Vorlesung

Methodische Grundlagen des Software-Engineering
im Sommersemester 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

3.6: TLS-Variant

v. 26.06.2013
3.6 TLS-Variant
Einordnung
Sicheres Software Design

- Geschäfts-Prozesse
- Modelbasierte Softwareeinwicklung
- Sicheres Software Design
 - Sicherheitsanforderungen
 - UMLsec
 - UML-Analyse
 - Design Principles
 - Examples
 - TLS Variant
 - CEPS Purchase
Security Protocols

System distributed over untrusted networks.

„Adversary“ intercepts, modifies, deletes, inserts messages.

Cryptography provides security.

Cryptographic Protocol: Exchange of messages for distributing session keys, authenticating principals etc. using cryptographic algorithms.
Many protocols have **vulnerabilities** or **subtleties** for various reasons

- weak cryptography
- core message exchange
- interfaces, prologues, epilogues
- deployment
- implementation bugs
Security Analysis

Following Dolev, Yao (1982): To analyze system, verify against attacker model from threat scenarios in deployment diagrams who

- may participate in some protocol runs,
- knows some data in advance,
- may intercept messages on some links,
- may injects produced messages in some links
- may access certain nodes.
Adversaries

- Model classes of adversaries.
- May attack different parts of the system according to threat scenarios.
- Example:
 - insider attacker may intercept communication links in LAN.
- To evaluate security of specification, simulate jointly with adversary model.
Cryptography

Keys are symbols, crypto-algorithms are abstract operations.

- Can only decrypt with right keys.
- Can only compose with available messages.
- Cannot perform statistical attacks.
Cryptographic Expressions I

Exp: quotient of term algebra generated from sets *Data, Keys, Var* of symbols using

- `_::_` (concatenation), *head(_)*, *tail(_)*,
- *(*)_^{-1} (inverse keys)
- `{ _ }_` (encryption)
- *Dec_()* (decryption)
- *Sign_()* (signing)
- *Ext_()* (extracting from signature)

under equations …
Cryptographic Expressions II

- \(\forall E, K. \ Dec_K^{-1}(\{E\}_K) = E \)
- \(\forall E, K. \ Ext_K(\Sign_K^{-1}(E)) = E \)
- \(\forall E_1, E_2. \ head(E_1 :: E_2) = E_1 \)
- \(\forall E_1, E_2. \ tail(E_1 :: E_2) = E_2 \)
- Associativity for ::.

Write \(E_1 :: E_2 :: E_3 \) for \(E_1 :: (E_2 :: E_3) \) and \(\text{fst}(E_1 :: E_2) \) for \(\text{head}(E_1 :: E_2) \) etc.

Can include further crypto-specific primitives and laws (XOR, …).
The Handshake Protocol

Goal:

- Establish a secure channel over untrusted communication link between client and server.
 - Supposed to provide secrecy and server authenticity, specified by \{secrecy\} and \{authenticity\}.

Variant of the Internet Protocol

TLS I
Variant of the Internet Protocol
TLS II

- Set of data values **Data** includes names **C** and **S** for each instance
 C: Client and **S**: Server.
- Assumes: each client **C** is given the server name **S_i** before the **i**th
 execution round of the protocol part under consideration.
- Server is not given the client name in advance
 - since no client authenticity is to be provided by the protocol.
- Restrict ourselves to considering the first **l** executions of protocol.
 - **l**: arbitrary but fixed natural number.
- Note:
 - each **C** may be given a different sequence of server names.
 - More precisely: would have to be referred to as **C.S_i**.
- Omit instance prefixing for readability where no confusion can arise.
Variant of the Internet Protocol
TLS III

- **C** and **S**: variables representing arbitrary names.
- Client and server can run protocol with arbitrary servers and clients.
- Adversary controls communication link between client and server.
 - Captured by enabling adversary to read, delete, and insert messages at corresponding link queue.
 - able to insert any message communicated over the link in adversary's current knowledge.
 - Adversary may perform the protocol with either client or server:
 - by taking on the role of server or client.
Adversary Model

- A
- adversary
- B

- memory
- logic

- * memorize message
- * delete message
- * insert message
- * compose own message
- * use cryptographic primitives
• Note:

 - one may also specify the adversary to actually be a server or client

 ● by adding the access threat to a suitable node stereotype attached to relevant object in diagram.

 - Not considered here:

 ● we assume all servers and clients are trustworthy.
Protocol: Attack Scenario

Adversary knowledge:
- k^{-1}, y, x
- $\{z\}_k, Z$

\[
\forall e, k. \text{Dec}_{k-1}(\{e\}_k) = e
\]
Proposed Variant of TLS (SSL)

IEEE Infocom 1999.

Goal:
- send secret protected by session key using fewer server resources.
Each C/S has
- public key K_C/K_S with associated private key K^{-1}_C / K^{-1}_S

Assume: C able to obtain K_{CA}^1 guaranteeing CAs integrity.

S securely obtains certificate $\text{Sign}_{K^{-1}_{CA}} (S :: K_S)$ signed by CA
- contains its name and public key.

Each client is given
- sequence of secrets $s_1, ..., s_l \in Data^s$ to be transmitted
- nonces $N_1, ..., N_l \in Data$.

Write $s__ : Data$ to denote an array with fields s_i in Data.

1 public key of the certification authority
Handshake
Details II

- Nonces specified to be created freshly by receiver before protocol execution, as stated by \{fresh\}.

- Values N_i belong to scope of Client within subsystem specification TLS variant
 - Since expressions N_x, for any subexpression x, only appear within Client object and associated view of sequence diagram.

- Similarly: session keys $k_1, \ldots, k_l \in \text{Keys}^s$ given to each server is specified to be fresh.
• Leave out:
 - Explicit assignment of initial values to constant attributes:
 ● e.g. keys, the nonces, and the values s_x and S_x
 ● Instead: constants as attribute names.
 - There for, relevant type names are underlined.
 - Not relevant for security requirements under consideration.
 ● Time-stamp
 ● Session id
 ● Choice of cipher suite and compression method
 ● Use of temporary key by S
• Recall:

 - For each method msg in diagram and each number n

 msg_n represents nth argument of operation call msg, most recently accepted according to the sequence diagram.

• Use notation $var ::= exp$ to write expression exp more shortly as var.
Behavioral Specification in Sequence Diagrams

- Associate behavioral specifications to their context:
 - Add: name of relevant states in activity diagram next to the sequence diagram.
 - Sequence diagram \(\text{tls} \) involving the objects \(C \) and \(S_i \)
 - used to specify activities \(\text{tls}.C \), \(\text{tls}.Si \) for any objects \(C \) and \(S_i \).
 - Sequence diagram specified w.r.t. \(S_i \),
 - this is where \(C \) sends its messages, depending on attr. \(i \).
In contrast
- Activity diagram specified w.r.t. \(S \), because:
 - all clients and servers are executed in parallel (independently of the value of \(i \) in any \(C \)).
• Well-defined to use a sequence diagram specifying S_i to specify activity $tls.S$

 - because S_i, in the sequence diagram, does not use parameter i.
Protocol Procedure I

- **Consider**
 - ith execution round $C(i)$ of client C
 - jth execution round $S_i(j)$ of server S_i
 - assume $S_i(j) = S$.
- **C** aims to communicate with instance S_i (jth execution round).
- **C** initiates the protocol by sending `init(...)` to S.
- Suppose condition $[\text{snd}(...) = K'_C]$ holds:
 - K_C contained in the signature matches the one transmitted in clear.
- **S** sends message `resp(...)` back to **C**

```plaintext
\[
\text{tls:}\quad \begin{align*}
\text{C:Client} & \quad \begin{align*}
\text{init}(N_i, K_C, \text{Sign}_{K_C^{-1}}(C::K_C)) \\
\text{resp}\left(\{\text{Sign}_{K_S^{-1}}(k_i::N')\}_{K'_C}, \text{Sign}_{K_C^{-1}}(S_i::K_S)\right) \\
\text{xchd}(\{s_i\}_k) \\
\end{align*} \\
\text{S_i:Server} & \quad \begin{align*}
\text{snd}(\text{Ext}_{K'_C}(c_C)) = K'_C \\
\end{align*}
\end{align*}
\]
```

\[c_k := \text{resp}_1\]
\[c_S := \text{resp}_2\]
\[K'_S := \text{snd}(\text{Ext}_{K_S}(c_S))\]
\[k := \text{fst}(\text{Ext}_{K'_S}(\text{Dec}_{K_C^{-1}}(c_k)))\]

\[N' := \text{init}_1\]
\[K'_C := \text{init}_2\]
\[c_C := \text{init}_3\]
Protocol Procedure II

- Suppose condition $[\text{fst}(\ldots)=S \land \text{snd}(\ldots)=N_i]$ holds
 - Certificate is actually for S and the correct nonce is returned.
Then C sends $\text{xchd}(\ldots)$ to S.

- If any check fails:
 - Respective protocol participant stops execution of the protocol.

\[
\begin{align*}
\text{tls:} & \quad \begin{array}{l}
\text{C:Client} \\
\text{S}:\text{Server}
\end{array} \\
\text{init}(N_i, K_C, \text{Sign}_{K_C^{-1}}(C::K_C)) & \longrightarrow \\
\text{resp}\left(\{\text{Sign}_{K_{S_i}}^{-1}(k)\}K_C', \text{Sign}_{K_{S_i}}^{-1}(S_i::K_{S_i})\right) & \longleftrightarrow \\
\text{xchd}\left(\{s_i\}_k\right) & \longrightarrow \\
\text[snd]\left(\text{Ext}_{K_{S_i}}(c_C)\right) = K_C' & \\
\text{[conditions]} & \\
\end{align*}
\]

\[
\begin{align*}
c_k & := \text{resp}_1 \\
c_S & := \text{resp}_2 \\
K_S' & := \text{snd}(\text{Ext}_{K_{CA}}(c_S)) \\
k & := \text{fst}(\text{Ext}_{K_{S_i}}'(\text{Dec}_{K_C^{-1}}(c_k))) \\
N' & := \text{init}_1 \\
K_C' & := \text{init}_2 \\
c_C & := \text{init}_3
\end{align*}
\]
Alternative Notation

- Traditional informal notation e.g. in [NS78]
- Protocol would be written as follows:
 - \(C \rightarrow S : N_i, K_C, \text{Sign}_{K_C^{-1}}(C :: K_C) \)
 - \(S \rightarrow C : \{\text{Sign}_{K_C^{-1}}(k_j :: N_i)\}_K, \text{Sign}_{K_{CA}}(S :: K_S) \)
 - \(C \rightarrow S : \{s_i\}_{k_j} \)
- May seem simpler
- Needs to be interpreted with care [Aba00].

\[\text{tls:} \]

\[
\begin{align*}
C &:= \text{Client} \\
S &:= \text{Server} \\
\text{init}(N_i, K_C, \text{Sign}_{K_C^{-1}}(C :: K_C)) \rightarrow \text{resp}\left(\{\text{Sign}_{K_{CA}^{-1}}(k_j :: N')\}_K, \text{Sign}_{K_{CA}^{-1}}(S :: K_S)\right) \rightarrow \text{snd}(\text{Ext}_{K_{CA}}(C)) \rightarrow [\text{snd}(\text{Ext}_{K_{CA}}(C)) = K_C] \\
\text{fst}(\text{Ext}_{K_{CA}}(C)) &= S_i \land \\
\text{snd}(\text{Ext}_{K_{CA}'}(\text{Dec}_K^{-1}(c_k))) &= N_i \\
\text{resp}_1 &= c_k \\
\text{resp}_2 &= c_s \\
K_{S_i}' &= \text{snd}(\text{Ext}_{K_{CA}}(C)) \\
k &= \text{fst}(\text{Ext}_{K_{CA}'}(\text{Dec}_K^{-1}(c_k))) \\
N' &= \text{init}_1 \\
K_C' &= \text{init}_2 \\
c_C &= \text{init}_3
\end{align*}
\]
Alternative Notation
Example Interpretation

1. $C \rightarrow S : N_i, K_C, \text{Sign}_{K_C^{-1}} (C :: K_C)$
2. $S \rightarrow C : \{\text{Sign}_{K_S^{-1}} (k_j :: N_i)\}_K, \text{Sign}_{K_{CA}} (S :: K_S)$
3. $C \rightarrow S : \{s_i\}_{k_j}$

(1) C sends $N_i, K_C, \text{Sign}_{K_C^{-1}} (C :: K_C)$ to the network,
 - intended recipient S
(2) S expects a message of form $N, K_1, \text{Sign}_{K_2^{-1}} (X :: K_2)$,
 - seemingly coming from C.

Message sent over untrusted network: cannot conclude e.g. $K_1 = K_C$.
Therefore, need to make assumptions: e.g. S checks that occurrences of K_C do indeed coincide ($K_1 = K_2 = K_3$).
Notes

- Major source of security weaknesses in practice: Misinterpretation of protocol specifications.
 - Assure assumptions are understood by implementor of a protocol
- Aim: Use UML as a notation that is widely used among software developers beyond the community of security experts
 - without deviating from its standard definition any more than necessary.
- UML sequence diagram semantics does not entail the assumptions.
 - Include assumptions explicitly
 - By referring to sent and received values in different ways, and
 - Including checks in sequence diagram
 - To ensure that they actually coincide.
Protocol

\[
\begin{align*}
\text{tls:} & \quad \text{C:Client} \\
\quad \text{init}(N_i, K_C, S^{\text{sign}}_{K_C^{-1}}(C::K_C)) & \\
\quad \text{resp}\left(\{S^{\text{sign}}_{K_{S_i}^{-1}}(k_j::N')\}_{K_C'}, S^{\text{sign}}_{K_{CA}^{-1}}(S_i::K_{S_i})\right) & \\
\quad \text{xchd}\{s_i\}_k & \\
\quad \text{snd}(E^{\text{ext}}_{K_{CA}'}(c_S)) & = K_C' \\
\text{fst}(E^{\text{ext}}_{K_{CA}}(c_S)) & = S_i \land \\
\text{snd}(E^{\text{ext}}_{K_{S_i}'}(D^{\text{ec}}_{K_C^{-1}}(c_k))) & = N_i \\
\text{c}_k & := \text{resp}_1 \\
\text{c}_S & := \text{resp}_2 \\
K'_{S_i} & := \text{snd}(E^{\text{ext}}_{K_{CA}}(c_S)) \\
k & := \text{fst}(E^{\text{ext}}_{K_{S_i}'}(D^{\text{ec}}_{K_C^{-1}}(c_k))) \\
N' & := \text{init}_1 \\
K_C' & := \text{init}_2 \\
c_C & := \text{init}_3
\end{align*}
\]
The Flaw

- Analyzing the specified protocol for relevant security requirements using the automated analysis tools1:
 - Observed Man-in-the-middle-attack.

- Theorem: For given C and i, the UML subsystem \mathcal{T}, given in IEEE Infocom 1999, does not preserve the secrecy of s_i from adversaries of type $A = \text{default}$ with $\{K_S, K_A, K^{-1}_A\} \subseteq K^p_A$.
 - Protocol does not provide secrecy of s_i, against a realistic adversary.

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 6.2.1
Man-in-the-Middle Attack

\[N_i \mathbin{:} K_C \mathbin{:} \text{Sign}_{K_C}^{-1}(C \mathbin{:} K_C) \quad \text{Sign}_{K_A}^{-1}(C \mathbin{:} K_A) \]

\[C \rightarrow A \rightarrow S \]

\[\{ \text{Sign}_{K_S}^{-1}(K_j \mathbin{:} N_i) \}_C \mathbin{:} \text{Sign}_{K_{CA}}^{-1}(S \mathbin{:} K_S) \]

\[A \leftarrow S \]

\[C \leftarrow \{ s \}_K \]

\[C \rightarrow A \rightarrow S \]
The Fix

Can prove that secure.
The Flaw
Proof I

• Show existence of successful attacker \(\text{adv} \).
• Fix instances \(C \) and \(S \) with execution rounds \(i \) and \(j \) \((S_i = S) \)
 - Denote link between \(C \) and \(S \) as \(I_{CS} \).
• Adversary \(\text{adv} \) proceeds as follows:
 - Message of form \(S.\text{init}(N_i, K_C, \text{Sign}_{K^{-1}_C}(C :: K_C)) \) in \(I_{CS} \)
 • replaced by \(S.\text{init}(N_i, K_C, \text{Sign}_{K^{-1}_A}(C :: K_A)) \);
 - Public key \(K_C \) of \(C \) replaced by public key \(K_A \) of \(A \)
 at each occurrence and as signature key.
The Flaw
Proof II

- When S sends message $\text{resp}\{\text{Sign}_{K^{-1}_S}(k_j :: \text{init}_1)\}_{K_A}, \text{Sign}_{K^{-1}_{CA}}(S :: K_S)$ using K_A to encrypt session key k_j,
 - adv can obtain k_j and replace message by $\text{resp}\{\text{Sign}_{K^{-1}_S}(k_j :: \text{init}_1)\}_{K_C}, \text{Sign}_{K^{-1}_{CA}}(S :: K_S)$

- When C subsequently returns $\{s_i\}_{k_j}$, adv can extract secret s_i and forward message.

- Adversary machine that achieves this is defined as follows:
The Flaw
Proof: Adversary Machine

Rule Exec _adv_

\[
\text{do – in – parallel}
\]

if \(\text{linkQu}_T(l_{CS}) = \{e\}\) \(\land\) \(\text{msgnm}(e) = S.\text{init}\)

then \(\text{linkQu}_T(l_{CS}) := \{S.\text{init}(\text{Arg}_1(e), K_A, \\
Sign_{K_A^{-1}}(\text{fst}(\text{Ext}_{\text{Arg}_2}(e)(\text{Arg}_3(e))) :: K_A))\}\)

if \(\text{linkQu}_T(l_{CS}) = \{e\}\) \(\land\) \(\text{msgnm}(e) = C.\text{resp}\) then

do – in – parallel

\(\text{linkQu}_T(l_{CS}) := \{C.\text{resp}(\{Sign_{K_A^{-1}}(\text{Arg}_1(e))\}_C, \text{Arg}_2(e))\}\)

\(\text{local} := \{\text{fst}(\text{Ext}_{K_S}(\text{Dec}_{K_A^{-1}}(\text{Arg}_1(e))))\}\)

\text{endo}

if \(\text{linkQu}_T(l_{CS}) = \{e\}\) \(\land\) \(\text{msgnm}(e) = S.\text{xchd}\) then

\(\text{secret} := \{\text{Dec}_{\text{local}}(\text{Arg}_1(e))\}\)

\text{endo}

- Thus adversary gets to know secrets \(C.s_i\).
The Fix

- Change protocol to get a specification T'
 - Substituting $k_j \bowtie N_i$ in message resp by $k_j \bowtie N_i \bowtie K_C$ and
 - Including a check regarding this new message part at client.
- Public key K_C of C is representatively for identity of C.
- One could also use $k_j \bowtie N_i \bowtie C$ instead.
- Traditional informal notation, of modified protocol:
 1. $C \rightarrow S : N_i, K_C, \text{Sign}_{K^{-1}_C} (C \bowtie K_C)$
 2. $S \rightarrow C : \{\text{Sign}_{K^{-1}_S} (k_j \bowtie N_i \bowtie K_C)\}_{K_C}, \text{Sign}_{K^{-1}_{CA}} (S \bowtie K_S)$
 3. $C \rightarrow S : \{s_i\}_{K_j}$.
Conversely

- C will only send the secret under the session key received if signed by the server concatenated with public key of C.

- This certificate, S only sends out encrypted under the same public key
 - adversary cannot decrypt.

- Essential:
 - session keys differ for different iterations of the protocol.
Informal Explanation

Certificate sent in first message

- Self-signed
- Does not provide full client authenticity.
- Adversary can still send certificate to S claiming that public key of the adversary belongs to C.

However:
- When adversary forwards the response from S to C.
- Server signed certificate contains the public key received by S in first message.
- If adversary again forwards this certificate to the C.
 - C will notice a false public key has been submitted on C's behalf and stop execution because the newly introduced check fails.
Little Confidence

- Arguments may convince that the particular attack is prevented by the modification
- Little confidence that the modified protocol is immune against all other possible attacks.
- To give confidence
 - Prove formally that Protocol specification is secure with regards to adversary model.
- More specifically:
 - show that the protocol specification fulfills constraints associated with <<data security>> w.r.t. adversary.
 - Proving this for {secrecy}.
 - {integrity} and {authenticity} can be established similarly.
Notes on \{integrity\}

- \{integrity\} goals
 - Adversary should not be able to make the attributes take on values previously known only to him
 - Straightforward to verify
 - Only concerns attributes that remain constant
 - apart from \(i \) and \(j \), simply counted upwards.
 - Could formulate other integrity requirements.
 - e.g. value \(C.k \) coincides with \(S.k_j \), we do not consider this here.
Theorem
TLS Variant Is Secure

- Theorem: Given a particular execution of repaired TLS variant subsystem T' including all client/server instances, a client C, and number I with $S=S_I$.
- Suppose server S, is in Jth execution round (ER) in the current execution when C, Ith ER, initiates the protocol ($C.i = I$ and $S.j = J$).
- Then this execution of T' preserves secrecy of $C.s_I$ against adversaries of type $A = \text{default}$ whose previous knowledge K^p_A fulfills:
 - We have:
 \[
 \left(\{C.s_I, K^{-1}_C, K^{-1}_S\} \cup \{S.k_j : j \geq J\} \right) \cap K^p_A = \emptyset;
 \]
 for any $X \in \text{Exp}$, $\text{Sign}_{K^{-1}_C} (C :: X) \in K^p_A$ implies $X = K_C$, and
 - for any $X \in \text{Exp}$, $\text{Sign}_{K^{-1}_{CA}} (S :: X) \in K^p_A$ implies $X = K_S$.
Theorem
In Detail I

- Condition means:
 - Previous adversary knowledge K_A^p may not contain
 - Current secret $C.s_i$
 - Secret keys K^{-1}_C; K^{-1}_S of sender and receiver,
 - Current and future session keys $S.k_j$,
 - Any encryptions of form $\{\text{Sign}_{K^{-1}_S}(X :: C.N_1 :: K_C)\}_{K_C}$,
 - Any signatures $\text{Sign}_{K^{-1}_S}(C :: X)$ (except for $X = K_C$) and $\text{Sign}_{K^{-1}_{CA}}(C :: X)$ (except for $X = K_S$).
 - Result covers possibility: adversary may gain information from previous or parallel executions of protocol,
 - possibly with other instances of C or S.
Theorem

In Detail II

- Parallel executions of other instances:
 - Restrictions on adversary knowledge allow adversary to simulate other instances of the two classes.
 - by giving adversary access to their private keys and certificates.
- Previous executions,
 - Note: previous adversary knowledge K^p_A refers to knowledge of the adversary before overall execution of the system,
 - Not at the point of the system execution where $C.i=I$ and $S.j=J$ (see the definition\(^1\) or discussion and corollary later on).

\(^1\) Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.4
Theorem

Conditions

In particular:

Condition

- Doesn't prevent adversary from remembering information gained from earlier iterations or Current iteration of the protocol and use it in later iterations.

- It does assume: adversary doesn't know \(\{ \text{Sign}_{K^{-1}}(k_j :: N_i :: K_C) \}_{K_C} \) of server in the current protocol run before current protocol.

 - Assumption is necessary, otherwise the attack would still work:
 - Adversary would already have the certificate the client expects (which includes the client's key \(K_C \)) and can in addition still get the current session key from the server
 - as in earlier attack by sending \(N_i :: K_A :: \text{Sign}_{K^{-1}}(C :: K_A) \) containing adversary's key \(K_A \) to \(S \).
Theorem
“forward security“

- Since we allow $S.k_j$ for $j < J$ to be included in previous adversary knowledge K^p_A
- Theorem establishes a form of “forward security“
 - Compromise of a current key doesn't necessarily expose future traffic.
- Not sufficient to only require $S.k_j \not\in K^p_A$.
 - Because adversary may initiate an intermediate interaction with S to increase its counter j.
Theorem "rely-guarantee"

- Statement of theorem concerns particular instances of Client and Server and particular execution rounds.
- Formulated in a "rely-guarantee" way,
 - Stating that if the knowledge previously acquired by adversary satisfies the conditions, then this execution preserves secrecy.
 - Allows to consider security mechanisms such as security protocols in system context.
 - To do this: Specify explicitly which values the remaining part of the system has to keep secret to function securely.
 - e.g.: Theorem needs to assume that the CA doesn't issue any false certificates,
 - Third pre-condition in the theorem.
Conditions

Conclusion

- Conditions only concern previous knowledge of the adversary before overall execution of the system,
 - Follows: adversary knowledge before each iteration of the system satisfies conditions as well.
 - Each iteration of execution of the system preserves conditions on the adversary knowledge:
 - If conditions on adversary knowledge were violated in iterations before the one under consideration:
 Result of the theorem would not be valid.
 - For each “current“ iteration.
 - Since theorem holds: cannot be the case.
Proof: Use Theorem 7.27 \(^1\). We show the following claim:

- For each knowledge set \(K^e_{\text{adv}}(A)\) for adversary \(\text{adv}\) of type \(A\), after overall execution \(e\) of \(T'\), whose previous knowledge \(K^p_A\) satisfies the conditions in the statement of the theorem,
 - there exists a subalgebra \(X_0\) that is minimal w.r.t. the subset relation among subalgebras \(X\) of \(\text{Exp}\) fulfilling the following two conditions, \(^*\) such that \(X_0\) contains \(K^e_{\text{adv}}(A)\).

\(^*\) \(K^e_{\text{adv}}(A)\) is not contained in every such subalgebra \(X\), because the actual messages exchanged may differ depending on the adversary behavior.

\(^1\) Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 7.5.2
Proof
Claim: Condition (1)

Condition (1) is required to hold:

\[K^A \cup \left\{ c.N_i, K_c, \text{Sign}_{K^{-1}_c}(c :: K_c) : i \in \mathbb{N} \land c \in \text{Client} \right\} \]

\[\cup \left\{ \text{Sign}_{K^{-1}_{CA}}(s :: K_s) : s \in \text{Server} \land (s = S \Rightarrow K_s = K_S) \right\} \]

\[\cup \left\{ \{c.s_i\}_k : k \in \text{Keys} \land i \in \mathbb{N} \land c \in \text{Client} \land \exists K \in \text{Keys}, E \in \text{Exp}, E' \in X \right. \]

\[\left(\text{Sign}_{K^{-1}_{CA}}(E) \in X \land \text{fst}(E) = c.S_i \land \text{snd}(E) = K \right. \]

\[\left. \land \text{Ext}_K(\text{Dec}_{K^{-1}_C}(E')) = (k, c.N_i, K_c, X) \right) \}

\[\subseteq X. \]
Proof
Claim: Condition (2)

Requires that

- For each \(j \in \mathbb{N} \) and \(s : \text{Server} \) and

 For an associated fixed key \(k_{j,s} \in \text{Keys} \cap X \),

 - a fixed expression \(x_{j,s} \in \text{Exp} \), and

 - a fixed nonce \(n_{j,s} \in \text{Data} \cap X \) with \(\text{Sign}_{K^{-1}_{j,s}} (x_{j,s} :: k_{j,s}) \in X \),

We have

- \(\{ \text{Sign}_{K^{-1}_{s}} (s.k_j :: n_{j,s} :: k_{j,s}) \} k_{j,s} \in X \).

* Condition (1) guarantees existence of these unique expressions associated with each \(j \in \mathbb{N} \) and \(s : \text{Server} \).
Proof
Claim: Note On Condition (2)

- Possible that $k_{j,s}^{-1} \in K_{\text{adv}}^e(A)$,
 - But then $k_{j,s} \neq K_c$ for any client c
 - because $K_c^{-1} \notin K_{\text{adv}}(A)$
 since $K_c^{-1} \notin K_A^p$ and K_c^{-1} is never sent out.
 - c will notice something is wrong in the corrected protocol
 - because counter j is increased, adversary cannot make the server publish another signature with the same k_j and correct K_c.

Proof of Claim: Intuitively I

- Claim holds because each knowledge set $K_{adv}^e(A)$ is by definition the subalgebra of the algebra of expressions Exp built up from K^p_A in interaction with the protocol participants during the protocol run e.
- What knowledge adversary can gain from interaction with the protocol participants.
 - From first message of c, adversary can learn expressions $c.N_i$, K_c, and $\text{Sign}_{K^{-1}c}(c :: K_c)$.
 - From first message of s, the adversary can firstly learn $\text{Sign}_{K^{-1}CA}(s :: K_s)$.
Secondly,

- For each encryption key $K \in \text{Keys}$ in the knowledge of the adversary
 - such that adversary knows $\text{Sign}_{K^{-1}} (x :: K)$ for some $x \in \text{Exp}$,

and for each N known to the adversary, adversary learns

$$\{\text{Sign}_{K^{-1}}(s.k_j :: vN :: K)\}_K \in X,$$

but only a unique such expression for a given

- server s,
- protocol run e, and
- transaction number j,

because transaction number j is increased as long as protocol is iterated (reflected by the fact that X_0 is required to be minimal).
Proof of Claim: Intuitively III

- From second message from \(c\), for each encryption key \(K \in \text{Keys}\) such that,
 - \(\text{Sign}_{K^{-1 \text{CA}}} (E)\) is known to adversary for \(E \in \text{Exp}\) with \(\text{fst}(E) = c \cdot S_i\) and \(\text{snd}(E) = K\), such that
 - \(\exists E' \in \text{Exp}\) which is known to adversary such that \(\text{Ext}_K (\text{Dec}_{K^{-1}} (E')) = (k, c \cdot N_i, K_c)\) for some \(k \in \text{Keys}\),
 - Adversary learns \(\{c \cdot s_i\}_K \in X\).
Proof of Claim: Intuitively IV

- Since no other messages are sent out by the system
 - Claim holds by definition of the adversary knowledge as the algebra generated by exchanged messages and initial adversary knowledge.
- Completes proof.
Proof of Claim: Contradiction

- Sufficient to show: \(C.s_1 \notin X_0 \) for every \(X_0 \) defined above,

 - Because \(K_A(A) := \bigcup_{adv,e} K^e_{adv}(A) \) is contained in union of all such \(X_0 \) by the above argument.

- Proof by contradiction:
 - Fix such an \(X_0 \)
 - Assume:
 - \(C.s_1 \in X_0 \).
 - \(X_0 \) is defined to be a minimal subalgebra
 - satisfying conditions (1) and (2)
Proof of Claim: Contradiction II

- Recall Algebra of expressions Exp^1:
 - as a free algebra it follows that $C.s_i$ is different from any other expression not containing it
 - since no equation with such an expression is defined.
 - We have $C.s_i \neq c.s_i$ for any client c and number i with $c \neq C$ or $i \neq I$.
 - Only occurrence in conditions defining X_0 in a minimal way,
 - where $C.s_i$ may be introduced as a subterm,
 is in the requirement that X_0 contains $\{C.s_i\}_k$ for each key $k \in \text{Keys}$ for which there exist $K \in \text{Keys}$, $E \in \text{Exp}$, $E' \in X_0$ such that
 - $\text{Sign}_{K^{-1}CA}(E) \in X_0 \land \text{fst}(E) = S \land \text{snd}(E) = K$
 - $\text{Ext}_K(\text{Dec}_{K^{-1}c}(E')) = (k, C.N_I, K_C)$

in condition (1).

1 Jan Jürjens, Secure Systems Development with UML, Springer 2004. Sect. 3.3.3
Assumption $C.s_I \in X_0$ implies

- $\exists k \in \text{Keys}$ for which there exist $K \in \text{Keys}$, $E \in \text{Exp}$, $E' \in X_0$ such that
 - $\text{Sign}_{K^{-1}_{\text{CA}}} (E) \in X_0 \land \text{fst}(E) = S \land \text{snd}(E) = K \land \text{Ext}_K(\text{Dec}_{K^{-1}_{\text{c}}}(E')) = (k, C.N_I, K_C)$.

- By definition of X_0 and assumption on K^p_A

 $\text{Sign}_{K^{-1}_{\text{CA}}} (E) \in X_0 \land \text{fst}(E) = S \land \text{snd}(E) = K$

 implies $K = K_S$

- (since any expression of this form in K^p_A must satisfy this, and any such expression introduced in X_0).
Proof of Claim: Contradiction IV

Similarly, $E' \in X_0$ with $\text{Ext}_{K} \cdot (\text{Dec}_{K^{-1}}(E')) = (k, C.N_i, K_C)$ implies $k = S.k_j$ for some j

- $E' \notin K^p_A$ by assumption on adversary knowledge K^p_A
 - because K^{p-1}_S never communicated, and
 - $\{\text{Sign}_{K^{-1}}(S.k_j :: n_{j,s} :: k_{j,s})\}_{k_{j,s}}$ (condition (2)) only expression with sub-term of form $\text{Sign}_{K^{-1}}(k :: n_{j,s} :: k_{j,s})$ introduced (in this term $n_{j,s} = C.N_i$ and $k_{j,s} = K_C$).

- Conclude $j \geq J$
 - by assumption: S is in its Jth execution round when C is in its Ith.
 - by requirement: $C.N_i$ should be fresh (each value distinct from any other).

- By assumption on K^p_A, we have

 $S.k_j \notin K^p_A$ since $j \geq J$,

- Thus adversary must have learned $S.k_j$ in protocol interaction.
Proof of Claim: Contradiction

- By Freshness on \(S.k_j \):
 - Only message containing \(S.k_j \) is a term of form
 \[
 \{ \text{Sign}_{K^{-1}} (S.k_j :: n_{j,s} :: k_{j,s}) \}_{k_{j,s}}.
 \]
- By condition (2) and minimality of \(X_0 \):
 - We know \(n_{j,s} = C.N_l \) and \(k_{j,s} = K_C \) for any such term.
 - Term has to be decrypted with \(K^{-1}_c \) to get \(S.k_j \).
 - Only participant possessing \(K^{-1}_c \) and could provide this service for the adversary is \(C \).
 - Other's don't have \(K^{-1}_c \) in initial knowledge, and it is never exchanged.
 - None value in \(\{ \text{Sign}_{K^{-1}} (S.k_j :: n_{j,s} :: k_{j,s}) \}_{k_{j,s}} \) sent out by \(C \).
- Thus \(K^{-1}_c \in K^p_A \): contradicts initial assumption about \(K^p_A \).
Proof of Claim: Satisfied Conditions I

- Adversary knowledge before each iteration satisfies conditions as well:

(1) Ith execution round of client C
 - no data of form $X.s_i$ is output except $C.s_i$ (is kept secret from adversary)
 - Secret keys K^{-1}_C, K^{-1}_S ($\forall C, S$) are never output.
 - Key $S.K_j$: only sent out during Jth executing round of S.
 - Above theorem: in that round key is not leaked to adversary
 - Otherwise adversary would gain knowledge of $C.s_i$ by decrypting contents of xchd message.
 - Expression of form $\{\text{Sign}_{K^{-1}_S}(X :: C.N_i :: K_C)\}_{K_C}$ (for $X \in \text{Keys}$) is only output in Ith execution round of C (and is of no use in any later round).
Proof of Claim: Satisfied Conditions I

Adversary knowledge before each iteration satisfies conditions as well:

(2) For any $X \in \text{Exp}$, $\text{Sign}_{K^{-1}_S}(X :: C)$ is sent out only for $X = K_C$

- K^{-1}_C not sent out at all.

(3) For any $X \in \text{Exp}$, $\text{Sign}_{K^{-1}_{CA}}(X :: C)$ is sent out only for $X = K_S$

- K^{-1}_{CA} not sent out at all.
Generalization of Theorem

Assume: clients and servers are finite:

- Any execution of T' (over all clients, servers and all execution rounds) preserves secrecy of each $C.s_i$ ($C: Client, 1 \leq i \leq l$)
 - against adversaries of type $A = \text{default}$ with previous knowledge K^p_A

before overall execution T' fulfills the following conditions:

We have: $\left(\{K^{-1}_C ; K^{-1}_S, c.s_i; s.k_j. \{\text{Sign}_{K^{-1}_S}(k_j :: N_i :: K_C)\}\}_{K_C}: c:\text{Client} \land s:\text{Server} \land 1 \leq i \leq l \land 1 \leq j \land X \in \text{Keys}\right) \cap K^p_A = \emptyset$

- for any $X \in \text{Exp}$ and any $c: \text{Client}$, $\text{Sign}_{K^{-1}_C}(c :: X) \in K^p_A$ implies $X = K_C$.
- for any $X \in \text{Exp}$ and any $s: \text{Server}$, $\text{Sign}_{K^{-1}_{CA}}(s :: X) \in K^p_A$ implies $X = K_S$.
Proof Of Generalization

- Given an execution \(e \) of \(T' \), a client \(C \), and a number \(I \).
- \(S_I = S \) for a server \(S \)
- Within \(e \), when \(C.i = I \),
 - we have \(S.j = J \) for a number \(J \).
- Conditions on previous adversary knowledge in the generalization imply those of previous theorem
 - Can directly apply theorem.
Generalization of Theorem Explanation

- Condition generalizes that of Theorem to arbitrary clients, servers.
- Protocol rounds of each client c and server s do not have to correspond in any particular way.
 - Any combination of c, s, secrets $c.s_i$, and session keys $s.k_j$ may occur.
 - Same session key is not to be used repeatedly.
 ● In particular, $C.s_i$ under consideration could be transmitted encrypted under $s.k_j$ for any s and server round j.
 ● Need to assume $s.k_j \notin K^p_A$ for any s and j.
 ● Again: K^p_A denotes knowledge of adversary prior to even the first execution round of the protocol.
 ● Session keys: not leaked during any of the protocol runs between trustworthy participants follows from our result.
Automated Security Analysis: Adversary Knowledge

- Specify set K_A^0
 - initial knowledge of an adversary of type A.

- Let K_A^{n+1} be the Exp-subalgebra
 - generated by K_A^n and expressions received after $n+1$st protocol iteration.

Definition (Dolev, Yao 1982).
S keeps secrecy of M against attackers of type A if there is no n with $M \in K_A^n$.
Idea:

- approximate set of possible data values flowing through system from above.

- Predicate $\text{knows}(E)$
 - adversary may get to know E during execution of the protocol.

- For any secret s, check whether can derive $\text{knows}(s)$ using automated theorem prover.
First-order Logic: Basic Rules

Initial adversary knowledge (K^0):

- Define $\text{knows}(E)$ for any E initially known to the adversary (protocol-specific, e.g. $K_A, K_{A^{-1}}$).

- Define above equations.

- For evolving knowledge (K^n) define

 $\forall E_1, E_2. (\text{knows}(E_1) \land \text{knows}(E_2) \Rightarrow$
 $\text{knows}(E_1 :: E_2) \land \text{knows}({E_1}_{E_2}) \land$
 $\text{knows}(\text{Dec}_{E_2}(E_1)) \land \text{knows}(\text{Sign}_{E_2}(E_1)) \land$
 $\text{knows}(\text{Ext}_{E_2}(E_1)))$

 $\forall E. (\text{knows}(E) \Rightarrow$
 $\text{knows}(\text{head}(E)) \land \text{knows}(\text{tail}(E)))$
Given Sequence Diagram ...

\[
\begin{align*}
\text{tls:} & \quad \begin{array}{c}
\text{C:Client} \\
\text{S1:Server}
\end{array} \\
\text{init}(N_i, K_C, \text{Sign}_{K_C^{-1}}(C::K_C)) & \quad \text{resp}\left(\{\text{Sign}_{K_S_i^{-1}}(k_j::N')\}_K'\right), \\
\text{Sign}_{K_C^{-1}}(S_i::K_{S_i}) & \quad \text{xchd}\{s_i\}_k
\end{align*}
\]

\[
\begin{align*}
\text{[fst}(\text{Ext}_{K_{CA}}(c_S)) = S_i \land \\
\text{snd}(\text{Ext}_{K_{S_i}'}(\text{Dec}_{K_C^{-1}}(c_k))) = N_i] & \\
\text{ck := resp}_1 \\
\text{cs := resp}_2 \\
\text{K}_S_i := \text{snd}(\text{Ext}_{K_{CA}}(c_S)) \\
\text{k := fst}(\text{Ext}_{K_{S_i}'}(\text{Dec}_{K_C^{-1}}(c_k))) \\
\text{N'} := \text{init}_1 \\
\text{K'} := \text{init}_2 \\
\text{c}_C := \text{init}_3
\end{align*}
\]
Deployment diagram.

Derived adversary model: read, delete, insert data.
... Translate to 1st Order Logic

Connection (or statechart transition)

\[TR1 = (\text{in}(\text{msg}_\text{in}), \text{cond}(\text{msg}_\text{in}), \text{out}(\text{msg}_\text{out})) \]

followed by \(TR2 \) gives predicate

- \(PRED(TR1) = \forall \text{msg}_\text{in}. [\text{knows}(\text{msg}_\text{in}) \land \text{cond}(\text{msg}_\text{in}) \Rightarrow \text{knows}(\text{msg}_\text{out}) \land PRED(TR2)] \)

(Assume: order enforced (!).)

Can include senders, receivers in messages.

Abstraction: find all attacks, may have false positives.
Example

knows(N) \land knows(K_C) \land knows(Sign_{K_C^{-1}}(C::K_C)) \land
\forall \text{init}_1, \text{init}_2, \text{init}_3[knows(\text{init}_1) \land knows(\text{init}_2) \land knows(\text{init}_3) \land
\text{snd}(\text{Ext}_{\text{init}_2}(\text{init}_3)) = \text{init}_2 \Rightarrow knows(\{Sign_{K_S^{-1}}(\ldots)\}_S) \land [knows(Sign\ldots)] \land
\forall \text{resp}_1, \text{resp}_2. [\ldots \Rightarrow \ldots]]
Execute in System Context

Activity diagram.
Formulate Data Security Requirements

Class diagram.
Gives conjecture: $knows(s)$ derivable?
Proposed Variant of TLS (SSL)

IEEE Infocom 1999.

Goal:
- send secret protected by session key using fewer server resources.
input_formula(tls_abstract_protocol, axiom, (
 ![ArgS_11, ArgS_12, ArgS_13, ArgC_11, ArgC_12] : (
 ![DataC_KK, DataC_k, DataC_n] : (
 % Client -> Attacker (1. message)
 (knows(n)
 & knows(k_c)
 & knows(sign(conc(c, k_c), inv(k_c))))
 & % Server -> Attacker (2. message)
 ((knows(ArgS_11)
 & knows(ArgS_12)
 & knows(ArgS_13)
 & (? [X] : equal(sign(conc(X, ArgS_12), inv(ArgS_12)), ArgS_13)))
 => (knows(enc(sign(conc(kgen(ArgS_12), ArgS_11), inv(k_s)), ArgS_12))
 & knows(sign(conc(s, k_s), inv(k_ca))))))
)
& % Client -> Attacker (3. message)
 ((knows(ArgC_11)
 & knows(ArgC_12)
 & equal(sign(conc(s, DataC_KK), inv(k_ca)), ArgC_12)
 & equal(enc(sign(conc(DataC_k, DataC_n), inv(DataC_KK)),
 k_c), ArgC_11)
 & (? [DataC ks] : equal(sign(conc(s, DataC ks), inv(k_ca)),
 ArgC_12))
 & equal(enc(sign(conc(DataC_k, n), inv(DataC_KK)), k_c),
 ArgC_11)
 & equal(enc(sign(conc(DataC_k, DataC_n), inv(DataC_KK)), k_c),
 ArgC_11)
)
 => (knows(symenc(secret, DataC_k))))
))
))
).
E-SETHEO csp03 single processor running on host ...
(c) 2003 Max-Planck-Institut fuer Informatik and Technische Universitaet Muenchen

tlsvariant-freshkey-check.tptp
...
time limit information: 300 total (entering statistics module).
problem analysis ...
testing if first-order ...
first-order problem
...
statistics: 19 0 7 46 3 6 2 0 1 2 14 8 0 2 28 6
...
schedule selection: problem is horn with equality (class he).
schedule:605 3 300 597
...
entering next strategy 605 with resource 3 seconds.
...
analyzing results ...
proof found
time limit information: 298 total / 297 strategy (leaving wrapper).
...
e-SETHEO done. exiting
... Which Means:

- Can derive \textit{knows}(s) (!).
- Protocol does \textbf{not} preserve secrecy of s against adversaries.
 \(\Rightarrow\) Completely insecure w.r.t. stated goals.
- But why?
- Could look at proof tree.
- Or: use prolog-based attack generator.
Man-in-the-Middle Attack

\[N_i \cdot K_C \cdot \text{Sign}_{K_C^{-1}}(C \cdot K_C) \]

\[C \rightarrow A \]

\[\{ \text{Sign}_{K_S^{-1}}(K_j \cdot N_i) \} \cdot K_A \cdot \text{Sign}_{K_C^{-1}}(S \cdot K_S) \]

\[A \leftarrow S \]

\[\{ \text{Sign}_{K_S^{-1}}(K_j \cdot N_i) \} \cdot K_C \cdot \text{Sign}_{K_C^{-1}}(S \cdot K_S) \]

\[C \leftarrow A \]

\[\{ s \} \cdot K_j \]

\[C \rightarrow A \]

\[\{ s \} \cdot K_j \]

\[A \rightarrow S \]
The Fix

E-Setheo1: $\text{knows}(s)$ not derivable \Rightarrow secure.

1 E-SETHEO is a strategy-parallel compositional theorem prover for first-order logic with equality.
Summary

- Example security analysis
 - Practical use of UMLsec
 - Formal proof
 - Apply fix for vulnerability
Zusammenfassung

Sicheres Software Design

- Geschäfts-Prozesse
- Modelbasierte Softwareentwicklung

Sicheres Software Design
- Sicherheitsanforderungen
- UMLsec
- UML-Analysis
- Design Principles
- Examples
 - TLS Variant
 - CEPS Purchase