
3.2 Sicherheitsanforderungen

1

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Vorlesung

Methodische Grundlagen des
Software-Engineering
im Sommersemester 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

3.2: Sicherheitsanforderungen

v. 13.06.2013

3.2 Sicherheitsanforderungen

2

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

3.2 Sicherheitsanforderungen

[inkl. Beiträge von
Prof. Dr. Joachim Biskup (TU Dortmund)]

Literatur:
[Bis09] Joachim Biskup: Security in Computing Systems - Challenges,
Approaches and Solutions, Springer-Verlag 2009.
Unibibliothek (e-Book): http://www.ub.tu-dortmund.de/katalog/titel/1350771
Papier-Version: http://www.ub.tu-dortmund.de/katalog/titel/1231626
[Jür05] Jan Jürjens: Secure systems development with UML, Springer-Verlag 2005.
Unibibliothek (e-Book): http://www.ub.tu-dortmund.de/katalog/titel/1361890
Papier-Version: http://www.ub.tu-dortmund.de/katalog/titel/1091324

http://www.ub.tu-dortmund.de/katalog/titel/1350771
http://www.ub.tu-dortmund.de/katalog/titel/1361890

3.2 Sicherheitsanforderungen

3

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Einordnung
3.1 Sicherheitsanforderungen

● Geschäftsprozessmodellierung
● Process-Mining
● Modellbasierte Entwicklung

sicherer Software
● Model-Driven Architecture
● Sicherheitsanforderungen
● UMLsec
● UML-Analysis
● Design Principles
● Examples

● TLS Variant
● CEPS Purchase

3.2 Sicherheitsanforderungen

4

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Security Requirements

3.2 Sicherheitsanforderungen

5

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security interests:
an expanded list

● availability
● integrity: correct content
● integrity: unmodified state
● integrity: detection of modification
● authenticity
● non-repudiation
● confidentiality
● non-observability

● anonymity
● accountability
● evidence
● integrity: temporal correctness
● separation of roles
● covert obligations
● fair exchange
● monitoring and eavesdropping

3.2 Sicherheitsanforderungen

6

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Basic Security Requirements I

3.2 Sicherheitsanforderungen

7

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Basic Security Requirements II

3.2 Sicherheitsanforderungen

8

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Secrecy and Integrity

● Two of the main data security requirements are secrecy (or
confidentiality) and integrity.

● Secrecy of data means that the data should be read only by
legitimate parties.

● Integrity of data means that it should be modified only by legitimate
parties.

3.2 Sicherheitsanforderungen

9

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Confidentiality

3.2 Sicherheitsanforderungen

10

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Integrity: unmodified state

3.2 Sicherheitsanforderungen

11

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Secure Communication Link

● Sensitive communication between different parts of a system needs
to be protected.

● The relevant requirement of a secure communication link is here
assumed to preserve secrecy and integrity for the data in transit.

3.2 Sicherheitsanforderungen

12

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Authenticity

● There are different variants of this third main security requirement.

● Two important ones are message authenticity and entity authenticity.

● Message authenticity (or data origin authenticity) means that one
can trace back some piece of data to what its original source was,
at some point in the past.

● Entity authenticity ensures that one can identify a participant in a
protocol, and in particular make sure that the party has actually
actively participated in the protocol at the time.

● The process providing authenticity is called authentication.

3.2 Sicherheitsanforderungen

13

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Authenticity

3.2 Sicherheitsanforderungen

14

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Non-repudiation

● One way of providing fair exchange is by using the security
requirement of non-repudiation of some action, which means that
this action cannot subsequently be successfully denied.

● That is, the action is provable, usually with respect to some trusted
third party.

3.2 Sicherheitsanforderungen

15

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Fair Exchange

● When trading goods electronically, the fair exchange requirement
postulates that the trade is performed in a way that prevents the
participating parties from cheating.

● If for example buyer has to make a prepayment, the buyer should be
able to prove having made the payment and to reclaim the money if
that good is subsequently not delivered.

3.2 Sicherheitsanforderungen

16

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Fundamental aspects of security

● security is a comprehensive property
● security design reflects the interests of participants
● conflicts must be balanced
● security requirements identify informational activities and their

threats
● security mechanisms aim at

− preventing security violations
− limiting the damage caused by violations
− compensating their consequences

3.2 Sicherheitsanforderungen

17

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Security evaluation

● whether, or to what extent,
do security mechanisms satisfy the security requirements?

● which assumptions are underlying the evaluation?

● which kind of trust is assigned to participants or system
components?

● do the risks recognized justify
the expenditure for the security mechanisms selected?

3.2 Sicherheitsanforderungen

18

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements by legislation:
important examples

● privacy acts detailing the principles of informational self-determination
 first declare a general and protecting forbiddance,
 and then allow the processing of personal data under specific conditions

● telecommunication and services acts
 enable the public and commercial exploitation of informational activities, and
 lay foundations for legally binding transactions
 in public administration and private commerce

● intellectual property acts
 support and extend the traditional concept of
 authors’ (or their publishers’) copyright in texts or images
 to all kinds of electronic multimedia objects

● criminal acts (laws)
 identify definitely offending behavior within computing systems

3.2 Sicherheitsanforderungen

19

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Privacy and informational
self-determination

● an individual determines by himself
which personal information he is willing to share with group members
in a specific social role

● an individual selects his social roles under his own responsibility
● other agents respect the intended separation of roles,

refraining from unauthorized information flows between different roles

3.2 Sicherheitsanforderungen

20

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Protection rules for personal data

● based on permission:
personal data should be processed only by permission,
expressed in a law or with the explicit consent of the person concerned

● need-to-know:
processing personal data should be restricted to actual needs,
preferably by avoiding the collection of personal data at all or
by converting it into non-personal data by anonymization

● collected from the source:
personal data should be collected from the person concerned

● bound to original purpose:
personal data should be processed only for the well-defined purpose
for which it was originally collected

3.2 Sicherheitsanforderungen

21

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Protection rules for personal data

● subject to inspection:
a person concerned should be informed about the kind of processing
that employs his personal data

● under ongoing control:
“wrong” personal data should be corrected;
“no longer needed” personal data should be deleted

● with active support:
agents processing personal data are obliged to actively pursue
the privacy of the persons concerned

3.2 Sicherheitsanforderungen

22

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements by
security evaluation criteria

● Trusted Computer System Evaluation Criteria (TCSEC),
known as the Orange Book,
issued by the US Department of Defense

● Information Technology Security Evaluation Criteria (ITSEC),
jointly published by some European countries

● Common Criteria for Information Technology Security Evaluation (CC),
a version of which has also become an ISO standard

3.2 Sicherheitsanforderungen

23

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Common Criteria:
security functionality

● Audit, as the basis of monitoring and analyzing the behavior of participants
● Communication, with an emphasis on providing evidence

for sending and receiving of messages
● User Data Protection, with an emphasis on enforcing

availability, integrity and confidentiality of the users’ objects
● Identification and Authentication, for enforcing

authenticity with non-repudiation and accountability
● Privacy, including:

non-observability, anonymity, pseudonymity and unlinkability
● Protection of the Trusted Security Functions, which deals with the installation,

administration and operation of security mechanisms, i.e.,
how security mechanisms are securely protected in turn

● Resource Utilization, including fault tolerance, priorization and scheduling
● Target of Evaluation Access, including log-in procedures
● Trusted Path / Channel, dealing with the physical link between

a (human) participant and the (processor of the) technical device employed

3.2 Sicherheitsanforderungen

24

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Common Criteria:
evaluation assurance levels

● EAL1: functionally tested

● EAL2: structurally tested

● EAL3: methodically tested and checked

● EAL4: methodically designed, tested and reviewed

● EAL5: semi-formally designed and tested

● EAL6: semi-formally verified design and tested

● EAL7: formally verified design and tested

3.2 Sicherheitsanforderungen

25

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Common Criteria:
top-level assurance classes

● Configuration Management

● Delivery and Operation

● Development

● Guidance Documents

● Life Cycle Support

● Tests

● Vulnerabilities

for each of the subclasses of the assurance classes,
appropriate assurance levels are required

3.2 Sicherheitsanforderungen

26

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
A practical checklist for evaluations

● a comprehensive view of the circumstances

● answers to the following questions:
● on what other components, in what layers, is the system based?
● in what environment is the system embedded?
● in what institution or company is the system used?

3.2 Sicherheitsanforderungen

27

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Issues for the actual version,
configuration and circumstances

● security policy:
are the security requirements explicitly expressed?

● authorization:
is every access (execution of an operation by a subject on an object),
preceded by an explicit permission
(granting a corresponding access right/a suitable cryptographic key)?

● control:
is such a permission controlled before execution,
(by checking access rights/by the need for a suitable cryptographic key)?

● authenticity:
is the authenticity of all items checked before the execution?

● monitoring:
can intrusions be detected, though potentially only afterwards, and
can any resulting damage be limited or compensated?

● total coverage:
do the security mechanisms cover all accesses and messages?

3.2 Sicherheitsanforderungen

28

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Construction principles

● open design:
the design and the actual implementation of security mechanisms
may or even must be made public (“no security by obscurity”)

● fail-safe defaults:
any informational activity within a computing system is forbidden
unless it has been explicitly permitted

● fine granularity:
elementary, independent activity classes are defined as units of control

● need-to-know / need-to-act:
permissions are granted only if they are strictly needed

● complete mediation:
permissions are granted to well-defined single activity executions

● economy of mechanisms:
the main burden of security enforcement is put on technical mechanisms

● complexity reduction:
the security mechanisms are appropriately concentrated

[Saltzer, Schroeder: The Protection of Information in Computer Systems, Communications of the ACM 17, 7, 1974]

3.2 Sicherheitsanforderungen

29

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Message transmission:
basic abstraction for challenges

● captured by an assignment statement of the form R:=S
● the content m of the memory part denoted by S

is transmitted to the memory part denoted by R
● S writes into R, or

R reads from S, or
some mechanism pushes the transmission

meaningful message

3.2 Sicherheitsanforderungen

30

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Transmission control in distributed
computing systems: example

sender::send_data(receiver,message)

receiver::receive_data(sender,message)

 Sender S Receiver R

3.2 Sicherheitsanforderungen

31

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Secure Information Flow

● A traditional way of ensuring security in computer systems is to
design multi-level secure systems.

● In such systems, there are different levels of sensitivity of data.

● For simplicity, one usually considers two security levels: high,
meaning highly sensitive or highly trusted, and low, meaning less
sensitive or less trusted.

● Where trusted parts of a system interact with untrusted parts, one
has to ensure that there is no indirect leakage of sensitive
information from a trusted to an untrusted part.

3.2 Sicherheitsanforderungen

32

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security requirements:
Secure Information Flow

● To ensure secure information flow, one enforces the “no down-flow”
policy: low data may influence high data, but not vc. vs..

● The opposite of this condition, “no up-flow”, enforces that untrusted
parts of a system may not indirectly manipulate high data: high data
may influence low data, but not vc. vs..

● These security requirements, called secure information flow or
non-interference are rather stringent definitions of secrecy and
integrity which can detect implicit flows of information that are called
covert channels.

● To ensure secure information flow, one enforces the “no down-flow”
policy: low data may influence high data, but not vc. vs..

● The opposite of this condition, “no up-flow”, enforces that untrusted
parts of a system may not indirectly manipulate high data: high data
may influence low data, but not vc. vs..

● These security requirements, called secure information flow or
non-interference are rather stringent definitions of secrecy and
integrity which can detect implicit flows of information that are called
covert channels.

3.2 Sicherheitsanforderungen

33

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Information flow

● a transmitted message, seen as a string (of letters and, ultimately, of 0’s
and 1’s), is not necessarily meaningful concerning content for a receiver or
any other observer

● it may happen and can even be sensible that an observed string appears
random and without information:
from the point of view of the observer, the message transmission has not
caused an information flow

● in other cases, an observer succeeds in assigning a meaning to the
observed string, roughly in the following sense:
he determines an assertion expressing the truth of some aspect of his
considerations;
if, additionally, the observer has newly learnt this truth, then the message
transmission has caused an information flow from the observer’s point of
view

3.2 Sicherheitsanforderungen

34

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Information flow based on
message transmission

1. observing a message:

2. assigning meaning:

3. expressing knowledge:

testing novelty:

4. updating the knowledge:

consider a string m

determine a sentence Δm

form presupposition Π as a collection of sentences

infer whether Π implies Δm

if novel (not implied), add Δm to Π and reorganize,
resulting in Πnew.

3.2 Sicherheitsanforderungen

35

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Information flow and
message transmission

● a message transmission does not necessarily cause
an information flow for any observer

● sometimes an observer has to infer implications
in order to let a message transmission appear
as an information flow from his point of view

● for such an inference, the observer can exploit a priori knowledge
such as a previously acquired key

● for an actual inference,

● the observer needs appropriate computational means

3.2 Sicherheitsanforderungen

36

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Inspection and exception handling:
basic approach

● a message transmission can be accidentally disturbed or deliberately distorted,
with the effect that the receiver observes a modified or even forged message

● as a provision against such unfortunate events,
− senders generate redundancy in the form of auxiliary objects, in particular:

− additional (check) bits for encoding

− Cryptographic exhibits for authentication

● Participants agree on protocols to exploit the redundancy, in particular:

− To detect and correct errors for decoding

− To detect and recover from faults for fault-tolerant computing

− To defect forgeries for authenticity verification

3.2 Sicherheitsanforderungen

37

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Inspection and exception handling:
summary

3.2 Sicherheitsanforderungen

38

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security interests in terms of mess-
age transmission / information flow

● each participant should express his interests

● with respect to the service considered

● (here: message transmission /information flow)

● some interests mainly expect reliable correctness, i.e.,
correct execution of the specified service even in the presence of threats,
and maybe also additional evidence for actual executions

● other interests mainly require confinement, i.e.,
that nobody can misuse the service for unwanted effects

3.2 Sicherheitsanforderungen

39

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Threats: originators and causes

originators
● the interest holder himself
● participants directly involved in the service
● paricipants woh have implemneted the service
● other participants who are authorized to share the computing system
● intruders from outside
● manufactures, verndors and administrator

originators might threat the service
● harmlessy and accidenty

causes might range from
● improper requirements, through
● faulty implementations or
● wrong administration, to
● unfortunate external events

3.2 Sicherheitsanforderungen

40

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Trust and threats

● while interacting, one participant might see another one both as a
wanted partner and as a potentially threatening opponent

● at least some limited trust has to be assigned to some participants
involved

● components of a computing system might fail, but a user has to trust
at least some components

3.2 Sicherheitsanforderungen

41

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Crucial points of
multilateral security

● the trust needed should be minimized
while simultaneously maximizing the achievable functionality,
thereby facing the potential threat from the untrusted parts

● each participant should autonomously assign trust at their own
discretion

● as far as possible, assigned trust should be justified, and the
assigning participant should have the power to verify the
trustworthiness and to control the actual behavior of the trusted
realm

3.2 Sicherheitsanforderungen

42

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Confident and optimistic approach

the administrator chooses relatively weak security mechanisms,
roughly expecting the following:

● at relatively low cost,

● only slightly affecting the standard operations,

● most of the anticipated threats are effectively covered,

● but exceptional violations (hopefully rare) might still be possible;

● such violations will, hopefully, manageable or acceptable,

● though potentially at high cost

3.2 Sicherheitsanforderungen

43

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Provisional and
pessimistic approach

the administrator selects relatively strong security mechanisms,
roughly expecting the following:

● at relatively high cost,

● greatly affecting the standard operations,

● all anticipated threats are effectively covered

3.2 Sicherheitsanforderungen

44

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Optimistic approach versus
pessimistic approach

● cheap versus expensive
● basically unaffected standard operations versus an essential security overhead
● approximate versus complete coverage of threats
● toleration versus strict avoidance of exceptional violations

example: access control

optimistic: we audit all activities and,
taking random samples or in cases of suspicion,
analyze the audit trail for violations only afterwards

pessimistic: we fully control all requests for activities and
decide them in advance

example: trading

optimistic: cooperating participants issue exhibits by themselves,
which are subject to later evaluation by a trusted third party
only in the case of disputes

pessimistic: every trade is mediated and supervised by a trusted notary

3.2 Sicherheitsanforderungen

45

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Computing system: layered design

3.2 Sicherheitsanforderungen

46

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Internal structure of a
processor and its memory

3.2 Sicherheitsanforderungen

47

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Features of computing and
basic vulnerabilities: overview

3.2 Sicherheitsanforderungen

48

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Features of computing and basic
vulnerabilities: one component

3.2 Sicherheitsanforderungen

49

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Features of computing and basic
vulnerabilities: networks

3.2 Sicherheitsanforderungen

50

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

virtuality “virtual security” corrupted or circumvented in supporting layers

overall complexity no global, complete understanding;
unexpected interferences

universality, program-storing imposed (malicious) “computable will”

processors without identity masquerades

devices without personalization masquerades, repudiated human-device binding

no data-program distinction program (self-)modification (buffer overflow attacks)

rewritable memory program and data modification

hardware complexity hidden functionality, covert channels

user-to-device access path exposed attack target

multi-user functionality, parallel processes and virtual memory unintended interferences by resource sharing

abstract semantics of virtual layers incorrect translation, non-captured but security-relevant aspects

“real-world” meaning not expressed unperceived attack possibilities

seemingly restricted functionality universality by simulation

(identifiable) virtual digital objects represented by bit string (double spending of coins)

limited control over remote sites remote activities only derivable by inferences

indistinguishable remote behaviour eavesdropping, message manipulation and forgery,
(malicious) message production

3.2 Sicherheitsanforderungen

51

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary

● Security requirements:
− Confidentiality

− Integrity

− Secrecy

− Authenticity

− Non-repudiation

− Secure Information Flow

● Fundamental aspects of security
● Protection rules for personal data
● Various construction principles

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

