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3.3 UMLsec

Literatur:
[Jür05] Jan Jürjens: Secure systems development with UML, Springer-Verlag 2005.
Unibibliothek (e-Book): http://www.ub.tu-dortmund.de/katalog/titel/1361890
Papier-Version: http://www.ub.tu-dortmund.de/katalog/titel/1091324
● Kapitel 4.1
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Einordnung
3.3 UMLsec

● Geschäftsprozessmodellierung
● Process-Mining
● Modellbasierte Entwicklung

sicherer Software
● Model-Driven Architecture
● Sicherheitsanforderungen
● UMLsec
● UML-Analysis
● Design Principles
● Examples

● TLS Variant
● CEPS Purchase
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Introduction of UMLsec

● UML extension UMLsec
− allows to express security-related information within diagrams in 

UML system specification.

− in form of a UML profile using the standard UML extension 
mechanisms.

● Stereotypes and tags: used to formulate security requirements and 
assumptions on the system environment.

● Constraints

− give criteria that determine whether the requirements are met by 
the system design, by referring to the execution semantics.

− can be checked automatically using tool support1.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Chap 6



3.3 UMLsec

5 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Outline

● List requirements on a UML extension for secure systems 
development.

● Discuss how far our extension meets these requirements.
● Explain details of the extension by means of examples. 
● Demonstrate the usefulness of the extension

− enforcing established rules of secure systems design 

− indicate with an example how one could use UMLsec to apply 
security patterns.
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Requirements on a UML Extension for 
Development of Security-Critical Systems.

● Formulate necessary properties of an UML extension for secure 
systems development. 

− Like the OMG Requests for Proposals (RFPs): distinguish 
mandatory and optional requirements.
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Requirements on a UML Extension for 
Development of Security-Critical Systems.

Main mandatory requirements: 
● Provide basic security requirements such as secrecy, integrity, authenticity.
● Allow considering different threat scenarios depending on adversary 

strengths.
● Allow including important security concepts (e.g. tamper-resistant 

hardware).
● Allow incorporating security mechanisms (e.g. access control).
● Provide security primitives (e.g. (a)symmetric encryption).
● Allow considering underlying physical security.
● Allow addressing security management (e.g. secure workflow).

The optional requirement:
● Include technology-specific security concepts (Java, smart cards,

CORBA, …)
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Requirements on a UML Extension for 
Development of Security-Critical Systems.

Note:
● Goal: not to aim for completeness by including all kinds of security 

properties as primitives. 
● Focus on those that have a comparatively intuitive and universally 

applicable formalization, such as secrecy, integrity, and message 
authentication.

● Other properties, such as entity authenticity, have meanings that 
depend more on the context of their specific use. 

− Can be added by more sophisticated users on-the-fly.
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UMLsec: General Ideas (1)

Add security-relevant information to UML model elements.

Define labels for UML model elements: 

● called stereotypes.

Different stereotypes available:

● Security assumptions on the physical level of the system, such as 
stereotype <<Internet>>.

● Security requirements on the logical structure of the system or on 
specific data values, such as stereotypes <<secrecy>>, <<critical>>.

● Security policies that system parts are supposed to obey, such as 
stereotypes <<fair exchange>>, <<secure links>>, <<data 
security>>, <<no down – flow>>.
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UMLsec: General Ideas (2)

● Activity diagram: 
− secure control flow, coordination 

● Class diagram: 
− exchange of data preserves security levels 

● Sequence diagram: 
− security-critical interaction 

● Statechart diagram: 
− security preserved within object

● Deployment diagram: 
− physical security requirements

● Package: 
− holistic view on security
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The Extension

Give profile following the structure in [UML03]:

● Applicable Subset: Profile concerns all of UML.

● Stereotypes, Tagged Values, and Constraints: 

− List of stereotypes from UMLsec, their tags and constraints and  
corresponding tags (all DataTags).

− The stereotypes do not have parents. 

− Concepts apply both to type and instance level.

− For simplicity focus on the instance level

− By "subsystem" we mean, more precisely, "subsystem instance".

● UMLsec requires no prerequisite profiles. 

[UML03]  Object Management Group. OMG Unified Modeling Language Specification v1.5, March 2003. Version 1.5. OMG Document formal/03-03-01.
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UMLsec Profile:
Stereotypes
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UMLsec Profile:
Tags
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Well-formedness Rules

Stereotypes and tags in more detail. 

● Constraints use security-aware interpretation of UML diagrams. 

● <<fair exchange>>, <<provable>>, <<secure links>>, <<data security>>:

− parameterized over adversary type w.r.t. which the security requirements 
should hold. 

● {adversary}: values of the form (T;C). 

− T: Adversary type, such as T = default for the adversary defined later, which 
may also be self-defined. 

● If ommitet T = default.

− C: Logical condition on the previous knowledge Kp
A of the adversary1. 

● If omitted C ensures that data included in {secrecy} tag of <<critical>> 

does not appear as subexpressions in Kp
A.

● a* represents an arbitrary multiplicity of a tag.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 3.3.4
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Well-formedness Rules

● Constraints associated with stereotypes:

− give a range from structural syntactic conditions, 

● such as <<secure links>>, 
− to relatively deep semantic conditions, 

● such as <<no down-flow>>.
− advantage: 

● first find violations against simpler structural conditions, then 
analyse the behavioral part of the specification

● automated mechanical verification is also available1

● Seems to be more efficient than trying to establish the overall security 
all at once. 

● Industrial setting: allows a scaling of the necessary costs. 

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Chap. 6.
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Examples for usage of stereotypes

● Examples are just for illustration. 

− No formal proofes for stated properties.

− Only essential fragments of subsystems of stereotype in 
question.

● Substantial case-studies for performing security analyses with 
UMLsec will be discussed in later section.
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fair exchange 
(for use case diagrams)

● Transactions should be performed in a way that prevents both 
parties from cheating. 

● Applicable to subsystems containing a use case diagram. 

− Can be refined by another subsystem only if that is also 
stereotyped <<fair exchange>>.   

● Only informal meaning, as opposed to the stereotypes below. 

− “refinement" is meant here in an informal sense. 

● Shows how security requirements (as stereotypes) in other kinds of 
diagrams below can also conveniently be included in use case 
diagrams.
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Requirements with
Use Case Diagrams

Use case diagram describing the following situation: 
● a customer buys a good from a business. 
● trade should be performed in a way that prevents both parties from cheating.

− Add requirement by adding <<fair exchange>> to the subsystem containing 
the use case diagram

Capture security requirements in use case diagrams.
● Constraint: need to appear in corresponding activity diagram.
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Requirements with 
Activity Diagrams

<<fair exchange>> applied to subsystems containing an activity diagram

● associated tags {start}, {stop}, {adversary}. 

● {start}, {stop} take pairs (good; state) as values, 

− good is the name of a good to be sold, can be omitted if only one 
good is to be sold

− state is the name of a state.

● {adversary}  adversary type relative to which the security requirement 
should hold. 

● for every good to be sold, whenever a {start} state in the activity 
diagram is reached, eventually a {stop} state will be reached, when the 
system is executed in presence of an adversary of the type A specified 
in {adversary}.
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Example
<<fair exchange>>

Use case in more detail by giving the 
activity diagram.

● Customer buys goods from a 
business.

● Adversary type irrelevant

− no communication structure 
specified

● How can fair exchange be 
enforced ?

● Requirement <<fair exchange>> 
formulated by referring to the 
activities in the diagram.
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Stereotype 
<<fair exchange>>

Ensures generic fair exchange 
condition.

Constraint: 

● Actions listed in {start}, {stop} should 
be linked

− if one of the former is executed 
then eventually one of the latter 
will be. 

● Formalized wrt. formal semantics of 
the used fragment of UML.

● Can be checked automatically.
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Formalization 
<<fair exchange>>

Formalized for a given subsystem S:
● S fulfills the constraint of <<fair exchange>> with respect to 

adversary type A if for every good to be sold following condition 
holds: 

− For every execution e of [[S]]A there exists number n ∈ N such 
that for every sequence I1,........,In of input multi-sets there exists 

an execution e' which is an extension of e and then processes 
the inputs in I1,........,In, such that there are at least as many 

{stop} states in e' as there are {start} states in e, with respect to 
the relevant good.
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Revisit example
<<fair exchange>>

<<fair exchange>> fulfilled ?
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Revisit example
<<fair exchange>>

<<fair exchange>> fulfilled:

● After payment:

− customer is able to either pick up 
the delivery or reclaim the 
payment.

Can't be ensured for systems which an 
attacker can stop completely.
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Provable

A subsystem S may be labeled <<provable>> .

Tags: {action},{cert}, and {adversary}. 

● {cert} contains an expression 

− proof that the action at the state in {action} was performed. 

● {adversary} specifies an adversary type relative to which the security 
requirement should hold. 

S may output expression E ∈ Exp in {cert} only after the state in 
{action} is reached, when executed in presence of an adversary of the 
type A specified in {adversary}. 

● Here certificate in {cert} is unique for each subsystem instance. 
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Provable

More formally: S fulfills the constraint if the following holds for adversary 
type A: 

for (execution e of [[S]]A) {

if (expression in {cert} is given as output at a state S in e)
then{ state in {action} appears as current state before S in e.

}

}

To avoid illegitimate repayment claims, in <<fair exchange>> example:

● Employ <<provable>> with regard to state Pay.

● Ensure that Reclaim payment action checks whether Customer can 
provide proof of payment.
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role-based access control
<<rbac>>

● Applicable to subsystems containing activity diagram 
● Enforces rolebased access control in the business process specified in the 

activity diagram. 

Tags: {protected}, {role}, and {right}. 
● {protected} contains states in the activity diagram, to which the access should 

be controled. 
● {role} list of pairs (actor; role) 

− actor actor in activity diagram, role is a role.
● {right} has a list of pairs (role; right) 

− role is a role 
− right represents the right to access a protected resource. 

Requires that actors in the activity diagram only perform activities for which they 
have the appropriate rights. 
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Role-based access control
<<rbac>>

For a subsystem S, this is formalized as 
follows: 

● For every actor A in S and every activity 
a in swimlane of A in the activity 
diagram in S, there exists a role R such 
that (A;R) is a value of {role} and (R; a) 
is a value of {right}.
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Example: Role-based
access control (<<rbac>>)

● Simplified part of a business process 

− credit is being set up for a customer of a 
bank.

● Bank employees have the right to set up 
credits. 

● For large credits > e.g.10.000, supervisors 
have to authorize the credit before money is 
transferred.

● Protected resource: authorize credit activity

− Supervisor, in her role of credit approver, 
has appropriate permission

● Diagram is correctly labeled <<rbac>> 

− the associated constraint is respected.
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Example: Role-based
access control (<<rbac>>)

● Example: Instance of the security principle of separation of privilege. 

● Ensure that employee is not assigned two roles with associated 
privileges that are supposed to be separated. 

● How to link access control to the level of the technical security 
architecture is demonstrated using the stereotype <<guarded 
access>>.
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Communication Architecture (1)

● Internet, encrypted, LAN, wire, smart card, POS device, issuer node

− On links (resp. nodes) in deployment diagrams: denote the respective 
kinds of communication links (resp. system nodes). 

● Require that each link or node carries at most one of these stereotypes. 

● For each adversary type A, we have a function ThreatsA(s) from 

s ∈ {<<wire>>; <<encrypted>>; <<LAN>>; <<smart card>>; <<POS 
device>>; << issuer node>>; <<Internet>>} 

to a set of strings 

ThreatsA(s) ⊆ {delete; read; insert; access}:

− node stereotype s: ThreatsA(s) ⊆ {access}

− link stereotype s: ThreatsA(s) ⊆ {delete; read; insert}.
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Communication Architecture (2)

ThreatsA(s) specifies which kinds of actions an adversary of type A can apply to 
nodes or links stereotyped s.

Given UML subsystem S, function ThreatsA(s) gives rise to 

● threatsA
A(x) 

− takes a node or link x and a type of adversary A 

− returns set of strings threatsA
A(x) ⊆ {delete; read; insert; access}2. 

Evaluate UML subsystems using their execution semantics1 , by referring to the 
security framework using UML Machine Systems2.

Examples for threat sets associated with some common adversary types are the 
default and insider attacker.

1 Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 3.3.2
2 Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 3.3.4
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Communication Architecture (3)

Default attacker: outsider adversary with modest capability. 

Ability: 
● on an Internet link: read, delete, and insert messages.
● on an encrypted Internet link, (such as a virtual private network):

− delete messages, without knowing their encrypted content, by bringing down a 
network server.

− not able to read the plaintext messages or insert messages encrypted with 
the right key.

● Assume: encryption set up such that the adversary does not get hold of the secret 
key.

● No direct access to local area network (LAN) and therefore unable to eaves-drop 
on those connections, nor on wires connecting security-critical devices . 

● Smart cards are assumed to be tamperresistant.
− May not be against more sophisticated attackers. 

● Unable to access POS devices or card issuer systems.
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Communication Architecture (4)

● For adversary type A, stereotype s, has a set 
ThreatsA(s) ⊆ {delete, read, insert, access} of actions that 
adversaries are capable of.

● Default attacker: able to read, delete, insert and access messages 
on an Internet link.

Default attacker:

S t e r e o t y p e  s T h r e a t s d e f a u l t ( s )

I n t e r n e t

e n c r y p t e d

L A N

s m a r t  c a r d

{ d e l e t e ,  r e a d ,  i n s e r t }

{ d e l e t e }

∅
∅
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Communication Architecture (5)

● Insider attacker, in the context of the electronic purse system1. 

● May access the encrypted Internet link.

− knowing the corresponding key, and local system components.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 5.3
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Dependencies
<<secrecy>>, <<integrity>>, <<high>>

● Used on dependencies in static structure or component diagrams.

● Denote dependencies supposed to provide respective security 
requirement for the data, sent along them as arguments, return 
values of operations or signals. 

● Used in the constraint for the stereotype <<secure links>>.
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Critical Data <<critical>>

● Labels objects or subsystem instances containing data that is critical 
● Tags: {secrecy}, {integrity}, {authenticity}, {fresh}, and {high}, 

representing the corresponding security requirements1. 
● {secrecy} names of expressions, attributes or message argument 

vari-ables of current object the secrecy of which is supposed to be 
protected; name of an operation is allowed to require that its 
arguments and return values should be kept secret.

● {integrity} has as values pairs (v;E)
− v variable of object whose integrity should be protected 
− E set of acceptable expressions that may be assigned to v.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 3.1 and 3.3
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Critical Data

● {authenticity} contains pairs (a; o) of attributes of the <<critical>> object or 
subsystem 

− a stores the data whose authenticity should be provided and 

− o stores the origin of that data. 

● {fresh} atomic data (elements of the set Data  ⋃ Keys) that should be 
freshly generated. 

● These constraints are enforced by the constraint of <<data security>> 
which labels subsystems that contain <<critical>> objects, as explained 
below. 

● {high} names of messages that are supposed to be protected w.r.t. secure 
information flow, as enforced by <<no down-flow>> and <<no up-flow>>.

● Synchronous operations: return messages required to be protected.
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Secure Communication

● Together with the associated stereotypes <<secrecy>>, <<integrity>>, 
<<high>>, and <<critical>> one can describe different conditions for 
ensuring secure data communication with the following stereotypes: 

− <<secure links>>

− <<secure dependencies>>

− <<data security>>
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Secure Communication

● <<secure links>> 

− Ensures that security requirements on the communication 
dependencies between components are supported by the physical 
situation, relative to the adversary model under consideration. 

● <<secure dependencies>> 

− Ensures that the security requirements in different parts of a static 
structure diagram are consistent. 

● <<data security>> 

− Ensures that security is enforced on the behavior level. 

● One could for example merge the conditions of <<secure links>> and 
<<secure dependencies>> to give one stereotype.



3.3 UMLsec

41 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security at Architectural Level: 
Example

● Business application: part of an e-commerce system
● Supposed to be realized as web application. 
● Payment transaction involves transmission of secret data over Internet links.
● <<secure links>> demands that security requirements on communication are met 

by physical layer.
● Architecture secure against default adversary ?
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Stereotype 
<<secure links>>

● Remember threatsA
S(x)  {delete; read; insert; access}⊆  with UML 

subsystem S, node or link x and adversary A.

● Label subsystems containing static structure diagrams

● ensures that physical layer meets security requirements on 
communication.

● Constraint enforces that for each dependency d with stereotype 
s∈{<<secrecy>>, <<integrity>>, <<high>>} between subsystems or 
objects on different nodes m≠n, have a communication link l between m 
and n such that:

− If s = <<high>> : have threatsA
S(t) =  ∅

− If s = <<secrecy>>       : have read  ∉ threatsA
S(t)

− If s = <<integrity>> : have insert  ∉ threatsA
S(t)
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Revisit example
<<secure links>>

Constraint for stereotype <<secure links>> fulfilled for default adversaries ?
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Revisit example
<<secure links>>

Constraint for stereotype <<secure links>> fulfilled for default adversaries ?
● Intuitively: Internet connections do not provide secrecy against default 

adversaries. 
● Technically: Constraint is violated because the dependency carries the  

stereotype <<secrecy>>, but for <<Internet>> of the corresponding link we 
have read  ∈ threatsdefault(Internet).
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Security at Class Structure Level: 
Example

Security annotations consistent across class diagram ?
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Stereotype
<<secure dependency>>

● Labels subsystems containing static structure diagrams

● Ensures: <<call>> and <<send>> dependencies between components 
respect security requirements on communicated data given by 
{secrecy}, {integrity} of the stereotype <<critical>>.

● More exactly, Constraint enforced is that if there is a <<call>> or 
<<send>> dependency from an object or subsystem C to an interface I 
of an object or subsystem D then the following conditions are fulfilled:

− For any message name n in I, n ∈ {secrecy} (resp.{integrity}, {high}) 
in C if and only if it does so in D.

− If a message name in I appears in {secrecy} (resp. {integrity}, {high}) 
in C then the dependency is stereotyped <<secrecy>> 
(resp.<<integrity>> resp. <<high>>)
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Revisit example
<<secure dependency>>

<<secure dependency>> fulfilled or not ?
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Revisit example
<<secure dependency>>

● Violates <<secure dependency>>:  

− Random generator and <<call>> dependency do not give security 
property {secrecy} for random() required by key generator.
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Stereotype 
<<data security>>

● Security requirements of data marked <<critical>> enforced against 
threat scenario from deployment diagram.

● Constraints: Data marked {secrecy}, {integrity}, {authenticity}, {fresh} 
fulfills respective formalized security requirements.

● Constraint associated with <<data security>> requires that these 
requirements are met w.r.t. the given adversary model.

● Formalization of this constraint discussed in detail in later section.
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Stereotype 
<<data security>>

● Subsystem S stereotyped <<data security>> respects data security 
requirements by the stereotypes <<critical>> and the associated 
tags contained in the subsystem w.r.t. the threat scenario arising 
from the deployment diagram and adversary type A in {adversary}

More precisely: Constraint given by four conditions, which use the 
concepts of secrecy, integrity, authenticity, and freshness.

● secrecy: Subsystem preserves secrecy of data designated by 
{secrecy} against adversaries of type A. 

● authenticity: For any (a,o) of {authenticity}, S provides the authen-
ticity of the attribute a w.r.t. its origin o against adversaries of type A.
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Stereotype 
<<data security>>

● integrity: {integrity} of <<critical>> with a value (v,E), the subsystem 
preserves the integrity of variable v against adversaries of type A, 
w.r.t. E of admissible expressions. 

− If E is omitted, integrity of v should be preserved w.r.t. the set of 
expressions that can be constructed from those in the 
specification of S. 

− Adversary should not be able to make the variable v take on a 
value previously known only to him. 

● freshness: Within S stereotyped <<data security>>, any value 
data ∈ Data ∪ Keys tagged {fresh} in the relevant subsystem 
instance or object D stereotyped <<critical>> in S should be fresh in 
D.
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Stereotype 
<<data security>>

Initial knowledge of the adversary may not contain the data values that, 
according to the tags of <<critical>>, should be guaranteed secrecy, 
integrity or authenticity:

● Cannot be achieved if the adversary knows this data initially. 

● Further assumptions on the initial adversary knowledge can be 
specified. 

● If admissible expressions or the intended origin of data in {integrity} 
and {authenticity} refer to expressions not locally known at the 
<<critical>> object where these tags are applied, one can associate 
these tags with the relevant <<data security>> stereotype.

● Assume that standard adversary not able to break encryption, but can 
exploit design flaws e.g. in a crypto protocol, for example by attempting so-
called „man-in-the-middle“ attacks.
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Stereotype 
<<data security>>

Note:

● Enough for data to be listed with a security requirement in one of the 
objects or subsystems contained in the subsystem to be required to 
fulfill the conditions. 

● Several nested subsystems may each carry <<data security>>.

− The conditions are required to hold w.r.t. each of them. 
Important to note when including one subsystem in another.
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Secure Use of Cryptography: 
Example

Variant of the Internet security protocol TLS proposed in [APS99] 

Goal:

● Secure channel over an untrusted communication link between a 
client and a server. 

− Provide secrecy and server authenticity, as specified by the 
{secrecy} and {authenticity}. 

● To achieve this, some of local attributes have to satisfy {integrity} as 
well.

− The adversary should not be able to make these attributes take 
on a value in his previous knowledge.

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How much does it really cost? In Conference on 
Computer Communications (IEEE Infocom), pages 717-725. IEEE Computer Society, New York, March 1999.
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Secure Use of Cryptography: 
Example

Variant of TLS 
(INFOCOM`99).

Goal is to exchange a secret 
session key K, using public 
keys KC and KS, which is 
then used to encrypt the 
secret data s before 
transmission.

Cryptoprotocol secure against 
default adversary?
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Revisit example (Variant of TLS)
<<data security>>

Violates {secrecy} of s 
against
default adversary.

More details later.
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Secure Use of Cryptography: 
Possible extension

● Properties of secrecy, integrity, and authenticity are taken relative to the 
considered type of adversary. 

● Default adversary is a principal external to the system; 

● Adversaries as part of the system under consideration are possible
giving adversary access to the relevant system components. 

− by defining ThreatsA(s) to contain access for the relevant stereotype 
s.

● E.g.: e-commerce protocol involving customer, merchant, and bank

− goods being purchased is a secret known only to the customer and 
merchant, and not the bank. 
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Secure Use of Cryptography: 
Possible extension

● Formulated by marking relevant data as “secret“ and by performing a 
security analysis relative to the adversary model “bank“. 

− Adversary is given access to the bank component by defining 
Threats() function in a suitable way. 

● Note: Adversary does not necessarily have access to the input queue 
of the system. 

● May be sensible, e.g. to apply {secrecy} to a value received by the 
system from the outside. 

● Condition associated with <<data security>> only ensures that 
stereotyped component keeps the values received by the environment 
secret.

● Make sure that the environment of the system part under consideration 
does not make these values available to the adversary either.
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Secure Information Flow

● Alternative way of specifying secrecy-and integrity-like requirements. 
● Protection against partial flow of information. 
● Can be more difficult, especially when handling with encryption. 
● Assign to each piece of the system data one of two security levels: 

− high, meaning highly sensitive or highly trusted. 
− low, meaning less sensitive or less trusted. 

Given a set of messages H and a sequence m of event multi-sets, we 
write:

● mH for the sequence of event multi-sets derived from those in m by 
deleting all events the message names of which are not in H. 

● mH for the sequence of event multi-sets derived from those in m by 

deleting all events the message names of which are in H.
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Secure Information Flow:
Background

Definition: Given a subsystem S and a set of high messages H, 

we say:

● A prevents down-flow with respect to H if for any two sequences i; j 
of event multi-sets and any two output sequences o ∈ [[S]]A(i) and 
p ∈ [[S]]A(j), iH = jH implies oH = pH and

● A prevents up-flow with respect to H if for any two sequences i; j of 
event multi-sets and any two output sequences o ∈ [[S]]A(i) and 
p ∈ [[S]]A(j), iH = jH implies oH = pH.
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Secure Information Flow:
Background

● Intuitively:

● Prevent down-flow: outputting a non-high (or low) message does not 
depend on high inputs. 

− rather stringent secrecy requirement for messages marked as high.

● Prevent up-flow: outputting a high value does not depend on low inputs. 

− stringent integrity requirement for messages marked as high.

● This notion is generalization of the original notion of non-interference 
for deterministic systems1 to system models that are non-deterministic 
because of underspecification2.

1  J. Goguen and J. Meseguer. Security policies and security models. In Symposium on Security and Privacy (S&P), pages 11{20. IEEEComputer 
Society, New York, 1982.

2  J. Jürjens. Principles for Secure Systems Design. PhD thesis, Oxford University Computing Laboratory, 2002.
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 Secure Information Flow: 
Example (1)

● Secret attribute money containing the amount of money spent by a given customer. 

− Can be read by rm(): return value is also secret. 

− Increase money with operation wm(x). 

● When money exceeds 1000, goes into state ExtraService. 

● Public operation rx() to check whether extra service should be provided. 

[ m o n e y + x > = 1 0 0 0 ]

[ m o n e y + x < 1 0 0 0 ]
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 Secure Information Flow

● Prevent the indirectly leakage out of any partial information about high data 
via non-high data, as specified by the stereotype
<<no down-flow>>.

− Enforces secure information flow by making use of {high} associated 
with <<critical>>.

● Intuitively: Value of any data specified in {secrecy} may influence only the 
values of data also specified in {secrecy}.

● More precisely, formalize by referring to formal behavioural semantics: 
Constraint for <<no down-flow>> (resp. <<no up-flow>>) is that UML 
machine Exec[[S]] for subsystem S prevents down-flow (resp. up-flow) with 
respect to messages specified in <<high>> and their return messages.

● E.g. for privacy reasons, it may be important that the observable 
information on the customer account allows no conclusion about the 
money spent. 
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 Secure Information Flow: 
Example (2)

Now we use the stereotype <<no down-fow >> to indicate that the object should not 
leak out any information about secret data, such as the money attribute.

No partial leakage of secrets ?

[ m o n e y + x > = 1 0 0 0 ]

[ m o n e y + x < 1 0 0 0 ]
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 Secure Information Flow: 
Example (3)

● <<no down-fow>> indicates that the object should not leak out any 
information about secret data, such as the money attribute. 

● Violation of the constraint associated with <<no down-flow>>:
− partial information about the input of the high operation wm() leaked out 

via the return value of the non-high operation rx().

[ m o n e y + x > = 1 0 0 0 ]

[ m o n e y + x < 1 0 0 0 ]
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 Secure Information Flow: 
Example (4)

How the underlying formalism captures the security flaw using the 
previous definition:

● sequences i; j of input multi-sets 

● sequences o ∊ [[A]](i) and p ∊ [[A]](j) of output multi-sets of the UML 
Machine A giving the behavior of the considered statechart

● with iH = jH and oH ≠ pH, where H is the set of high messages. 

● Consider the sequences 

− i := ({{wm(0)}} ; {{rx()}} ) 

− j := ({{wm(1000)}} ; {{rx()}}). 

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004.
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 Secure Information Flow: 
Example (5)

Given iH = ({{ }} , {{ rx() }} ) = jH. 

Definition of the behavioral semantics of statecharts1, brings the output 
multi-sets:

● o := ({{ }}, {{return(false) }} ) ∊ [[A]](i). 

● p := ({{ }}, {{return(true) }} ) ∊ [[A]](j). 

=>

● oH = ({{ }}, {{return(false) }} ) ≠ ({{ }}, {{return(true) }} ) = pH

meaning that the constraint associated with<<no down-flow>> is violated.

Can be detected automatically with the tool support provided for 
UMLsec2.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 3.3.2
2 http://umlsec.de/
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Guarded Objects
<<guarded access>>

● Each object in the subsystem stereotyped <<guarded>> can only be 
accessed through the objects specified by {guard} attached to the 
<<guarded>> object.

● Formally: assume name ∉ Kp
A for adversary type A under conside-

ration and each name name of an instance of a <<guarded>> object, 
meaning that a reference is not publicly available.

● Assume: for each <<guarded>> object there is a statechart 
specification of an object whose name is given in {guard}. 

● To model passing of references.
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Guarded Objects
<<guarded access>>

Example:

● Illustration with a web-based financial application. 

● Two institutions offer services over the Internet to local users: 

− Internet bank, Bankeasy

− financial advisor, Finance. 

● Use these services:

− Local client needs to grant the applets certain privileges.

● Access to local financial data is realized using GuardedObjects.
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Guarded Objects
<<guarded access>>

Simplified relevant part of Java Security 
Architecture 

● Receives requests for object 
references 

● Forwards them to the guard objects 
of the three guarded objects. 

● <<guarded>> objects StoFi, FinEx, 
and MicSi can only be accessed 
through their associated guard.

− Subsystem instance fulfills the 
condition associated with 
<<guarded access>> w.r.t. 
default adversaries. 
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Guarded Objects
Example

Access controls realized by Guard objects 
FinGd, ExpGd, and MicGd.

● Behavior is specified.

Applets signed by the bank 

● Read and write the financial data 
stored in the local database, but only 
between 1 pm and 2 pm.

● Enforced by the FinGd guard object.

− Condition slot is fulfilled if and only 
if the time is between 1 pm and 2 
pm.



3.3 UMLsec

72 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded
<<guarded>>

● <<guarded>> labels objects in 
scope of <<guarded access>> that 
are supposed to be guarded.1

● Tag:

− {guard} name of the correspon-
ding guard object. 

● <<guarded>> objects 

StoFi, FinEx, MicSi 

protected by the {guard} objects

FinGd, ExpGd, MicGd

respectively.

1  Jan Jürjens, Secure Systems Development  with UML, Springer 2004. Sect. 5.4
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Does UMLsec
Meet Requirements ?

● Security requirements: Formalizations of basic security requirements
provided via stereotypes, such as <<secrecy>>, etc.

● Threat scenarios: using the formal semantics and depending on the 
modeled underlying physical layer via the sets Threatsadv(ster) of 
actions available to the adversary of kind adv.

● Security concepts: For example <<smart card>>.
● Underlying physical security: 

− Addressed by <<secure links>> in deployment diagrams.
● Security primitives: 

− Either built in, such as encryption, or 
− Can be treated, such as security protocols.

● Security managements: Use activity diagrams.
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Summary: 3.3 UMLsec

● General Ideas

● Stereotypes

● Communication Architecture

● Critical Data

● Secure Communication

● Secure Information Flow
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