
3.4 Design Principles

1

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Vorlesung

Methodische Grundlagen des
Software-Engineering
im Sommersemester 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

3.4: Design Principles

v. 19.06.2013

3.4 Design Principles

2

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

3.4 Design Principles

3.3 UMLsec

3

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Einordnung
3.4 Design Principles

● Geschäftsprozessmodellierung
● Process-Mining
● Modellbasierte Entwicklung

sicherer Software
● Model-Driven Architecture
● Sicherheitsanforderungen
● UMLsec
● Design Principles
● UML model analysis
● Examples

● TLS Variant
● CEPS Purchase

3.4 Design Principles

4

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Rules of Prudent
Security Engineering

Saltzer, Schroeder (1975):
● Design principles for security-critical systems.
● Check how to enforce these with UMLsec.

3.4 Design Principles

5

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Economy of Mechanism

Keep design as simple and small as possible.
● Often systems made complicated to make them

(look) secure.
● Method for reassurance may reduce this

temptation.
● Payoffs from formal evaluation may increase

incentive for following the rule.

3.4 Design Principles

6

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Fail-safe Defaults

Base access decisions on permission rather than
exclusion.

Example: secure
log-keeping for
audit control in
Common
Electronic Purse
Specifications
(CEPS).

3.4 Design Principles

7

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Complete Mediation

Every access to every object must be checked for
authority.

E.g. in Java: use
guarded objects. Use
UMLsec to ensure
proper use of guards.

More feasibly, mediation
with respect to a set of
sensitive objects.

3.4 Design Principles

8

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Open Design

The design should not be secret.

Method of reassurance may help to develop systems
whose security does not rely on the secrecy of its
design.

3.4 Design Principles

9

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Separation of Privilege

A protection mechanism that requires two keys to
unlock it is more robust and flexible than one that
allows access to the presenter of only a single key.

Example: signature of two or more principals required
for privilege. Formulate requirements with activity
diagrams.

Verify behavioural specifications with respect to them.

3.4 Design Principles

10

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Least Privilege

Every program and every user of the system should
operate using the least set of privileges necessary to
complete the job.

Least privilege: every proper diminishing of privileges
gives system not satisfying functionality requirements.

Can make precise and check this.

3.4 Design Principles

11

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Least Common Mechanism

Minimize the amount of mechanism common to more
than one user and depended on by all users.

Object-orientation:
● data encapsulation.
● data sharing well-defined (keep at necessary

minimum).

3.4 Design Principles

12

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Psychological Acceptability

Human interface must be designed for ease of use,
so that users routinely and automatically apply the
protection mechanisms correctly.

With respect to development process: ease of use in
development of secure systems.

User side: e.g. performance evaluation (acceptability
of performance impact of security).

3.4 Design Principles

13

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Discussion

No absolute rules, but warnings.

Violation of rules symptom of potential trouble; review
design to be sure that trouble accounted for or
unimportant.

Design principles reduce number and seriousness of
flaws.

3.4 Design Principles

14

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Patterns

Patterns* encapsulate the design knowledge of software
engineers by presenting recurring design problems and
standardized solutions.

One can use transformations of UMLsec models to introduce
patterns within the design process.

● Goal: ensure that the patterns are introduced in a way that
has previously been shown to be useful and correct.

● Also: having a sound way of introducing patterns using
transformations can ease security analysis, since the
analysis can be performed on the more abstract and
simpler level.

(* E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.)

3.4 Design Principles

15

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Application of a pattern (1/2)

The application of a pattern p corresponds to a function f
p

● which takes a UML specification S

● and returns a UML specification, namely the on obtained
when applying p to S.

Technically, such a function can be presented by

● defining how it should act on certain subsystem instances.

● extending it to all possible UML specifications in a
compositional way.

3.4 Design Principles

16

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Application of a pattern (2/2)

● We have a set S of subsystem instances such that none of the
subsystem instances in S is contained in any other subsystem
instance in S.

● For every subsystem instance s ϵ S we are given a subsystem
instance f

p
(s).

● Then for any UML specification U, we can define f
p
(U) by

substituting each occurrence of a subsystem instance s ϵ S in U
by f

p
(s).

● The challenge: define such a function f
p
 that is applicable as

widely as possible.

● How to do this on a technical level is beyond the scope of this
presentation.

3.4 Design Principles

17

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure Architecture Patterns

Architectural design patterns (Buschmann et al.
1996). Apply to security.

Example: Architectural primitive: Secure channel.
● Define a secure channel abstraction.
● Define concrete secure channel (protocol).
● Show simulates the abstraction.

Give conditions under which it is secure to substitute
channel abstractions by concrete protocols.

3.4 Design Principles

18

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure Channel Abstractions

So far, usually concentrated on specific properties of
protocols in isolation.

Need to refine security properties so protocol is still
secure in system context. Surprisingly problematic.

Motivates research towards providing secure channel
abstractions to use security protocols securely in the
system context.

3.4 Design Principles

19

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Approach

● Define a secure channel abstraction.
● Define concrete secure channel (protocol).
● Show concrete secure channel simulates the

abstraction.
− Give conditions under which it is secure to

substitute channel abstractions by concrete
protocol.

3.4 Design Principles

20

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Abstract specification

To keep d secret,
must be sent
encrypted

3.4 Design Principles

21

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Abstract specification

The abstract specification on the previous slide ...
● is a high-level system specification.
● is in form of a UML subsystem C.
● is for communication from a sender object to a receiver object.
● includes a class diagram with appropriate interfaces.
● is a simplified example with fixed participants S and R ...

− which should mainly demonstrate the idea of stepwise development.

− where authentication is out of scope.

Intended specification behaviour:
● The Sender object is supposed to accept a value in the variable d as an

argument of the operation send and send it over the <<encrypted>>
Internet link to the Receiver object, which delivers the value as a return
value of the operation receive.

3.4 Design Principles

22

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Abstract specification

Specification characteristics:

Proposition 5.1: The subsystem C preserves the secrecy of the variable
d from adversaries of type A = default with specified previous
knowledge Kp

A
, given inputs from Data \ Kp

A
.

● Note that, intuitively, this proposition is obvious, because the
adversary cannot read the channels.

● Proof is on the next slide.

Since d' is intended to have the same value as d, secrecy of d' follows
from secrecy of d and integrity of d' wrt. the value in d.

Integrity is not within the scope but holds for both d and d' since the
adversary cannot interfere with the protocol.

3.4 Design Principles

23

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Abstract specification

Proof of proposition 5.1:
● We have to show that for every expression E which is a value

of d at any point, C preserves the secrecy of E.

● Since the adversary of type default cannot access any of the
components or links in C, we have

− K
A
(C) = K0

A
 (because there is no read access)

− d takes values only in Exp / K0

A
 (because there is no write

access)
● Thus for every expression E which is a value of d at any point,

C preserves the secrecy of E, by definition of preservation of
secrecy.

3.4 Design Principles

24

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Approach

● Define a secure channel abstraction.
● Define concrete secure channel (protocol).
● Show concrete secure channel simulates the

abstraction.
− Give conditions under which it is secure to

substitute channel abstractions by concrete
protocol.

3.4 Design Principles

25

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

Well-known solution:
● Encrypt the traffic over the untrusted link using a

key exchange protocol.

The Secure Channel Pattern could thus be
formulated intuitively as follows:
● In a situation such as the one on the previous

slides, one can implement the secure channel
needed to enforce the security requirements using
the following system.

3.4 Design Principles

26

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

3.4 Design Principles

27

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

Simple protocol:
encrypt under exchanged

session key

3.4 Design Principles

28

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

Simple protocol:
encrypt under exchanged

session key

3.4 Design Principles

29

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

Note: The abstract stereotype <<encrypted>> is
now substituted by a concrete stereotype
<<Internet>>. A crypto-protocol is jointly defined in
the statecharts on the previous slides.

3.4 Design Principles

30

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

● Since we only want to demonstrate the principle of
developing a secure channel, we assume for simplicity that
the sender and receiver already know each other´s public
keys.

● The protocol then exchanges a symmetric session key
using those public keys, since encryption under symmetric
keys is more efficient.

● We assume that the secret keys belonging to the public
ones are kept secure.

● The session keys are specified to be created freshly by the
receiver before execution of the protocol, as stated by the
tag {fresh}.

3.4 Design Principles

31

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
(Toy) Solution

● The behaviour of the sender thus includes retrieving the
signed and encrypted symmetric session key k

j
 from the

receiver, checking the signature, and encrypting the data
under the symmetric key.

● Encryption is done together with a sequence number i, to
avoid replay.

● The receiver first gives out the key k
j
 with a signature and

also with a sequence number j, and later decrypts the
received data, checking the sequence number.

3.4 Design Principles

32

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Approach

● Define a secure channel abstraction.
● Define concrete secure channel (protocol).
● Show concrete secure channel simulates the

abstraction.
− Give conditions under which it is secure to

substitute channel abstractions by concrete
protocol.

3.4 Design Principles

33

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Concrete simulates abstraction

We show that the concrete secure channel C' is a refinement of C
in the sense of the definition (repetition from slide deck 16):

Proposition 5.2: The subsystem C' is a delayed black-box
refinement of C in presence of adversaries of type A = default with

and for which Sign (k' :: m) ϵ Kp

A
 implies k' = k

m
 for all m ϵ ℕ and

k ϵ Exp.

T is a delayed black-box refinement of S if every
observable input/output behaviour of T differs from an
input/output behaviour of S only in that delays may be
introduced.

Kp

A
 ∩ ({K

S

-1, K
R

-1} ∪ {k
n
,{x::n}

 : x ϵ Exp ∧ n ϵ ℕ}) = ∅

k
n

K
R

-1

k
n

3.4 Design Principles

34

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

(SCP) Concrete simulates
abstraction: Proof

Proof of proposition 5.2:

We have to show that for every adversary b of type A for the UMS [[C']] there
exists an adversary a of type A for the UMS [[C]] such that the derived UML
Machine Exec[[C']]

b
 is a delayed black-box refinement of the UML Machine

Exec[[C]]
a
.

● Note that K
A
(C') is contained in the algebra generated by

K0

A
∪ {{Sign (k

i
::j)} } and the expressions {d::n}

K
 for inputs d.

● The adversary can obtain no certificate {{Sign (k::j)} } for k ≠ k
j
, because the

Receiver object only outputs the certificates {Sign (k
j
::j)} (for j ∈ ℕ) to the

Internet

● The sender outputs only messages of the form {d::n}
k
 to the Internet, for inputs d

and any k ∈ Keys for which a certificate {Sign (k::n)} has been received.

K
S

K
R

-1

K
R

-1

K
R

-1 K
S

K
S

K
R

-1 K
S

3.4 Design Principles

35

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

(SCP) Concrete simulates
abstraction: Proof

● K must be K
n
 since no other certificate can be produced, since the key K

R

-1 is

never transmitted.

● Note also that Kp

A
 = K0

A
 since there are no components accessed by the

adversary.

● The values that an adversary for C' may insert into the Internet link may only delay
the behaviour of the two objects regarding outQu

C'
 since the adversary has no

other certificate signed with K
R

-1 and does not have access to the key K
R

-1 and

because of the transaction numbers used.

● Any other value inserted is ignored by the two objects.

● For any adversary b for C' we can derive an adversary a for C by omitting insert
and read commands such that the UML Machine Exec[[C']]

b
 is a delayed black-

box refinement of the UML Machine Exec[[C]]
a
 since the outputs to outQu

C
 (resp.

outQu
C'
) are stutter-equivalent.

3.4 Design Principles

36

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

(SCP) Concrete simulates
abstraction: Proof

● The condition in the statement on the previous slides means that the
previous adversary knowledge Kp

A
 may not contain

− the secret keys K
S

-1, K
R

-1 of the sender and the receiver,

− the secret session keys k
n
,

− any encryptions of the form {x :: n} ,

− any signatures Sign (k' :: m) except for k' = k
n
.

● Remember: Kp

A
denotes the knowledge of the adversary before the

start of the execution of the system, that is in this case, before the
first iteration of the protocol.

● Thus the condition does not prevent the adversary from
remembering information gained from early iterations of the protocol
and use it in later iterations.

K
R

-1

k
n

3.4 Design Principles

37

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

(SCP) Concrete simulates
abstraction: Proof

● If the adversary knows the expression {x :: n} before the
execution,

− which is different from the expression {y :: n} which is sent out by
S in the n th round of the protocol

− the adversary could substitute {y :: n} with {x :: n} without being
noticed which would destroy the integrity
of the communication channel.

− This means: C' would not be a refinement of C.

● Note that the sequence number n is necessary to enable the
receiver to check that the right session key is used for
decryption in the condition tail(Dec (E)) = j, to prevent replay.

k
n

k
n

k
n

k
j

k
n

3.4 Design Principles

38

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Secrecy

Proposition 5.3: The subsystem C' preserves the secrecy of the
variable d from adversaries of type A = default with

and for which Sign (k' :: m) ϵ Kp

A
 implies k' = k

m
 for all m ϵ ℕ

and k' ϵ Exp. (Proof on the next slide)

The specification fulfils the constraints of the stereotype <<data
security>> with respect to the adversary type.

Kp

A
 ∩ ({K

S

-1, K
R

-1} ∪ {k
n
,{x::n}

 : x ϵ Exp ∧ n ϵ ℕ}) = ∅

k
n

K
R

-1

3.4 Design Principles

39

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Secure Channel Pattern:
Secrecy

Proof of proposition 5.3:

● C preserves the secrecy of the variable d from default adversaries
given inputs from Data \ Kp

A
. (see proposition 5.1)

● C' is a delayed black-box refinement of C given default adversaries.
(see proposition 5.2)

● We can conclude that C' preserves the secrecy of the variable d
from default adversaries with

and for which

Kp

A
 ∩ ({K

CA

-1, K-1} ∪ {{x::n}
K
 : x ϵ Exp ∧ n ϵ ℕ}) = ∅

Sign (R::k') ϵ Kp

A
implies K = k',

given inputs from Data \ Kp

A
.

K
CA

-1

3.4 Design Principles

40

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary

We presented the UML extension UMLsec for secure systems
development.

● It is a UML profile which uses the standard UML extension
mechanisms.

● Recurring security requirements are written as stereotypes.

● The associated constraints ensure the security requirements
on the level of formal semantics, by referring to the threat
scenario also given as a stereotype.

● Now we can evaluate UML specifications to indicate possible
vulnerabilities.

● After that we can verify that the stated security requirements, if
fulfilled, enforce a given security policy.

3.4 Design Principles

41

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary

We indicated how one could use UMLsec to

● model security requirements.

● threat scenarios.

● security concepts.

● security mechanisms.

● security primitives.

● underlying physical security.

● security management.

These are the aspects which were argued to be required for a
secure systems extension of UML.

3.4 Design Principles

42

Methodische Grundlagen Methodische Grundlagen
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary

We also saw how UMLsec could be used to encapsulate
established rules on prudent security engineering

● by applying security patterns.

● to make them available to developers who are not security
experts.

While UML was developed to model object-oriented systems, we
can also use UML and UMLsec to analyse systems that are
component-oriented by not making use of OO-specific features
and make sure that the underlying assumptions, such as
controlled access to data, are ensured.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42

