
3.3 UMLsec

1

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Vorlesung

Methodische Grundlagen des
Software-Engineering
im Sommersemester 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

3.3: UMLsec

v. 26.06.2013

3.3 UMLsec

2

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

3.3 UMLsec

Literatur:
[Jür05] Jan Jürjens: Secure systems development with UML, Springer-Verlag 2005.
Unibibliothek (e-Book): http://www.ub.tu-dortmund.de/katalog/titel/1361890
Papier-Version: http://www.ub.tu-dortmund.de/katalog/titel/1091324
● Kapitel 4.1

http://www.ub.tu-dortmund.de/katalog/titel/1361890
http://www.ub.tu-dortmund.de/katalog/titel/1091324

3.3 UMLsec

3

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Einordnung
3.3 UMLsec

● Geschäftsprozessmodellierung
● Process-Mining
● Modellbasierte Entwicklung

sicherer Software
● Model-Driven Architecture
● Sicherheitsanforderungen
● UMLsec
● UML-Analysis
● Design Principles
● Examples

● TLS Variant
● CEPS Purchase

3.3 UMLsec

4

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Introduction of UMLsec

● UML extension UMLsec
− allows to express security-related information within diagrams in

UML system specification.

− in form of a UML profile using the standard UML extension
mechanisms.

● Stereotypes and tags: used to formulate security requirements and
assumptions on the system environment.

● Constraints

− give criteria that determine whether the requirements are met by
the system design, by referring to the execution semantics.

− can be checked automatically using tool support1.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Chap 6

3.3 UMLsec

5

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Outline

● List requirements on a UML extension for secure systems
development.

● Discuss how far our extension meets these requirements.
● Explain details of the extension by means of examples.
● Demonstrate the usefulness of the extension

− enforcing established rules of secure systems design

− indicate with an example how one could use UMLsec to apply
security patterns.

3.3 UMLsec

6

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements on a UML Extension for
Development of Security-Critical Systems.

● Formulate necessary properties of an UML extension for secure
systems development.

− Like the OMG Requests for Proposals (RFPs): distinguish
mandatory and optional requirements.

3.3 UMLsec

7

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements on a UML Extension for
Development of Security-Critical Systems.

Main mandatory requirements:
● Provide basic security requirements such as secrecy, integrity, authenticity.
● Allow considering different threat scenarios depending on adversary

strengths.
● Allow including important security concepts (e.g. tamper-resistant

hardware).
● Allow incorporating security mechanisms (e.g. access control).
● Provide security primitives (e.g. (a)symmetric encryption).
● Allow considering underlying physical security.
● Allow addressing security management (e.g. secure workflow).

The optional requirement:
● Include technology-specific security concepts (Java, smart cards,

CORBA, …)

3.3 UMLsec

8

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements on a UML Extension for
Development of Security-Critical Systems.

Note:
● Goal: not to aim for completeness by including all kinds of security

properties as primitives.
● Focus on those that have a comparatively intuitive and universally

applicable formalization, such as secrecy, integrity, and message
authentication.

● Other properties, such as entity authenticity, have meanings that
depend more on the context of their specific use.

− Can be added by more sophisticated users on-the-fly.

3.3 UMLsec

9

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
UMLsec: General Ideas (1)

Add security-relevant information to UML model elements.

Define labels for UML model elements:

● called stereotypes.

Different stereotypes available:

● Security assumptions on the physical level of the system, such as
stereotype <<Internet>>.

● Security requirements on the logical structure of the system or on
specific data values, such as stereotypes <<secrecy>>, <<critical>>.

● Security policies that system parts are supposed to obey, such as
stereotypes <<fair exchange>>, <<secure links>>, <<data
security>>, <<no down – flow>>.

3.3 UMLsec

10

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
UMLsec: General Ideas (2)

● Activity diagram:
− secure control flow, coordination

● Class diagram:
− exchange of data preserves security levels

● Sequence diagram:
− security-critical interaction

● Statechart diagram:
− security preserved within object

● Deployment diagram:
− physical security requirements

● Package:
− holistic view on security

3.3 UMLsec

11

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
The Extension

Give profile following the structure in [UML03]:

● Applicable Subset: Profile concerns all of UML.

● Stereotypes, Tagged Values, and Constraints:

− List of stereotypes from UMLsec, their tags and constraints and
corresponding tags (all DataTags).

− The stereotypes do not have parents.

− Concepts apply both to type and instance level.

− For simplicity focus on the instance level

− By "subsystem" we mean, more precisely, "subsystem instance".

● UMLsec requires no prerequisite profiles.

[UML03] Object Management Group. OMG Unified Modeling Language Specification v1.5, March 2003. Version 1.5. OMG Document formal/03-03-01.

3.3 UMLsec

12

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

UMLsec Profile:
Stereotypes

3.3 UMLsec

13

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

UMLsec Profile:
Tags

3.3 UMLsec

14

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Well-formedness Rules

Stereotypes and tags in more detail.

● Constraints use security-aware interpretation of UML diagrams.

● <<fair exchange>>, <<provable>>, <<secure links>>, <<data security>>:

− parameterized over adversary type w.r.t. which the security requirements
should hold.

● {adversary}: values of the form (T;C).

− T: Adversary type, such as T = default for the adversary defined later, which
may also be self-defined.

● If ommitet T = default.

− C: Logical condition on the previous knowledge Kp
A of the adversary1.

● If omitted C ensures that data included in {secrecy} tag of <<critical>>

does not appear as subexpressions in Kp
A.

● a* represents an arbitrary multiplicity of a tag.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.4

3.3 UMLsec

15

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Well-formedness Rules

● Constraints associated with stereotypes:

− give a range from structural syntactic conditions,

● such as <<secure links>>,
− to relatively deep semantic conditions,

● such as <<no down-flow>>.
− advantage:

● first find violations against simpler structural conditions, then
analyse the behavioral part of the specification

● automated mechanical verification is also available1

● Seems to be more efficient than trying to establish the overall security
all at once.

● Industrial setting: allows a scaling of the necessary costs.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Chap. 6.

3.3 UMLsec

16

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Examples for usage of stereotypes

● Examples are just for illustration.

− No formal proofes for stated properties.

− Only essential fragments of subsystems of stereotype in
question.

● Substantial case-studies for performing security analyses with
UMLsec will be discussed in later section.

3.3 UMLsec

17

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

fair exchange
(for use case diagrams)

● Transactions should be performed in a way that prevents both
parties from cheating.

● Applicable to subsystems containing a use case diagram.

− Can be refined by another subsystem only if that is also
stereotyped <<fair exchange>>.

● Only informal meaning, as opposed to the stereotypes below.

− “refinement" is meant here in an informal sense.

● Shows how security requirements (as stereotypes) in other kinds of
diagrams below can also conveniently be included in use case
diagrams.

3.3 UMLsec

18

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements with
Use Case Diagrams

Use case diagram describing the following situation:
● a customer buys a good from a business.
● trade should be performed in a way that prevents both parties from cheating.

− Add requirement by adding <<fair exchange>> to the subsystem containing
the use case diagram

Capture security requirements in use case diagrams.
● Constraint: need to appear in corresponding activity diagram.

3.3 UMLsec

19

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Requirements with
Activity Diagrams

<<fair exchange>> applied to subsystems containing an activity diagram

● associated tags {start}, {stop}, {adversary}.

● {start}, {stop} take pairs (good; state) as values,

− good is the name of a good to be sold, can be omitted if only one
good is to be sold

− state is the name of a state.

● {adversary} adversary type relative to which the security requirement
should hold.

● for every good to be sold, whenever a {start} state in the activity
diagram is reached, eventually a {stop} state will be reached, when the
system is executed in presence of an adversary of the type A specified
in {adversary}.

3.3 UMLsec

20

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Example
<<fair exchange>>

Use case in more detail by giving the
activity diagram.

● Customer buys goods from a
business.

● Adversary type irrelevant

− no communication structure
specified

● How can fair exchange be
enforced ?

● Requirement <<fair exchange>>
formulated by referring to the
activities in the diagram.

3.3 UMLsec

21

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<fair exchange>>

Ensures generic fair exchange
condition.

Constraint:

● Actions listed in {start}, {stop} should
be linked

− if one of the former is executed
then eventually one of the latter
will be.

● Formalized wrt. formal semantics of
the used fragment of UML.

● Can be checked automatically.

3.3 UMLsec

22

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Formalization
<<fair exchange>>

Formalized for a given subsystem S:
● S fulfills the constraint of <<fair exchange>> with respect to

adversary type A if for every good to be sold following condition
holds:

− For every execution e of [[S]]A there exists number n ∈ N such
that for every sequence I1,........,In of input multi-sets there exists

an execution e' which is an extension of e and then processes
the inputs in I1,........,In, such that there are at least as many

{stop} states in e' as there are {start} states in e, with respect to
the relevant good.

3.3 UMLsec

23

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<fair exchange>>

<<fair exchange>> fulfilled ?

3.3 UMLsec

24

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<fair exchange>>

<<fair exchange>> fulfilled:

● After payment:

− customer is able to either pick up
the delivery or reclaim the
payment.

Can't be ensured for systems which an
attacker can stop completely.

3.3 UMLsec

25

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Provable

A subsystem S may be labeled <<provable>> .

Tags: {action},{cert}, and {adversary}.

● {cert} contains an expression

− proof that the action at the state in {action} was performed.

● {adversary} specifies an adversary type relative to which the security
requirement should hold.

S may output expression E ∈ Exp in {cert} only after the state in
{action} is reached, when executed in presence of an adversary of the
type A specified in {adversary}.

● Here certificate in {cert} is unique for each subsystem instance.

3.3 UMLsec

26

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Provable

More formally: S fulfills the constraint if the following holds for adversary
type A:

for (execution e of [[S]]A) {

if (expression in {cert} is given as output at a state S in e)
then{ state in {action} appears as current state before S in e.

}

}

To avoid illegitimate repayment claims, in <<fair exchange>> example:

● Employ <<provable>> with regard to state Pay.

● Ensure that Reclaim payment action checks whether Customer can
provide proof of payment.

3.3 UMLsec

27

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

role-based access control
<<rbac>>

● Applicable to subsystems containing activity diagram
● Enforces rolebased access control in the business process specified in the

activity diagram.

Tags: {protected}, {role}, and {right}.
● {protected} contains states in the activity diagram, to which the access should

be controled.
● {role} list of pairs (actor; role)

− actor actor in activity diagram, role is a role.
● {right} has a list of pairs (role; right)

− role is a role
− right represents the right to access a protected resource.

Requires that actors in the activity diagram only perform activities for which they
have the appropriate rights.

3.3 UMLsec

28

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Role-based access control
<<rbac>>

For a subsystem S, this is formalized as
follows:

● For every actor A in S and every activity
a in swimlane of A in the activity
diagram in S, there exists a role R such
that (A;R) is a value of {role} and (R; a)
is a value of {right}.

3.3 UMLsec

29

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Example: Role-based
access control (<<rbac>>)

● Simplified part of a business process

− credit is being set up for a customer of a
bank.

● Bank employees have the right to set up
credits.

● For large credits > e.g.10.000, supervisors
have to authorize the credit before money is
transferred.

● Protected resource: authorize credit activity

− Supervisor, in her role of credit approver,
has appropriate permission

● Diagram is correctly labeled <<rbac>>

− the associated constraint is respected.

3.3 UMLsec

30

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Example: Role-based
access control (<<rbac>>)

● Example: Instance of the security principle of separation of privilege.

● Ensure that employee is not assigned two roles with associated
privileges that are supposed to be separated.

● How to link access control to the level of the technical security
architecture is demonstrated using the stereotype <<guarded
access>>.

3.3 UMLsec

31

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Communication Architecture (1)

● Internet, encrypted, LAN, wire, smart card, POS device, issuer node

− On links (resp. nodes) in deployment diagrams: denote the respective
kinds of communication links (resp. system nodes).

● Require that each link or node carries at most one of these stereotypes.

● For each adversary type A, we have a function ThreatsA(s) from

s ∈ {<<wire>>; <<encrypted>>; <<LAN>>; <<smart card>>; <<POS
device>>; << issuer node>>; <<Internet>>}

to a set of strings

ThreatsA(s) ⊆ {delete; read; insert; access}:

− node stereotype s: ThreatsA(s) ⊆ {access}

− link stereotype s: ThreatsA(s) ⊆ {delete; read; insert}.

3.3 UMLsec

32

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Communication Architecture (2)

ThreatsA(s) specifies which kinds of actions an adversary of type A can apply to
nodes or links stereotyped s.

Given UML subsystem S, function ThreatsA(s) gives rise to

● threatsA
A(x)

− takes a node or link x and a type of adversary A

− returns set of strings threatsA
A(x) ⊆ {delete; read; insert; access}2.

Evaluate UML subsystems using their execution semantics1 , by referring to the
security framework using UML Machine Systems2.

Examples for threat sets associated with some common adversary types are the
default and insider attacker.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.2
2 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.4

3.3 UMLsec

33

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Communication Architecture (3)

Default attacker: outsider adversary with modest capability.

Ability:
● on an Internet link: read, delete, and insert messages.
● on an encrypted Internet link, (such as a virtual private network):

− delete messages, without knowing their encrypted content, by bringing down a
network server.

− not able to read the plaintext messages or insert messages encrypted with
the right key.

● Assume: encryption set up such that the adversary does not get hold of the secret
key.

● No direct access to local area network (LAN) and therefore unable to eaves-drop
on those connections, nor on wires connecting security-critical devices .

● Smart cards are assumed to be tamperresistant.
− May not be against more sophisticated attackers.

● Unable to access POS devices or card issuer systems.

3.3 UMLsec

34

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Communication Architecture (4)

● For adversary type A, stereotype s, has a set
ThreatsA(s) ⊆ {delete, read, insert, access} of actions that
adversaries are capable of.

● Default attacker: able to read, delete, insert and access messages
on an Internet link.

Default attacker:

S t e r e o t y p e s T h r e a t s d e f a u l t (s)

I n t e r n e t

e n c r y p t e d

L A N

s m a r t c a r d

{ d e l e t e , r e a d , i n s e r t }

{ d e l e t e }

∅
∅

3.3 UMLsec

35

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Communication Architecture (5)

● Insider attacker, in the context of the electronic purse system1.

● May access the encrypted Internet link.

− knowing the corresponding key, and local system components.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 5.3

3.3 UMLsec

36

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Dependencies
<<secrecy>>, <<integrity>>, <<high>>

● Used on dependencies in static structure or component diagrams.

● Denote dependencies supposed to provide respective security
requirement for the data, sent along them as arguments, return
values of operations or signals.

● Used in the constraint for the stereotype <<secure links>>.

3.3 UMLsec

37

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Critical Data <<critical>>

● Labels objects or subsystem instances containing data that is critical
● Tags: {secrecy}, {integrity}, {authenticity}, {fresh}, and {high},

representing the corresponding security requirements1.
● {secrecy} names of expressions, attributes or message argument

vari-ables of current object the secrecy of which is supposed to be
protected; name of an operation is allowed to require that its
arguments and return values should be kept secret.

● {integrity} has as values pairs (v;E)
− v variable of object whose integrity should be protected
− E set of acceptable expressions that may be assigned to v.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.1 and 3.3

3.3 UMLsec

38

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Critical Data

● {authenticity} contains pairs (a; o) of attributes of the <<critical>> object or
subsystem

− a stores the data whose authenticity should be provided and

− o stores the origin of that data.

● {fresh} atomic data (elements of the set Data ⋃ Keys) that should be
freshly generated.

● These constraints are enforced by the constraint of <<data security>>
which labels subsystems that contain <<critical>> objects, as explained
below.

● {high} names of messages that are supposed to be protected w.r.t. secure
information flow, as enforced by <<no down-flow>> and <<no up-flow>>.

● Synchronous operations: return messages required to be protected.

3.3 UMLsec

39

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure Communication

● Together with the associated stereotypes <<secrecy>>, <<integrity>>,
<<high>>, and <<critical>> one can describe different conditions for
ensuring secure data communication with the following stereotypes:

− <<secure links>>

− <<secure dependencies>>

− <<data security>>

3.3 UMLsec

40

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure Communication

● <<secure links>>

− Ensures that security requirements on the communication
dependencies between components are supported by the physical
situation, relative to the adversary model under consideration.

● <<secure dependencies>>

− Ensures that the security requirements in different parts of a static
structure diagram are consistent.

● <<data security>>

− Ensures that security is enforced on the behavior level.

● One could for example merge the conditions of <<secure links>> and
<<secure dependencies>> to give one stereotype.

3.3 UMLsec

41

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security at Architectural Level:
Example

● Business application: part of an e-commerce system
● Supposed to be realized as web application.
● Payment transaction involves transmission of secret data over Internet links.
● <<secure links>> demands that security requirements on communication are met

by physical layer.
● Architecture secure against default adversary ?

3.3 UMLsec

42

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<secure links>>

● Remember threatsA
S(x) {delete; read; insert; access}⊆ with UML

subsystem S, node or link x and adversary A.

● Label subsystems containing static structure diagrams

● ensures that physical layer meets security requirements on
communication.

● Constraint enforces that for each dependency d with stereotype
s∈{<<secrecy>>, <<integrity>>, <<high>>} between subsystems or
objects on different nodes m≠n, have a communication link l between m
and n such that:

− If s = <<high>> : have threatsA
S(t) = ∅

− If s = <<secrecy>> : have read ∉ threatsA
S(t)

− If s = <<integrity>> : have insert ∉ threatsA
S(t)

3.3 UMLsec

43

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<secure links>>

Constraint for stereotype <<secure links>> fulfilled for default adversaries ?

3.3 UMLsec

44

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<secure links>>

Constraint for stereotype <<secure links>> fulfilled for default adversaries ?
● Intuitively: Internet connections do not provide secrecy against default

adversaries.
● Technically: Constraint is violated because the dependency carries the

stereotype <<secrecy>>, but for <<Internet>> of the corresponding link we
have read ∈ threatsdefault(Internet).

3.3 UMLsec

45

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Security at Class Structure Level:
Example

Security annotations consistent across class diagram ?

3.3 UMLsec

46

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<secure dependency>>

● Labels subsystems containing static structure diagrams

● Ensures: <<call>> and <<send>> dependencies between components
respect security requirements on communicated data given by
{secrecy}, {integrity} of the stereotype <<critical>>.

● More exactly, Constraint enforced is that if there is a <<call>> or
<<send>> dependency from an object or subsystem C to an interface I
of an object or subsystem D then the following conditions are fulfilled:

− For any message name n in I, n ∈ {secrecy} (resp.{integrity}, {high})
in C if and only if it does so in D.

− If a message name in I appears in {secrecy} (resp. {integrity}, {high})
in C then the dependency is stereotyped <<secrecy>>
(resp.<<integrity>> resp. <<high>>)

3.3 UMLsec

47

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<secure dependency>>

<<secure dependency>> fulfilled or not ?

3.3 UMLsec

48

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example
<<secure dependency>>

● Violates <<secure dependency>>:

− Random generator and <<call>> dependency do not give security
property {secrecy} for random() required by key generator.

3.3 UMLsec

49

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<data security>>

● Security requirements of data marked <<critical>> enforced against
threat scenario from deployment diagram.

● Constraints: Data marked {secrecy}, {integrity}, {authenticity}, {fresh}
fulfills respective formalized security requirements.

● Constraint associated with <<data security>> requires that these
requirements are met w.r.t. the given adversary model.

● Formalization of this constraint discussed in detail in later section.

3.3 UMLsec

50

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<data security>>

● Subsystem S stereotyped <<data security>> respects data security
requirements by the stereotypes <<critical>> and the associated
tags contained in the subsystem w.r.t. the threat scenario arising
from the deployment diagram and adversary type A in {adversary}

More precisely: Constraint given by four conditions, which use the
concepts of secrecy, integrity, authenticity, and freshness.

● secrecy: Subsystem preserves secrecy of data designated by
{secrecy} against adversaries of type A.

● authenticity: For any (a,o) of {authenticity}, S provides the authen-
ticity of the attribute a w.r.t. its origin o against adversaries of type A.

3.3 UMLsec

51

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<data security>>

● integrity: {integrity} of <<critical>> with a value (v,E), the subsystem
preserves the integrity of variable v against adversaries of type A,
w.r.t. E of admissible expressions.

− If E is omitted, integrity of v should be preserved w.r.t. the set of
expressions that can be constructed from those in the
specification of S.

− Adversary should not be able to make the variable v take on a
value previously known only to him.

● freshness: Within S stereotyped <<data security>>, any value
data ∈ Data ∪ Keys tagged {fresh} in the relevant subsystem
instance or object D stereotyped <<critical>> in S should be fresh in
D.

3.3 UMLsec

52

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<data security>>

Initial knowledge of the adversary may not contain the data values that,
according to the tags of <<critical>>, should be guaranteed secrecy,
integrity or authenticity:

● Cannot be achieved if the adversary knows this data initially.

● Further assumptions on the initial adversary knowledge can be
specified.

● If admissible expressions or the intended origin of data in {integrity}
and {authenticity} refer to expressions not locally known at the
<<critical>> object where these tags are applied, one can associate
these tags with the relevant <<data security>> stereotype.

● Assume that standard adversary not able to break encryption, but can
exploit design flaws e.g. in a crypto protocol, for example by attempting so-
called „man-in-the-middle“ attacks.

3.3 UMLsec

53

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Stereotype
<<data security>>

Note:

● Enough for data to be listed with a security requirement in one of the
objects or subsystems contained in the subsystem to be required to
fulfill the conditions.

● Several nested subsystems may each carry <<data security>>.

− The conditions are required to hold w.r.t. each of them.
Important to note when including one subsystem in another.

3.3 UMLsec

54

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Use of Cryptography:
Example

Variant of the Internet security protocol TLS proposed in [APS99]

Goal:

● Secure channel over an untrusted communication link between a
client and a server.

− Provide secrecy and server authenticity, as specified by the
{secrecy} and {authenticity}.

● To achieve this, some of local attributes have to satisfy {integrity} as
well.

− The adversary should not be able to make these attributes take
on a value in his previous knowledge.

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How much does it really cost? In Conference on
Computer Communications (IEEE Infocom), pages 717-725. IEEE Computer Society, New York, March 1999.

3.3 UMLsec

55

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Use of Cryptography:
Example

Variant of TLS
(INFOCOM`99).

Goal is to exchange a secret
session key K, using public
keys KC and KS, which is
then used to encrypt the
secret data s before
transmission.

Cryptoprotocol secure against
default adversary?

3.3 UMLsec

56

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Revisit example (Variant of TLS)
<<data security>>

Violates {secrecy} of s
against
default adversary.

More details later.

3.3 UMLsec

57

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Use of Cryptography:
Possible extension

● Properties of secrecy, integrity, and authenticity are taken relative to the
considered type of adversary.

● Default adversary is a principal external to the system;

● Adversaries as part of the system under consideration are possible
giving adversary access to the relevant system components.

− by defining ThreatsA(s) to contain access for the relevant stereotype
s.

● E.g.: e-commerce protocol involving customer, merchant, and bank

− goods being purchased is a secret known only to the customer and
merchant, and not the bank.

3.3 UMLsec

58

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Use of Cryptography:
Possible extension

● Formulated by marking relevant data as “secret“ and by performing a
security analysis relative to the adversary model “bank“.

− Adversary is given access to the bank component by defining
Threats() function in a suitable way.

● Note: Adversary does not necessarily have access to the input queue
of the system.

● May be sensible, e.g. to apply {secrecy} to a value received by the
system from the outside.

● Condition associated with <<data security>> only ensures that
stereotyped component keeps the values received by the environment
secret.

● Make sure that the environment of the system part under consideration
does not make these values available to the adversary either.

3.3 UMLsec

59

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure Information Flow

● Alternative way of specifying secrecy-and integrity-like requirements.
● Protection against partial flow of information.
● Can be more difficult, especially when handling with encryption.
● Assign to each piece of the system data one of two security levels:

− high, meaning highly sensitive or highly trusted.
− low, meaning less sensitive or less trusted.

Given a set of messages H and a sequence m of event multi-sets, we
write:

● mH for the sequence of event multi-sets derived from those in m by
deleting all events the message names of which are not in H.

● mH for the sequence of event multi-sets derived from those in m by

deleting all events the message names of which are in H.

3.3 UMLsec

60

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Information Flow:
Background

Definition: Given a subsystem S and a set of high messages H,

we say:

● A prevents down-flow with respect to H if for any two sequences i; j
of event multi-sets and any two output sequences o ∈ [[S]]A(i) and
p ∈ [[S]]A(j), iH = jH implies oH = pH and

● A prevents up-flow with respect to H if for any two sequences i; j of
event multi-sets and any two output sequences o ∈ [[S]]A(i) and
p ∈ [[S]]A(j), iH = jH implies oH = pH.

3.3 UMLsec

61

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Information Flow:
Background

● Intuitively:

● Prevent down-flow: outputting a non-high (or low) message does not
depend on high inputs.

− rather stringent secrecy requirement for messages marked as high.

● Prevent up-flow: outputting a high value does not depend on low inputs.

− stringent integrity requirement for messages marked as high.

● This notion is generalization of the original notion of non-interference
for deterministic systems1 to system models that are non-deterministic
because of underspecification2.

1 J. Goguen and J. Meseguer. Security policies and security models. In Symposium on Security and Privacy (S&P), pages 11{20. IEEEComputer
Society, New York, 1982.

2 J. Jürjens. Principles for Secure Systems Design. PhD thesis, Oxford University Computing Laboratory, 2002.

3.3 UMLsec

62

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

 Secure Information Flow:
Example (1)

● Secret attribute money containing the amount of money spent by a given customer.

− Can be read by rm(): return value is also secret.

− Increase money with operation wm(x).

● When money exceeds 1000, goes into state ExtraService.

● Public operation rx() to check whether extra service should be provided.

[m o n e y + x > = 1 0 0 0]

[m o n e y + x < 1 0 0 0]

3.3 UMLsec

63

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
 Secure Information Flow

● Prevent the indirectly leakage out of any partial information about high data
via non-high data, as specified by the stereotype
<<no down-flow>>.

− Enforces secure information flow by making use of {high} associated
with <<critical>>.

● Intuitively: Value of any data specified in {secrecy} may influence only the
values of data also specified in {secrecy}.

● More precisely, formalize by referring to formal behavioural semantics:
Constraint for <<no down-flow>> (resp. <<no up-flow>>) is that UML
machine Exec[[S]] for subsystem S prevents down-flow (resp. up-flow) with
respect to messages specified in <<high>> and their return messages.

● E.g. for privacy reasons, it may be important that the observable
information on the customer account allows no conclusion about the
money spent.

3.3 UMLsec

64

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

 Secure Information Flow:
Example (2)

Now we use the stereotype <<no down-fow >> to indicate that the object should not
leak out any information about secret data, such as the money attribute.

No partial leakage of secrets ?

[m o n e y + x > = 1 0 0 0]

[m o n e y + x < 1 0 0 0]

3.3 UMLsec

65

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

 Secure Information Flow:
Example (3)

● <<no down-fow>> indicates that the object should not leak out any
information about secret data, such as the money attribute.

● Violation of the constraint associated with <<no down-flow>>:
− partial information about the input of the high operation wm() leaked out

via the return value of the non-high operation rx().

[m o n e y + x > = 1 0 0 0]

[m o n e y + x < 1 0 0 0]

3.3 UMLsec

66

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

 Secure Information Flow:
Example (4)

How the underlying formalism captures the security flaw using the
previous definition:

● sequences i; j of input multi-sets

● sequences o ∊ [[A]](i) and p ∊ [[A]](j) of output multi-sets of the UML
Machine A giving the behavior of the considered statechart

● with iH = jH and oH ≠ pH, where H is the set of high messages.

● Consider the sequences

− i := ({{wm(0)}} ; {{rx()}})

− j := ({{wm(1000)}} ; {{rx()}}).

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004.

3.3 UMLsec

67

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

 Secure Information Flow:
Example (5)

Given iH = ({{ }} , {{ rx() }}) = jH.

Definition of the behavioral semantics of statecharts1, brings the output
multi-sets:

● o := ({{ }}, {{return(false) }}) ∊ [[A]](i).

● p := ({{ }}, {{return(true) }}) ∊ [[A]](j).

=>

● oH = ({{ }}, {{return(false) }}) ≠ ({{ }}, {{return(true) }}) = pH

meaning that the constraint associated with<<no down-flow>> is violated.

Can be detected automatically with the tool support provided for
UMLsec2.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.2
2 http://umlsec.de/

3.3 UMLsec

68

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded Objects
<<guarded access>>

● Each object in the subsystem stereotyped <<guarded>> can only be
accessed through the objects specified by {guard} attached to the
<<guarded>> object.

● Formally: assume name ∉ Kp
A for adversary type A under conside-

ration and each name name of an instance of a <<guarded>> object,
meaning that a reference is not publicly available.

● Assume: for each <<guarded>> object there is a statechart
specification of an object whose name is given in {guard}.

● To model passing of references.

3.3 UMLsec

69

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded Objects
<<guarded access>>

Example:

● Illustration with a web-based financial application.

● Two institutions offer services over the Internet to local users:

− Internet bank, Bankeasy

− financial advisor, Finance.

● Use these services:

− Local client needs to grant the applets certain privileges.

● Access to local financial data is realized using GuardedObjects.

3.3 UMLsec

70

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded Objects
<<guarded access>>

Simplified relevant part of Java Security
Architecture

● Receives requests for object
references

● Forwards them to the guard objects
of the three guarded objects.

● <<guarded>> objects StoFi, FinEx,
and MicSi can only be accessed
through their associated guard.

− Subsystem instance fulfills the
condition associated with
<<guarded access>> w.r.t.
default adversaries.

3.3 UMLsec

71

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded Objects
Example

Access controls realized by Guard objects
FinGd, ExpGd, and MicGd.

● Behavior is specified.

Applets signed by the bank

● Read and write the financial data
stored in the local database, but only
between 1 pm and 2 pm.

● Enforced by the FinGd guard object.

− Condition slot is fulfilled if and only
if the time is between 1 pm and 2
pm.

3.3 UMLsec

72

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Guarded
<<guarded>>

● <<guarded>> labels objects in
scope of <<guarded access>> that
are supposed to be guarded.1

● Tag:

− {guard} name of the correspon-
ding guard object.

● <<guarded>> objects

StoFi, FinEx, MicSi

protected by the {guard} objects

FinGd, ExpGd, MicGd

respectively.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 5.4

3.3 UMLsec

73

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Does UMLsec
Meet Requirements ?

● Security requirements: Formalizations of basic security requirements
provided via stereotypes, such as <<secrecy>>, etc.

● Threat scenarios: using the formal semantics and depending on the
modeled underlying physical layer via the sets Threatsadv(ster) of
actions available to the adversary of kind adv.

● Security concepts: For example <<smart card>>.
● Underlying physical security:

− Addressed by <<secure links>> in deployment diagrams.
● Security primitives:

− Either built in, such as encryption, or
− Can be treated, such as security protocols.

● Security managements: Use activity diagrams.

3.3 UMLsec

74

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary: 3.3 UMLsec

● General Ideas

● Stereotypes

● Communication Architecture

● Critical Data

● Secure Communication

● Secure Information Flow

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74

