
RuleMerger: Automatic Construction of
Variability-Based Model Transformation Rules

Daniel Strüber1,2, Julia Rubin3,4, Thorsten Arendt2,5,
Marsha Chechik6, Gabriele Taentzer2, Jennifer Plöger2

1 Universität Koblenz-Landau, Germany,
2 Philipps-Universität Marburg, Germany,

3 Massachusetts Institute of Technology, USA,
4 University of British Columbia, Canada,

5 GFFT Innovationsförderung GmbH, Germany,
6 University of Toronto, Canada.

Abstract. We present a summary of our paper of the same title, pub-
lished in the proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE) 2016.
Unifying similar model transformation rules into variability-based ones
can improve both the maintainability and the performance of a model
transformation system. Yet, manual identification and unification of such
similar rules is a tedious and error-prone task. In this work, we propose
a novel merging approach for automating this task. The approach em-
ploys clone detection for identifying overlapping rule portions and clus-
tering for selecting groups of rules to be unified. Our instantiation of
the approach harnesses state-of-the-art clone detection and clustering
techniques and includes a specialized merge construction algorithm. We
formally prove correctness of the approach and demonstrate its ability
to produce high-quality outcomes in two real-life case-studies.

1 Summary

Model transformation is a key enabling technology for Model-Driven Engineer-
ing, pervasive in all of its activities, including the translation, optimization, and
synchronization of models. Model transformation systems often contain rules
that are substantially similar to each other. Yet, until recently, various model
transformation languages lacked constructs to capture such similar rules [1].
Therefore, developers resorted to cloning, i.e., producing rules by copying and
modifying existing ones. The drawbacks of cloning are well-known. For instance,
if a bug is found in one of the rules, all rules need to be updated correspondingly.
Furthermore, creating many mutually similar rules also impairs the performance
of transformation systems, possibly rendering the transformation infeasible.

Variability-based (VB) rules are an approach to address these issues [2, 3]. A
VB rule encodes a set of similar rules in a single-copy representation, explicating
common and variable portions. In [2], we provide an algorithm for applying VB
rules and show that it outperforms the application of classical rules in terms of



execution time. Yet, the VB rules in [2] were created manually, a tedious and
error-prone task relying on the precise identification of (i) sets of similar rules,
each to be unified into a single VB rule; (ii) rule portions that should be merged
versus portions that should remain separate. Choices made during these steps
have a substantial impact on the quality of the produced VB rules.

Merge ConstructionClustering

Group rules based on 

their largest clones.

Merge commonalities,

annotate variabilities.

Diam
Circ

Tri

Rule set with variability-based rules

Clone Detection

Detect clones in all rules.

Diam
Circ

Tri

Rule
Merger

Rule set with similar rules

Fig. 1: Overview of RuleMerger

To address this shortcoming, we
present RuleMerger [4], an approach for
automating the merging of model trans-
formation rules. The approach includes a
three-component framework (see Fig. 1).
It applies clone detection [5] to identify
cloned portions between rules and clus-
tering to identify disjoint groups of simi-
lar rules. During merge construction, com-
mon portions are unified and variable ones
are annotated to create VB rules. Each
component can be instantiated and cus-
tomized with respect to specific quality
goals, e.g., to produce rules optimized for
the background execution of a large rule
set or for convenient editing using a cus-
tomized editor [6]. Since the framework
guarantees that all created rule sets are
semantically equivalent, we envision a sys-
tem that enables users to edit rules in
a convenient representation and to auto-
matically derive a highly efficient one.
Contributions. We make the following
contributions: (1) a novel merging approach for model transformation rules,
(2) a correctness proof for the approach, showing the equivalence of the pro-
duced VB rules to their classical counterparts, (3) an instantiation of the ap-
proach via state-of-the-art clone detection and clustering techniques and a novel
merge construction algorithm, and (4) an experimental validation, indicating
that the approach allows improving the performance and compactness of rule
sets considerably.

References

1. Strüber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling, D.: Scalability of Model
Transformations: Position Paper and Benchmark Set. In: Workshop on Scalable
Model Driven Engineering (BigMDE). (2016) 21–30

2. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A Variability-Based Approach
to Reusable and Efficient Model Transformations. In: International Conf. on Fun-
damental Approaches to Software Engineering (FASE), Springer (2015) 283–298

3. Strüber, D.: Model-Driven Engineering in the Large: Refactoring Techniques for
Models and Model Transformation Systems. PhD thesis, Philipps-Universität Mar-
burg (2016)



4. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger: Automatic Construction of Variability-Based Model Transformation Rules.
In: International Conference on Fundamental Approaches to Software Engineering
(FASE), Springer (2016) 122–140

5. Strüber, D., Plöger, J., Acretoaie, V.: Clone Detection for Graph-Based Model
Transformation Languages. In: International Conference on the Theory and Practice
of Model Transformations (ICMT), Springer (2016) 191–206

6. Strüber, D., Schulz, S.: A tool environment for managing families of model trans-
formation rules. In: International Conference on Graph Transformation (ICGT).
Springer (2016) 89–101


