
3.5 UML Model Analysis

1 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Vorlesung

Methodische Grundlagen des
Software-Engineering
im Sommersemester 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

3.5 UML Model Analysis

v. 19.06.2013



3.5 UML Model Analysis

2 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

3.5 UML Model Analysis



3.5 UML Model Analysis

3 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Einordnung
3.5 UML model analysis

● Geschäftsprozessmodellierung
● Process-Mining
● Modellbasierte Entwicklung

sicherer Software
● Model-Driven Architecture
● Sicherheitsanforderungen
● UMLsec
● Design Principles
● UML model analysis
● Examples

● TLS Variant
● CEPS Purchase



3.5 UML Model Analysis

4 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Analyzing UML Models

To check security requirements in a UML model mechanically 
we need an analysable model, which means:

● The UMLsec profile is attached to it. 

● The security-relevant information from the security-
oriented stereotypes (i.a. adversary type). 

This means, we need to formulate constraints on the UML 
models which model security requirements that can be rather 
subtle. 

On the following slides we define and explain the properties 
of such a model which we need for formalizing the 
constraints in the UMLsec profile. 



3.5 UML Model Analysis

5 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Notation (1/2)

We assume the usual definitions from elementary set theory and logic, which 
may be found for example in “Handbook of logic in computer science”*, 
including the following definitions:

● ℕ is the set of non-negative integers. 

● ℕ
n
 is the set of non-negative integers up to and including n, for any n ϵ ℕ. 

● P(X) is the set of subsets of a set X.

Given a sequence (or list) l = (l
1
,l

2
,l

3
,...), we write:

● head(l) for its head element l
1

● tail(l) for its tail (l
2
,l

3
,...)

● [ ] for the empty list (in particular for the empty string) 

* S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors. Handbook of logic in computer science, volume 1-5, 
pages xii+827. The Clarendon Press, New York, 1992-2000.



3.5 UML Model Analysis

6 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Notation (2/2)

● A multi-set (or bag) is a set which may contain multiple copies of an 
element, with notation {{ }} instead of the usual brackets. 

− e.g. {{1,1,1,1,1}} is the multi-set consisting of five copies of the element 1. 

● For a multi-set M and a set X:

− M ↘ X filters all elements out of M, which are elements of X. 

●  For two multi-sets M and N:

− M ∪ N is their union. 

− M \ N is the subtraction of N from M. 

− M ⊆ N if M ↘ N = M

● For a multi-set M

− ⌊M⌋ is the set of elements in M. 

− #M is the number of elements in M. 



3.5 UML Model Analysis

7 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
Messages

In UML, both objects and system components can 
communicate by exchanging messages from a given set 
Events.

● The arrival of such a message is called event.

● They consist of:
− a message name from a given set MsgNm.

(Message names may be prefixed with object or instance 
names from a given set UMNames)

− possibly arguments to the message which are elements of a 
given set Exp of expressions (see this slide).

msg = messagename(exp
1
, …, exp

n
)



3.5 UML Model Analysis

8 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
Input/Output queues

Each object or component O may 

● receive messages in an multi-set inQu
O
 called input 

queue.

● releases messages to an multi-set outQu
O
 called output 

queue.

We use multi-sets rather then sets, because several copies of 
the same message can be received concurrently.



3.5 UML Model Analysis

9 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
Message distribution

Sending a message from an object or subsystem instance S 
to an object or subsystem instance R: 

● S places the message R.msg into its multi-set outQu
S
. 

● A scheduler distributes the message from output queues to 
the intended input queues, while removing the messages 
head. In particular, R.msg is removed from outQu

S
 and 

msg added to inQu
R
. 

● R removes msg from its input queue and processes its 
content. 



3.5 UML Model Analysis

10 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
Further details

● In the case of operation calls, we also need to keep track 
of the sender to allow sending return signals. 

● This way of modelling communications allows for a very 
flexible treatment. 
− e.g. we can modify the behaviour of the scheduler to take 

account of knowledge on the underlying communication 
layer. 

● This allows us to consider security issues or other aspects, 
such as ordering or delay of messages. 



3.5 UML Model Analysis

11 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
Single objects

● At the level of single objects, behaviour is modelled using 
statecharts or sequence diagrams. 

● The internal activities contained as states of these 
statecharts can, e.g., be defined using statecharts or 
sequence diagrams. 

● Using subsystems, one can then define the behaviour of a 
system component C by including an activity diagram that 
coordinates the respective activities of the various 
components and objects. 



3.5 UML Model Analysis

12 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
UML machine (1/3)

● For each object or component C of a given system, our semantics 
defines a so-called UML machine [[C]], which 

− is a state machine. 

− communicates with its environment using messages.

● Specifically, the behavioural semantics [[D]] of a statechart diagram 
D models the run-to-completion semantics of UML statecharts.

● Any sequence diagram S gives us the behaviour [[S.C]] of each 
contained component C. 

● Subsystems group together diagrams describing different parts of a 
system: A system component C given by a subsystem S may contain 
subcomponents C

1
,...,C

n
. 

● These subcomponents may communicate through the 
communication links in the corresponding deployment diagram. 



3.5 UML Model Analysis

13 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
UML machine (2/3)

To get the behavioural interpretation [[S]] of a UML subsystem 
specification S, it will be defined as follows:

1. It takes a multi-set of input events (incoming messages).

2. The events are distributed from the input multi-set and the link 
queues connecting the subcomponents and given as arguments to 
the functions defining the behaviour of the intended recipients in S. 

3. The output messages from these functions are distributed to the link 
queues of the links connecting the sender of a message to the 
receiver, or given as the output from [[S]] when the receiver is not 
part of S. 

[[S]] is a UML machine. 



3.5 UML Model Analysis

14 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Outline of Formal Semantics
UML machine (3/3)

● An execution of a UML subsystem S is then a sequence of 
states and the associated multi-sets of input and output 
messages of [[S]]. 

● UML specifications may be non-deterministic, e.g. because 
several transitions in a statechart diagram may be able to fire 
at a given point in time. 

● A subsystem T is a black-box refinement of S if every 
observable input/output behaviour of T is also an input/output 
behaviour of S. 

● T is a delayed black-box refinement of S if every observable 
input/output behaviour of T differs from an input/output 
behaviour of S only in that delays may be introduced. 



3.5 UML Model Analysis

15 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Security Analysis

Following Dolev, Yao (1983): To analyze system, verify against 
attacker model from threat scenarios in deployment diagrams 
who

● may participate in some protocol runs,

● knows some data in advance,

● may intercept messages on some links,

● may inject produced messages in some links,

● may access certain nodes.



3.5 UML Model Analysis

16 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversaries

Model classes of adversaries. 

May attack different parts of the system according to threat 
scenarios. 

Example: Insider attacker may intercept communication links in 
LAN. 

To evaluate security of specification, simulate jointly with 
adversary model. 



3.5 UML Model Analysis

17 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary Model

m e m o r y
l o g i c

A B

a
dv

er
sa

ry
*  m e m o r i z e  m e s s a g e
*  d e l e t e  m e s s a g e
*  i n s e r t  m e s s a g e
*  c o m p o s e  o w n  m e s s a g e
*  u s e  c r y p t o g r a p h i c  p r i m i t i v e s



3.5 UML Model Analysis

18 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary types revisited

<<Internet>>, <<encrypted>>, <<LAN>>, <<smart card>>: Stereotypes for 
kinds of communication links resp. system nodes. 

Default attacker is able to read, delete, insert and access messages on an 
Internet link. On an encrypted Internet link, such as a virtual private 
network, the attacker might still be able to delete messages, without 
knowing their encrypted content, by bringing down a network server.

For adversary type A, stereotype s, have set 
ThreatsA(s)  {delete, read, insert, access} ∊ of actions that adversaries are 
capable of.

Default attacker:
S t e r e o t y p e  s T h r e a t s d e f a u l t ( s )

I n t e r n e t

e n c r y p t e d

L A N

s m a r t  c a r d

{ d e l e t e ,  r e a d ,  i n s e r t }

{ d e l e t e }

∅
∅



3.5 UML Model Analysis

19 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptography: Assumptions

Keys are symbols, crypto-algorithms are abstract operations

● Can only decrypt with right keys. 

● Can only compose with available messages. 

● Cannot perform statistical attacks. 

● Cannot guess an encrypted value without knowing the 
decryption key. 

● Symmetric encryption provides data integrity (e.g. using 
Message Authentication Codes (MACs)).  



3.5 UML Model Analysis

20 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptography: Keys

● Keys is a set with a partial injective map:  

( )-1 : Keys → Keys

● Keys are independent (No equations like K = K' + 1 for two different 
keys K, K'  Keysϵ ).

● Keys which are public can be used for encryption and verifying 
signatures. 

● Keys which are assumed to be secret are used for decryption and 
signing. 

● Every key is either an encryption or decryption key (asymmetric), or 
both if k is satisfying k-1 = k (symmetric).

● The numbers of symmetric and asymmetric keys are both infinite. 



3.5 UML Model Analysis

21 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptography: Keys, Var, Data

● Var is a infinite set of variables. 

● Data is a infinite set of data values. 

● Keys, Var and Data are mutually disjoint. 

● Data contains the names UMNames ∪ MsgNm. 

● Data may also contain nonces and other secrets. 



3.5 UML Model Analysis

22 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Cryptography:
Quotient of a term algebra

We recall that a term algebra generated by a set of elements and 
operations is the set of terms formed by applying the operations 
to the elements. 

A quotient of a term algebra under a given set of equations is 
derived from the term algebra by imposing these equations, and 
those that can by derived from them, on the terms. 

Then the algebra of cryptographic expressions Exp is the quotient 
of the term algebra generated from the set: 

Var ∪ Keys ∪ Data



3.5 UML Model Analysis

23 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptographic Expressions (1/3)

Exp: Quotient of term algebra generated from sets Data, 
Keys, Var of symbols using:
● _::_ (concatenation), head(_), tail(_)
● (_)-1 (inverse keys)
● { _ }_ (encryption)
● Dec_( ) (decryption)
● Sign_( ) (signing)
● Ext_( ) (extracting from signature)



3.5 UML Model Analysis

24 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptographic Expressions (2/3)

Equations:
● ∀ E,K.Dec

K

-1({E}
K
) = E

● ∀ E,K.Ext
K
(Sign

K

-1(E)) = E

● ∀ E
1
,E

2
.head(E

1
::E

2
) = E

1

● ∀ E
1
,E

2
.tail(E

1
::E

2
) = E

2

● ∀ E
1
,E

2
,E

3
.E

1
::E

2
::E

3
 = E

1
::(E

2
::E

3
)



3.5 UML Model Analysis

25 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Cryptographic Expressions (3/3)

● For each E ϵ Exp, we use the following abbreviations:
− fst(E) =def head(E)

− snd(E) =def  head(tail(E))

− thd(E) =def head(tail(tail(E)))

● We can include further crypto-specific primitives and laws (XOR, …). 
● We use this abstract model of cryptographic algorithms which 

abstracts away the details on the level of bit sequence, in order to 
keep the mechanical analysis feasible. 

● Based on this formalization of cryptographic operations, important 
conditions on security-critical data (freshness, secrecy, integrity, 
authenticity) can then be formulated at the level of UML diagrams in 
a mathematically precise way. 



3.5 UML Model Analysis

26 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Example: Variant of TLS

Variant of TLS (INFOCOM`99)

Deployment diagram:
● Information about communication links
● Here: Communication via internet
● The default attacker can perform 
 these actions:
      Threats

default
(Internet) ϵ {delete,

                            read,insert,access}



3.5 UML Model Analysis

27 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Example: Variant of TLS

Variant of TLS (INFOCOM`99)

Sequence diagram:
● The messages send between the
 different objects / components

● Containing the cryptographic
 expressions

● e.g. xchd({s
i
}

k
) 



3.5 UML Model Analysis

28 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Example: Variant of TLS

Variant of TLS (INFOCOM`99)

Activity diagram:
● Coordinates the activities of the
 different objects / components

Class diagram:
● Information about data variables
 and operations



3.5 UML Model Analysis

29 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Security Analysis

The modular UML semantics allows a rather natural modelling of potential 
adversary behaviour. 

● We can model specific types of adversaries that can attack different parts 
of the system in a specified way. 

− e.g. an attacker of type insider may be able to intercept the communication 
links in a company-wide local area network. 

● We model the actual behaviour of the adversary by defining a class of UML 
Machines that can access the communication links of the system in a 
specific way. 

● To evaluate the security of the system with respect to the given type of 
adversary, we consider the joint execution of the system with any UML 
Machine in the class. 

● This way of reasoning allows an intuitive formulation of many security 
properties. 



3.5 UML Model Analysis

30 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Concrete threats (1/2)

● The idea is that Threats
A
(s) specifies the threat scenario associated 

with an adversary type A against a component or link stereotyped s. 

− On the one hand, the threat scenario determines, which data the 
adversary can obtain by accessing components. 

− On the other hand, it determines, which actions the adversary is 
permitted by the threat scenario to apply to the concerned links. 

● From the abstract threats we derive the more basic concrete threats 
used for modelling and analysing the possible adversary behaviour. 

● To analyse a UML subsystem specification S against a adversary of 
type A, we need to define the set threatsS

A
(x) of concrete threats. 



3.5 UML Model Analysis

31 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Concrete threats (2/2)

threatsS

A
(x) is the smallest set satisfying the following conditions:

− x is a link or a node in a deployment diagram.

− If each node n containing* x carries a stereotype s
n
 with 

access  Threatsϵ
A
(s

n
) then:

● For every stereotype s attached to x, we have 

Threats
A
(s) ⊆ threatsS

A
(x)

● If x is a link connected to a node that carries a stereotype 
t with access  Threatsϵ

A
(t) then 

{delete,read,insert} ⊆ threatsS

A
(x)

(* nodes and subsystems may be nested one in another)



3.5 UML Model Analysis

32 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary machine (1/5)

● Now we can model the actual behaviour of an adversary of type A as a 
“type A adversary machine”. 

● This is a UML machine* with the following data:

− A set of states State with a control state control  Stateϵ . 

− A set of current adversary knowledge K
A
 ⊆ Exp. 

− For each possible control state c  Stateϵ  and set of knowledge
K ⊆ Exp:
● A set Delete

c,K
 which may contain the name of any link l, with 

delete  threatsϵ S

A
(l). 

● A set Insert
c,K

 which may contain any pair (l,E) where l is the name 

of a link with insert  threatsϵ
A

S(l), and E  Kϵ . 

● A set newState
c,k

 ⊆ State of states. 

(* see this slide)



3.5 UML Model Analysis

33 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary machine (2/5)

The machine is executed iteratively.  
● from a specified initial state control := control0. 

● with an initial adversary knowledge K:= K0

A
. 

Each iteration proceeds with the following steps:
● The contents of all link queues belonging to a link l with read ϵ 

threatsS

A
(l) are added to K. 

● The content of any link queue belonging to a link l  Deleteϵ
control,K

 is 

mapped to ⊘. 
● The content of any link queue belonging to a link l is enlarged with all 

expressions E where (l,E)  Insertϵ
control,K

. 

● The next control state is chosen non-deterministically from the set 
newState

control,K
. 



3.5 UML Model Analysis

34 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary machine (3/5)

● The set K0

A
 of initial knowledge is defined to be the algebra of 

expressions generated by the sets Ka

A
 and Kp

A
.

● Ka

A
 is the set of accessible knowledge:

Contains all data values v given in the UML specification 
under consideration for which each node n containing v 
carries a stereotype s

n
 with access ϵ Threats

A
(s

n
). 

● Kp

A
 is the set of previous knowledge:

Can be used to give the adversary access to additional data 
supposed to be known before start of the execution of the 
system, such as public keys. 



3.5 UML Model Analysis

35 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary machine (4/5)

● An adversary A is able to remove all values sent over the link l, 
represented by delete

l
  threatsϵ S

A
(l). 

● A is not able to selectively remove a value e with the known 
meaning from l. 

● Example: The messages sent over the Internet within a virtual 
private network are encrypted. Thus, an adversary who is 
unable to break the encryption may be able to delete all 
messages indiscriminatly, but not a single message whose 
meaning would be known to the adversary. 



3.5 UML Model Analysis

36 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Adversary machine (5/5)

Regarding to the slide UML machine (3/3):
● A subsystem T is a black-box refinement in presence of an 

adversary of type A of a subsystem S if every observable 
input/output behaviour of an execution of T in presence of an 
adversary of type A is also an input/output behaviour of an 
excution of S in the presence of an adversary of type A. 

● T is a delayed black-box refinement in the presence of an 
adversary of type A of a subsystem S, except that delays may 
be introduced in T.   



3.5 UML Model Analysis

37 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013

Behavioural interpretation:
Security Evaluation

To evaluate the security of the system with respect to the given 
type of adversary, we then define the “execution of the subsystem 
S in the presence of an adversary of type A” as the UML Machine 
[[S]]

A
 by extending the definition of [[S]] on the slide 

UML machine (2/3). 

1. A multi-set of input events received (incoming messages). 

2. The events are distributed to the subcomponents. 

3. The output messages from the subcomponents are distributed. 

4. The most general type A adversary machine is applied to the 
link queues as detailed on the previous slides. 



3.5 UML Model Analysis

38 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Important Security Properties

● Now we can specify the important security properties of

− secrecy
− integrity
− authenticity
− freshness

by following the standard approach of Dolev, Yao (1983).

● As we remember from this slide, it defines security 
requirements in an intuitive way by incorporating the attacker 
model. 

● We will also see how to define secure information flow 
requirements. 



3.5 UML Model Analysis

39 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secrecy (1/4)

Definition of secrecy:

● Idea: A system specification preserves the secrecy of a 
piece of data d if the system never sends out any 
information from which d could be derived by the 
adversary. 

● d is leaked if there is an adversary of a given type that 
does not initially know d and an input sequence to the 
system such that after the execution of the system, the 
adversary knows d (as defined on previous slides). 

● Otherwise, d is said to be kept secret. 



3.5 UML Model Analysis

40 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secrecy (2/4)

Formalization of secrecy:

● We say that a UML subsystem S preserves the secrecy of 
an expression E from adversaries of type A if E does not 
appear in the knowledge set K of A during any execution 
of [[S]]

A
. 

● S preserves the secrecy of a variable v from adversaries 
of type A if for every expression E which is a value of the 
variable v at any point, S preserves the secrecy of E from 
adversaries of type A. 



3.5 UML Model Analysis

41 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secrecy (3/4)

● Note that, by construction of the adversary knowledge       
(see this slide), this definition takes into account the fact 
that he adversary may break up expressions to access a 
secret subexpression. 

● This definition is especially convenient to verify if one can 
give an upper bound for the set of knowledge K, which is 
often possible when the security-relevant part of the 
specification of the system S is given as a sequence of 
commands of the form: 
− await event e

− check condition g

− output event e' 



3.5 UML Model Analysis

42 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secrecy (4/4)

Examples:

● The system that sends the expression {m}
K
::K  Expϵ  over an 

unprotected Internet link does not preserve the secrecy of m or K 
against attackers eavesdropping on the Internet, but the system 
that sends {m}

K
 and nothing else does, assuming that it preserves 

the secrecy of K against attackers eavesdropping on the Internet. 

● A system S that receives a key K encrypted with the public key of 
S over a dedicated communication link and sends back {m}

K
 over 

the link does not preserve the secrecy of m against attackers 
eavesdropping on and inserting messages on the link, but does 
so against attackers that cannot insert messages to a link. 



3.5 UML Model Analysis

43 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Integrity (1/2)

Definition of integrity:

● If during the execution of the considered system, a system 
variable is assigned a value different from the ones it is 
supposed to be, then the adversary must have caused this 
variable to contain the value. The integrity of the variable is 
violated. 

● A system preserves the integrity of a variable if there is no 
adversary such that at some point during the execution of 
the system in presence of the adversary, the variable has 
a value different from the ones it should have. 



3.5 UML Model Analysis

44 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Integrity (2/2)

Formalization of integrity:

● Give a set E ⊆ Exp of acceptable expressions:

− A subsystem S preserves the integrity of an attribute a 
with respect to E from adversaries of type A with initial 
knowledge K0 if during any execution of [[S]]

A
, at any 

point the attribute a is undefined or evaluates to an 
element of E. 

− If E = Exp \ K0, we simply say that S preserves the 
integrity of an attribute a from adversaries of type A with 
initial knowledge K0. 



3.5 UML Model Analysis

45 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Note to Secrecy & Integrity

Note that this formalization of secrecy resp. integrity is 
relatively “coarse / simple” in that it may not prevent 
implicit information flow, but is comparatively easy to 
verify and seems to be sufficient in practice.* 

!

* M. Abadi. Security protocols and their properties. In F. L. Bauer and R. Steinbrüggen, 
editors, Foundations of Secure Computation, pages 39-60, IOS Press, Amsterdam, 2000.



3.5 UML Model Analysis

46 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Authenticity (1/3)

Definition of authenticity:

● A message has its origin at a system part if during any 
execution of the system, the message appears at first at 
that part. 

● To provide authenticity then means to secure the 
information on the message origin. 



3.5 UML Model Analysis

47 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Authenticity (2/3)

Formalization of authenticity:

● Suppose we are given attributes a and o in a subsystem S, 
where o is supposed to store the origin of the message 
stored in a. 

● We say that S provides (message) authenticity of the 
attribute a with respect to its origin o from adversaries type 
A with initial knowledge K0 if during any execution of [[S]]

A
, 

at any point the value of the attribute a appeared as a 
subexpression first within the execution in outQu

o
, of all 

output queues and link queues in S. 



3.5 UML Model Analysis

48 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Authenticity (3/3)

Link to integrity:*

● If the identity of the sender of a message is part of the 
message, integrity of the message implies the possibility to 
authenticate the sender.

● In this situation, data integrity implies message 
authenticity. 

* A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography, FL, 1996.
  D. Gollmann. Facets of security. In C. Priami, editor, Global Computing. Programming Environments,
  Languages, Security, and Analysis of Systems, IST/FET International Workshop, (GC 2003) 



3.5 UML Model Analysis

49 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Freshness (1/2)

Freshness of a value may mean two properties*:

● Unpredictability: An attacker cannot guess what its value 
was. 

● Newness: The value has never appeared before during the 
execution of the system. 

Freshness in the sense of unpredictability of data is captured 
by considering a type A of adversary that does not include 
data in its set of previous knowledge Kp

A
. 

(* following a written communication by Gavin Lowe)



3.5 UML Model Analysis

50 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Freshness (2/2)

Definition of freshness (in the sense of newness):

An atomic value data ϵ (Data ∪ Keys) in a subsystem S is 
fresh within a subsystem instance or object D contained in 
S if the value data appears in the specification S only in 
diagram parts specifying D, which are called the scope of 
data in S. 



3.5 UML Model Analysis

51 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure information flow (1/3)

● This alternative way of specifying secrecy- and integrity-
like requirements, which gives protection also against 
partial flow of information, can be more difficult to deal 
with, especially when handling with encryption. 

● For this definition, we need to assign to each piece of 
system data one of two security levels:
− High: Highly sensitive or highly trusted. 
− Low: Less sensitive or less trusted. 



3.5 UML Model Analysis

52 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure information flow (2/3)

● Given a set of messages H and a sequence m of event 
multi-sets, we write:

− mH for the sequence of event multi-sets derived from those 
in m by deleting all events the message names of which are 
not in H. 

− m
H
 for the sequence of event multi-sets derived from those 

in m by deleting all events the message names of which are 
in H. 



3.5 UML Model Analysis

53 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Secure information flow (3/3)

Definition of secure information flow:

● A prevents down-flow with respect to H if for any two 
sequences i, j of event multi-sets and any two output 
sequences o  [[S]]ϵ

A
(i) and p  [[S]]ϵ

A
(j),

i
H
 = j

H
 implies o

H
 = p

H
. 

● A prevents up-flow with respect to H if for any two 
sequences i, j of event multi-sets and any two output 
sequences o  [[S]]ϵ

A
(i) and p  [[S]]ϵ

A
(j),

iH = jH implies oH = pH. 



3.5 UML Model Analysis

54 

Methodische Grundlagen Methodische Grundlagen 
des Software-Engineeringdes Software-Engineering

SS 2013SS 2013
Summary

● Formal Semantics
− Notation
− UML machine

● Cryptography
− Quotient of a term algebra
− Expressions

● Security Analysis
− Adversary machine

● Important Security Properties
− Secrecy
− Integrity
− Authenticity
− Freshness
− Secure information flow


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54

