented design-flaws that
meets the aforementioned requirements R1–R3.

3.1 Program Model
As demonstrated in Section 2, effective object-oriented

design-flaw identification requires an appropriate abstract
representation of the program under consideration, even for
a manual recognition. As object-oriented design flaws mostly
occur at the level of high-level object-oriented program en-
tities (classes, fields, methods), the Abstract Syntax Tree
(AST) representation of a program is no appropriate repre-
sentation for design-flaw characterization, because
• the AST comprises every fine-grained syntactic detail

of the program, including instruction code in method
bodies, and
• the AST does not make explicit further crucial (static)

semantic information crosscutting the hierarchical pro-
gram structure, such as field-access and method-call
dependencies between classes.

Hence, instead of considering the entire AST, we illustrated
the incremental detection of the The Blob anti-pattern for
our running example by annotating related code-smell infor-
mation on the corresponding UML class diagram represen-
tation in Figure 2. However, even if such a class diagram is
available for existing software, it usually mainly serves doc-
umentation purposes, rather than being directly attached
to, and continuously synchronized with, the (evolving) pro-
gram code. The resulting lack of preciseness and accuracy
of existing object-oriented design models, therefore, make
them inappropriate for design-flaw specification and detec-
tion. Instead, we pursue in our approach to reverse-engineer
and continuously update a unified program model represen-
tation from the AST of the program source. This program
model is specifically tailored in such a way that it serves as
a basis for a comprehensive rule-based design-flaw specifica-
tion according to requirement R1. In particular, the pro-
gram representation provided by the model abstracts from
unnecessary details of the program AST, thus permitting
comprehensive identification of, and navigability through
program entities being relevant for design-flaw specification.
In addition, the model is further augmented with design-
related meta-information in terms of (approximated) static
semantic dependencies (field accesses and updates, as well
as method calls) and quantified structural properties (e.g.,
coupling/cohesion), derivable from those dependencies.
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Figure 5: Program Model (Extract): Method add-

Customer

In order to facilitate information reuse among multiple
design-flaws with shared symptoms as well as between sub-
sequent detection runs on continuously evolving programs
(cf. requirement R2), the program model further allows for
annotating (intermediate) detection results to affected pro-
gram elements (e.g., marking classes as Large Classes, Data
Classes and/or Controller Classes). Those annotations are
created and/or aggregated and incrementally refined dur-
ing design-flaw detection, thus leading to an annotated pro-
gram model, which is an extension of the program model.
The accumulated information may be shared among multi-
ple design-flaw rules, and is continuously synchronized (i.e.,
updated) with the (evolving) source code.

As an example, Figure 5 shows an extract of the program-
model instance derived from the AST of the video shop
system presented in Section 2. Here, the representation of
method addCustomer from class Customer is enriched with
further structural dependencies. Each program element is
represented by one or more objects in the model, where each
object is identified by a unique name and a type. Please note
that we use the naming convention name:type in the illustra-
tion. For instance, classes are represented as objects of type
TClass (e.g., shop:TClass on the top). The representation
of methods (e.g., addCustomer) consists of three objects of
types Name, Signature and Definition. These three prop-
erties of methods are particularly relevant for code-smell and
anti-pattern specification including overloading and overrid-
ing. The labeled edges between object nodes represent dif-
ferent types of (syntactic and static semantic) dependencies
among the corresponding program entities. In particular,
access edges (denoting method calls and field accesses per-
formed in addCustomer) are depicted at the bottom, includ-
ing two method calls (setNameDef and setBonusDef) and,
on the right-hand side, one field access to customerDef.

In the following section, we describe a design-flaw de-
tection technique for incrementally annotating the program
model with aggregated information about software metrics,
code smells and anti-patterns

3.2 Design-Flaw Detection using Incremental
Multi-Pattern Matching

We now devise a rule-based design-flaw specification ap-
proach and an accompanying detection process which inte-
grates the different kinds of design-flaw symptoms (cf. Sec-
tion 2) by addressing the requirements R1–R3 (Sec. 2).

Figure 6: Detection Rule of The Blob Anti-Pattern

Figure 7: Detection Rules for Code Smells in The
Blob Anti-Pattern

R1 – Modular Description.
To address R1, our design-flaw detection framework pro-

vides a modular description technique for all three kinds
of design-flaw symptoms. For this purpose, code-smell and
anti-pattern descriptions such as those illustrated in Fig-
ure 3 and Figure 4, as well as their combinations into com-
pound design flaws, are formulated in terms of graphic de-
tection rules defined on the program model. Figure 7 shows
detection rules for the four code smells, occurring in The
Blob, namely Controller Class, Low Cohesion, Large Class
and Data Class. A detection rule consists of two parts: (i)
(unmarked) black elements specify the preconditions of the
rule, and (ii) green elements (marked with “++”) specify
the annotation creations. Correspondingly, the execution of
a detection rule consists of two steps: (i) every (annotated)
pattern within the program model is determined, matching
the preconditions of the rule, and (ii) for each such pattern,
annotations are created and assigned to the affected entities
in the program model.

As an example, consider the rule for detecting a Data
Class in Figure 7. Here, the precondition (i) matches those
classes for which the ratio of the number of getters/setters
and the number of all methods is high, compared to all other
classes in the program. To evaluate this rule, the ratio is
computed for each class and an appropriate threshold for
’high’ is derived by deploying corresponding software met-
rics. In step (ii), for the respective TClass object of the
class fulfilling the preconditions, a corresponding Data Class
annotation is created and attached to that object. The cre-
ation of annotations for Controller Class, Low Cohesion and
Large Class code smells is performed in a similar way.

R2 – Continuous Multi-Pattern Detection.
Concerning requirements of R2, detection routines are de-

rived from detection rules by means of pattern matching. In
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Figure 8: Annotated Program Model and Source Code of the Video Rental System

particular, we apply incremental multi-pattern matching to
facilitate information reuse on program-model annotations
as follows.
• Incrementally updating design-flaw annotations from

the version history of evolving programs by preserving
unaffected annotations and only updating those poten-
tially affected by program changes.
• Detecting multi-patterns concurrently: annotations for

software metrics, code-smells and anti-patterns are de-
rived only once for a particular program version, and
then shared among multiple design-flaws having those
symptoms in common.

In our example program, when applying the Data Class
rule to customer:TClass on the bottom, the class gets a
Data Class annotation as seen on the left-hand side of Fig-
ure 8. The ratio of getter/setters to all methods is 1 (i.e.,
there are only getters/setters) whereas for shop:TClass, it
is 0. Thus, the preconditions of the rules are fulfilled and
the annotation is created.

Once the code smell annotations are created in the pro-
gram model, the detection proceeds with applying anti-pat-
tern detection rules. Figure 6 shows the three rules for de-
tecting and annotating The Blob. The principle of executing
an anti-pattern detection rule is exactly the same as for code
smell detection rules. The difference lies in the preconditions
which in this case also contain code smell annotations.

The God Class rule (bottom left) simply checks the pres-
ence of the respective code smell annotations as precondition
and creates the God Class annotation accordingly. The Data
Class User rule (bottom right) does not solely rely on the
Data Class annotation, but it also takes into account an ad-
ditional static semantic information in the program model:
access between members of different classes. If there is an
access from a class (in the rule on the right) to another one
(in the rule on the left) which is a Data Class, the first one
gets annotated as Data Class User. The rule for The Blob
(Figure 6 on the top) relies on the two previously introduced
rules and annotates a class which is a God Class and a Data
Class User as The Blob.

The left-hand side of Figure 8 shows the complete an-
notation of our sample program model excerpt (Figure 5).
As the shop:TClass has all the relevant code smell annota-
tions, it becomes a God Class and as, moreover, it is also
a Data Class User, we annotate this class as The Blob (an-
notations on the top of Figure 8). However, The Blob does
not only consist of a single central class, but also of data
classes it accesses (here, customer:TClass). In the anno-

tated program model, annotations not only represent single,
separated markers in the program code, but they also have
structural links representing the associations between them.
For example, in Figure 8, the Data Class User annotation
of shop points to the Data Class annotation of Customer as
prescribed by the Data Class User rule.

Considering the additional rules required for detecting
Swiss Army Knife as described in Figure 4, we are able
to reuse annotations for Large Class and Controller Class
code-smells derived for the The Blob anti-pattern for the
detection of Swiss Army Knife as well. Our detection rules
therefore allow to express that a Swiss Army Knife should
not be a Controller Class. Hence, as the only Large Class
is also a Controller Class in our running example, no Swiss
Army Knife is detected. To illustrate incremental detection,
reconsider the program edit shown in Figure 2. After design-
flaw detection has been performed on the original program,
Movie is marked as Data Class. After editing the program,
this annotation remains unaffected and the Data Class de-
tection rule does not have to be re-executed as the respective
annotation is preserved.

To summarize, the rule-based detection process reflects
the three kinds of symptoms described in Section 2:
• calculating and integrating software metrics data into

the program model by annotating corresponding val-
ues to respective program model elements,
• identifying and annotating code smells by evaluating

code-smell detection rules, incorporating combinations
of software metrics and (locally restricted) pattern
matching concerning structural properties of particu-
lar classes, methods and fields, and
• detecting anti-patterns using anti-pattern detection

rules, comprising code-smell annotations and struc-
tural as well as static semantic patterns involving mul-
tiple entities of the entire program.

R3 – Integration into Software Development.
To address requirement RQ3, detection results are offered

to the developer by propagating program-model annotations
into the source as Java annotations. To this end, the pro-
gram model is continuously synchronized as illustrated on
the right-hand side of Figure 8. In this presentation, only
those anti-patterns are displayed, being of immediate rele-
vance for subsequent software-maintenance steps. For trace-
ability and documentation purposes, a unique identifier is
assigned to every design-flaw.
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Figure 9: Implementation Architecture

4. IMPLEMENTATION
We now present an Eclipse-based implementation of the

proposed design-flaw detection framework being applicable
to Java programs. Our tool, called HULK 2 integrates com-
ponents for the previously described program modeling, in-
cremental multi-pattern matching and software-metrics com-
putation on Java programs. For constructing the program
model and for deriving corresponding pattern-matching rou-
tines from detection rules, we utilize the meta-CASE tool
eMoflon3. For evaluating software metrics, we use the static
analysis tool SourceMeter4. The implementation along with
user instructions (as well as our evaluation results) are pub-
licly available on the GitHub site of HULK5. Figure 9 illus-
trates the analysis steps performed on a given Java program
and the corresponding components of HULK in detail.
Model initialization. The program model is constructed
(arrow on the top) using the Eclipse plug-in MoDisco6 as a
code-to-model adapter. For bidirectional code-to-model syn-
chronization, we apply Triple Graph Grammars (TGG) [27],
to establish a correspondence between the MoDisco Java
model and our program model for design-flaw detection.
Software-metrics calculation. Software metrics values
are calculated by SourceMeter and attached to the respec-
tive program model elements (program model with metrics
in the upper right corner).
Program-model annotations. Code smell and anti-pat-
tern detection rules are executed to annotate the program
model with design-flaw information. Our tool provides a
graphical front-end for visually specifying detection rules
(closely resembling Fig. 6-7). A rule specification is not
attached to one specific design flaw, but rather might be
(re-)used within arbitrary compound rule definition via rule
references. Based on these rules, routines for incremental
multi-pattern matching as described in the previous section,
are automatically derivable including schedules for an appro-
priate application order according to their inter-dependen-
cies. Our tool provides predefined rules for the anti-patterns
God Class, The Blob, Swiss Army Knife, Spaghetti Code [17],

2The green monster Hulk is the only member of the Marvel
universe known to be able to cope with ’The Blob’[26].
3http://www.emoflon.org/
4http://www.sourcemeter.com/
5http://github.com/Echtzeitsysteme/hulk-ase-2016
6http://eclipse.org/MoDisco/

and is easily extensible to incorporate further detection rules.
Continuous detection and annotation propagation.
The TGG-based synchronization mechanism facilitates con-
tinuous (re-)detection as described in Section 3.2, by propa-
gating/preserving annotations shared between multiple rules
as well as between between subsequent detection runs on dif-
ferent program versions.

5. EVALUATION
In this section, we present the evaluation results of ap-

plying the implementation of our proposed design-flaw de-
tection technique on a corpus of 13 real-size Java programs
from various application domains (cf. the first column in
Table 1) to consider the following research questions.
RQ1 (Scalability): Is the proposed design-flaw detection

technique applicable to real-size Java programs in a
reasonable amount of time?

RQ2 (Precision): Does the proposed design-flaw detec-
tion technique produce sufficiently precise results?

RQ3 (Efficiency): To what extent does incremental multi-
pattern detection improve the efficiency of the pro-
posed design-flaw detection technique?

Our selection of subject systems relies on former exper-
iments performed for related approaches, as well as on a
standard catalog for analyzing evolution of Java systems [9,
18, 28, 29] to address RQ3. We selected open-source Java
programs from different application domains, including sys-
tems for software developers as well as for end-users. We
also aimed at including a range of different program sizes.
Moreover, for two programs, Gantt and Xerces, there ex-
ists a manual detection oracle which allowed us to evaluate
RQ2 [18]. The particular program versions considered for
the experiments, together with the URL for accessing source
code, are included on our accompanying GitHub site.

5.1 Experimental Setup
We now describe the details on the experimental setup

and methodology to obtain the results for answering RQ1–
RQ3. Concerning RQ1, we applied our proposed detec-
tion technique to all subject systems considering the follow-
ing anti-patterns: God Class, The Blob, Swiss Army Knife,
Spaghetti Code. Moreover, we monitor the execution and
measure execution times of each step, namely: (1) program-
model initialization (Init), (2) calculation of software metrics
(SM), and (3) design-flaw detection (Det).

For answering RQ2, we compare our approach with two
approaches that pursue similar goals, but use different tech-
niques: DECOR [9] and BDTEX [18]. DECOR also pro-
vides a rule-based approach for anti-patterns specification,
but there are essential differences regarding the description
formalism and detection mechanism. BDTEX is also similar
to DECOR, but further incorporates machine learning.

To evaluate and compare the three approaches concern-
ing RQ2, we rely on the standard detection quality metrics
precision and recall [30]. However, these metrics require an
oracle delivering correct detection results. For our evalu-
ation, we rely on a set of anti-patterns to serve as oracles
that has been manually identified as part of the evaluation of
BDTEX [18]. This oracle contains manual judgments about
The Blob anti-patterns in the programs Gantt and Xerces
(cf. also Table 1). Based on this oracle, we conduct our
evaluation as follows: true positives are those anti-patterns
detected which are also predicted by the oracle, false posi-
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Table 1: Program Statistics and Execution Times
Init SM Det

Project LOC #C [s] [s] [s] AP
QuickUML 2,667 19 15.11 13.36 0.14 7
JSciCalc 5,437 121 38.84 13.89 0.16 6
JUnit 5,780 105 58.2 14.54 0.13 9
Gantt 21,331 256 620.47 35.46 0.56 12
Nutch 21,437 273 396.86 30.95 0.63 18
Lucene 25,472 276 447.03 33.15 0.49 24
log4j 31,429 394 691.61 44.61 0.95 29
JHotDraw 31,434 312 742.05 47.59 0.65 25
jEdit 49,829 514 1,251.56 58.38 1.64 38
PMD 53,214 860 1,461.75 80.34 4.2 38
JTransforms 71,348 36 1,363.07 157.29 0.14 16
Xerces 102,052 642 4,573.5 122.6 2.89 39
Azureus 201,527 1,623 12,275.55 233.88 17.2 91

tives are anti-patterns being detected, but not predicted by
the oracle, and false negatives are those being predicted by
the oracle, but not being detected.

Concerning RQ3, we consider the following sub-questions:
RQ3.1 (Multi-Patterns): To which extent does informa-

tion reuse among multiple design-flaw rules speed-up
detection compared to rule-by-rule detection?

RQ3.2 (Continuous Detection): To which extent does
information reuse among subsequent detection runs on
different program versions speed-up design-flaw detec-
tion compared to version-by-version detection?

For RQ3.1, we evaluate the speed-up achieved when de-
tecting multiple anti-patterns in one detection run (as in
RQ1), compared to detecting each design flaw separately.
In particular, we perform metrics calculation and detection
time measurements (cf. phases (2)–(3) in RQ1) for the
following scenarios (where abbreviations indicate detected
anti-patterns): Blob (The Blob), SAK (Swiss Army Knife),
SC (Spaghetti Code), All (four in combination as in RQ1).
Note that detection of God Class is included in The Blob
detection. The speed-up factor smulti is calculated as

smulti = 1− All

Blob + SAK + SC
,

where the names represent the metrics calculation and
detection time needed for those individual scenarios. For
RQ3.1, we perform measurements on a previously stored
program-model state, resulting from the experiments con-
ducted for RQ1 after phase (1) (i.e., model initialization).
To answer RQ3.2, we selected a set of fine-grained pro-
gram edits which frequently occur during continuous soft-
ware evolution. In this regard, evolution steps do not com-
prise complicated structural program changes in the large,
but rather consist in introducing or deleting particular meth-
ods and/or fields, as well as renaming operations, as can be
observed in the evolution history of the Qualitas Corpus, a
standard catalog for analyzing object-oriented system evolu-
tion [29]. For our measurements, we first perform detection
on an unchanged program state. Afterwards, we perform a
program edit and measure the detection times before and
after that change. The speed-up sevolution is presumably
obtained through incremental pattern matching and is cal-
culated according to the formula sevolution = 1 − (t∆/t0),
where t0 represents the complete initialization and detec-

0 500 1,000 1,500
0

5

10

15

Number of Classes

D
et
ec
ti
on

T
im

e
[s
]

0 20 40 60 80
0

5

10

15

Number of Detected Anti-Patterns

Figure 10: Detection Times for RQ1

tion time of the unchanged program state and t∆ denotes
the time needed to recalculate design-flaw annotations after
program edits. As edits are limited to very few program
elements, we assume that re-detection without incremental
matching requires the same detection time as for the un-
changed program state, i.e., t0. For experimental purposes,
we simulate following program edits: Delete Method from
Gantt, Create Class: inserting a fresh class into JHotDraw,
Create Method : inserting a fresh method with a simple re-
turn statement into the CommonPanel class of Gantt, Rename
Class in QuickUML.

5.2 Results and Discussion
We present and discuss the results of our experiments

with respect to our research questions. All experiments have
been performed on a Windows 10 PC with an Intel i5-3570K
quad-core processor, 8 GB DDR3 RAM and JDK v1.8.0 91.

RQ1 – Scalability.
Table 1 lists the Java programs used as subject systems

along with their size (LOC: Lines of Codes, #C: number of
classes). In the next three columns, detailed results of ex-
ecution times (phases (1)–(3), see Section 5.1) are given in
seconds (median values out of 5 runs). The last column (AP)
shows the number of detected anti-patterns. The first plot in
Figure 10 depicts the relation between detection times (the
time spent for actual detection after initialization and met-
rics calculation) and the number of classes in the program.
The second plot in Figure 10 depicts the relation between
detection times (similar to the first plot) and the number of
anti-patterns found in the program. Both plots indicate a
second-order polynomial increase as expected.

To answer RQ1, the results show that the time required
for design flaw detection is reasonable also for larger-scale
programs. In all cases, the time required for phase (3) is
much lower than the execution times of phases (1) and (2).
As our implementation supports continuous detection, ini-
tialization costs might be omitted later on in the case of
evolving programs. The relatively low execution times of
the detection itself make our approach applicable for fre-
quent usage on real-size Java projects.

RQ2 – Precision.
The precision and recall values for detecting The Blob in

Gantt and Xerces are given in Table 2, where the values for
DECOR and BDTEX are based on the oracle and evaluation
data in [18]. In contrast to other approaches, we decided to
adjust our design-flaw rules to obtain high precision. We be-
lieve that for an automated design-flaw detection approach
to gain user-acceptance for assisting continuous software de-
velopment and maintenance, it is crucial to avoid too many
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Table 2: Comparison: Precision and Recall for
Gantt and Xerces – Detection of The Blob

Gantt Xerces
Precision Recall Precision Recall

Approach [%] [%] [%] [%]
HULK 100 50 100 5
DECOR 87.5 63.6 90.6 100
BDTEX 21 100 21 100

Table 3: Execution Times and Speed-up for RQ3.1
Blob SAK SC All smulti

Project [s] [s] [s] [s] [%]
QuickUML 18.17 12.23 10.35 12.29 69.8
JSciCalc 15.34 15.32 15.28 15.42 66.4
JUnit 16.70 16.66 16.40 16.70 66.4
Gantt 35.91 35.71 35.75 36.07 65.9
Nutch 30.47 30.30 30.42 30.70 66.4
Lucene 33.90 33.86 33.80 34.30 66.0
log4j 43.77 43.65 43.61 44.09 66.4
JHotDraw 48.00 46.05 46.33 47.80 66.7
jEdit 59.44 58.73 58.90 60.40 65.2
PMD 79.81 78.21 80.76 81.53 65.4
JTransforms 159.76 157.59 158.37 158.86 66.9
Xerces 110.96 109.22 109.54 111.56 66.2
Azureus 225.46 220.99 224.62 235.62 64.8

false alarms. However, aiming at high precision comes with
a price regarding recall (i.e., precise detection rules tend
to miss cases being considered as design flaws by other ap-
proaches) as can be seen in Table 2. For smaller programs
with few design flaws (Gantt), we achieve 100% precision
while still reaching a recall close to DECOR. Even for a large
program with (presumably) many design flaws (Xerces), we
achieve maximal precision, but reach a very low recall value
due to our much more restrictive detection rules and a high
number of The Blob anti-patterns demanded by the oracle.
One of our subject systems, JHotDraw, is widely known
for its excellent object-oriented design with no major anti-
patterns as it has been developed as a design exercise for
object-oriented design experts [18]. Our approach detects 0
The Blob anti-patterns in JHotDraw, while detection with
BDTEX results in 1 false positive.

To summarize RQ2, we conclude our approach to guar-
antee high precision at the cost of low recall values. Never-
theless, the rule definitions allow for arbitrary adjustments
in either directions.

RQ3 – Efficiency.
Concerning RQ3.1, Table 3 shows the execution times of

metrics calculation and design-flaw detection (average value
over 10 runs) for our four scenarios (cf. Sec. 5.1), along with
the achieved speed-up smulti. The reason for this value being
close to 2/3 of the time required for every program is that,
as already seen for RQ1, the detection times are negligi-
ble compared to metrics calculation, which only takes place
once in case of multi-pattern matching (All). Evaluating the
execution times for subsequent runs, standard deviation was
in every case negligible (less than 8%).

Concerning RQ3.2, Figure 11 shows the ratio of t0 and t∆
as a bar-chart for the four basic program edits. The achieved
speed-up sevolution: Delete Method : 44.16%, Create Class:
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Figure 11: Bar Chart: Speed-up through Incremen-
tal Matching for Program Edits

42.84%, Create Method : 57.7%, Rename Class: 26.05%. As
expected, edits on smaller programs (QuickUML) lead to
a lower, but still remarkable speed-up, as the ratio of the
edited program part to the whole is higher in this case. In
general, the achieved speed-up factor is highly encouraging,
continuous and incremental design-flaw detection being the
main goal of our approach.

5.3 Threats to Validity
A general threat to internal validity may arise from the

selection of subject systems not being representative; to ad-
dress this issue, we thoroughly investigated related litera-
ture for our selection to cover a broad spectrum regarding
both size and application domains. In addition, most of the
programs have been considered for evaluation purposes by
comparable approaches. Another general issue is the NP-
completeness of graph isomorphism used by pattern match-
ing. However, in our case, we achieve polynomial complexity
by restricting pattern matching using fixed entry points.

Concerning RQ3.2, we focus on a small set of self-defined
program edits. Although our investigations show that typ-
ical evolution steps, not aiming at bug elimination but on
structural improvement or program extensions, mainly com-
prise those kinds of edits, they are naturally limited in scope
and are specific to the particular program. However, those
edits constitute the most general building blocks of frequent
evolution steps and, therefore, our experiments can be as-
sumed to properly simulate evolution-related phenomena oc-
curring in real-life evolving systems. Nevertheless, as part
of future work, we plan to further investigate continuous
design-flaw detection scenarios by emulating entire version
histories available in real-life software repositories.

One major external threat to validity of our design-flaw
detection experiments is the manifold possible interpretation
of code smells and anti-patterns, resulting in non-comparable
detection results, especially for RQ2. The standard liter-
ature on the description of code smells and anti-patterns
largely comprise informal, prose-style circumscriptions of
symptoms [17, 8, 13]. However, there is no generally ac-
cepted formalization of even the most widely studied de-
sign flaws so far. As a consequence, a missing unification
of design-flaw descriptions thus leads to each detection tool
having its own underlying design-flaw interpretation. Thus,
when comparing design-flaw detection approaches, it is not
the approaches competing but some (implicit or explicit)
configurations of them. In our experiments, this has the
most severe effect on the precision results answering RQ2,
but it also threatens the validity of any performance mea-
surement (RQ1, RQ3). A further threat for the results of
RQ2 is the lack of publicly available, curated oracles for
anti-pattern detection. The only oracle available to us has
been initiated for evaluating the BDTEX approach [18] and
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has a limited scope. Our own experiences with our proposed
technique have shown that our rule language is expressive
enough to support a wide range of possible interpretations
and adjustments of design-flaw characterizations.

Validity of the results for RQ1 may be threatened by
the lack of data for comparison with similar tools. Al-
though some approaches such as DECOR [9] provide exe-
cution times, it is not possible to identify and distinguish
the different phases (cf. (1)-(3) in Sec. 5.1) for compari-
son. Moreover, the available results are not reproducible
due to missing information on measurement setup. In addi-
tion, they do not provide detailed information about their
underlying program representation and its initialization.

A further external threat to validity concerning scalability
(RQ1 and RQ3.1) may arise from the choice of SourceMe-
ter to calculate software metrics externally. Thereby, we do
not have influence on the efficiency of metrics calculation
and we did not evaluate further alternatives so far.

6. RELATED WORK
In this section, we categorize various design-flaw detection

approaches based on the applied technique(s) and analyze
the similarities and differences to our approach.

Metric-Based. A common method to detect code smells
and anti-patterns is by means of software metrics. Simon et
al. define a generic distance measure that can be applied to
identify anomalies inducing certain refactorings in an under-
lying language [31]. Mäntylä makes use of atomic metrics
to evaluate their applicability for code smell detection com-
pared to human intuition, concluding that metric-based de-
tection often contradicts human perception [13]. Munro pro-
poses to capture informal code smell descriptions by means
of a set of metrics and to identify possible occurrences in
Java programs based on those metrics [10]. Compared to our
approach, all of the above use rather simple metrics that are
limited in their capability to detect code smells. Moreover,
they use static thresholds for their decision process, whereas
we derive relative thresholds from system properties.

More advanced approaches are proposed by Marinescu [11]
and Kessentini et al. [32], respectively. Marinescu goes be-
yond simple metrics by applying different kind of filters
and composition rules and using relative thresholds for met-
ric values, thus achieving a better precision. Kessentini et
al. formulate the detection as a combinatorial optimization
problem over a set of metrics, based on previously evaluated
examples and genetic algorithms to optimize smell descrip-
tions. The main difference to our approach is that we addi-
tionally use structural information and provide a systematic
methodology how code smells are combined to anti-patterns,
thus, providing reuse opportunities for detected code smells.

An inverse approach is taken by Kessentini et al. [33], who
measure the defectiveness of the software in terms of devia-
tion from good coding practice, provided as design patterns.
In a similar way, O’Keeffe et al. propose to formulate design
problems and subsequent program refactoring as a metric-
based optimization problem [34]. However, these approaches
rather aim at directly performing improvement actions in-
stead of detecting and annotating design flaws in the pro-
gram for dedicated maintenance activities.

Machine Learning. Some detection methods employ
machine learning techniques to detect code smells and anti-
patterns. Khom et al. use a Bayesian approach to detect
code smells [18]. However, as input for their approach, they

still need the result of some code smell detection tool (here:
DECOR [9]). Similarly, Fontana et al. propose a large-scale
case study on common code smells and anti-patterns using
different supervised ML techniques [16]. Finally, Maiga et
al. propose an approach based on support vector machines
(SVM) that also takes user feedback into account [35]. While
all of these approaches may improve the detection results,
we consider them as complementary techniques as they rely
on external design-flaw data. Also, these approaches do not
take structural properties into account.

Advanced Techniques. Some approaches exploit addi-
tional information such as program structures, represented
by more precise program representations such as AST or
PDG. A variety of such techniques have been proposed to
detect code clones, a common smell in evolving systems.
In particular, these techniques are token-based [36], AST-
based [37], PDG-based [38], or use static analysis [39]. How-
ever, as they only focus on code clones, these approaches
capture only a very limited subset of smells.

An approach that is more related to ours has been pro-
posed by Van Emden et al. [14], who use a model-based ap-
proach to describe program structure and code smell charac-
teristics. However, in contrast to our approach, they do not
provide incremental detection for evolving systems. Moha
et al. [9] propose a rule-based detection approach. Similar to
us, they provide a taxonomy of code smells and anti-patterns
and how they are related. Based on rules, they specify prop-
erties that must hold for a smell to be detected, including
various metrics. Although similar from several viewpoints,
their approach does not support detection information reuse.

Tools. Beyond the aforementioned approaches, several
tools exist, such as CodeSonar, SourceMeter [40], PMD [41],
or FindBugs [42, 41] that provide a rich set of analysis fa-
cilities, such as static analysis, software metrics, or fault
analysis. While these analyses might provide valuable data
(in fact, we are using SourceMeter for metrics), none of these
tools provide comprehensive design-flaw detection.

7. CONCLUSION AND FUTURE WORK
We presented a comprehensive methodology for effectively

and efficiently detecting design flaws in continuously evolv-
ing object-oriented programs. The approach utilizes an ab-
stract program model to define detection rules, integrating
different kinds of design-flaw symptoms. By applying in-
cremental multi-pattern matching, the approach allows for
systematically reusing detection information in order to re-
duce detection efforts. Our evaluation results further show
scalability to real-size programs and high detection accuracy.
As a future work, we plan to conduct further long-term ex-
periments on continuously evolving systems, based on pro-
gram edits derived from version histories of real-life software
repositories. We also plan to extend our pattern language
with logical constructs such as ‘or’, enlarge the catalog of de-
sign flaws using our framework and to conduct user studies
to gain a better understanding about the impact of design
flaws on software maintenance and evolution.
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T. Bakota, “Source Meter Sonar Qube Plug-in,” in
Proceedings of the Working Conference on Source
Code Manipulation and Analysis (SCAM). IEEE,
2014, pp. 77–82.

[41] I. F. Darwin, Checking Java. O’Reilly Media, 2007.

[42] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,”
in Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA). ACM, 2004, pp. 92–106.

589


