

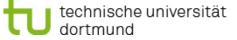
Worlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2014

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

Teil 2.2: Data-Mining

v. 04.06.2014



2.2 Data-Mining

[mit freundlicher Genehmigung basierend auf einem englischen Foliensatz von Prof. Dr. Wil van der Aalst (TU Eindhoven)]

Literatur:

[vdA11] Wil van der Aalst: **Process Mining: Discovery, Conformance and Enhancement of Business Processes**, Springer-Verlag. 2011.

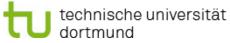
Unibibliothek (6 Exemplare): http://www.ub.tu-dortmund.de/katalog/titel/1332248 (Bei Engpässen kann eine **Kopiervorlage** der relevanten Ausschnitte zur Verfügung gestellt werden.)

Kapitel 3

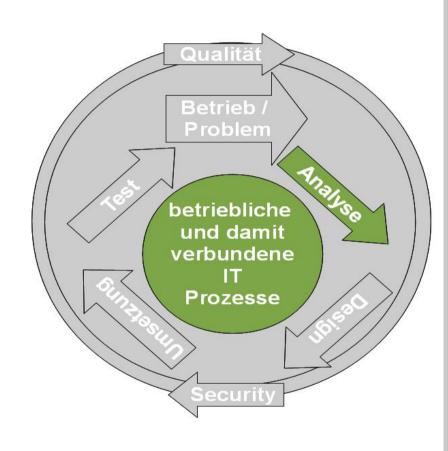
[R10] Thomas A. Runkler: **Data Mining: Methoden und Algorithmen Intelligenter Datenanalyse**, Vieweg+Teubner. 2010.

Unibibliothek: http://www.ub.tu-dortmund.de/katalog/titel/1294605

Kapitel 8



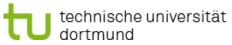
- Geschäftsprozessmodellierung
- Process-Mining
 - Einführung: Process-Mining
 - Petrinetze
 - Data-Mining
 - Datenbeschaffung
 - Prozessextraktion
 - Konformanzanalyse
 - Mining: Zusätzliche Perspektiven
 - Betriebsunterstützung
 - Werkzeugunterstützung
 - Analysiere "Lasagne Prozesse"
 - Analysiere "Spaghetti Prozesse"
 - Kartographie und Navigation
 - Epilog
- Modellbasierte Entwicklung sicherer Software



Einleitung Data-Mining

- Vorheriger Abschnitt: Verifikation von Petrinetzen und Einschränkungen modellbasierter Analyse.
- Dieser Abschnitt: "Data-Mining":
 - Datenbasierte Modellanalyse

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

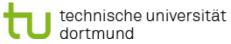


Process-Mining: Data-Mining auf Prozess-Daten.

→ Kurzer Hintergrund zu Data-Mining.

Vergleich Data-Mining vs. Process-Mining:

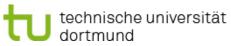
- Process-Mining: Ende-zu-Ende Prozesse.
- Data-Mining: Datenbasiert und nicht prozessbasiert.
- Qualität von Data-Mining und Process-Mining bewerten:
 viele Ähnlichkeiten, aber auch Unterschiede.
- Process-Mining-Techniken k\u00f6nnen Vorteile aus Erfahrungen im Bereich des Data-Mining ziehen.



drinker	smoker	weight	age
yes	yes	120	44
no	no	70	96
yes	no	72	88
yes	yes	55	52
no	yes	94	56
no	no	62	03
	• • •	iber 860 kürzlich vers iber Auswirkung von	
	Studie über Auswirkung von Alkoholkonsum, und Körpergewicht auf Lebenserwartung.		

Fragen:

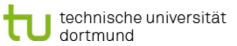
- Welchen Einfluss hat Rauchen und Trinken auf Körpergewicht?
- Trinken Leute, die rauchen, auch?
- Welche Faktoren beeinflussen Lebenserwartung am meisten?
- Gruppen mit ähnlichem Lebensstil identifizierbar?



linear algebra	logic	program- ming	operations research	workflow systems		duration	result
9	8	8	9	9		36	cum laude
7	6	-	8	8		42	passed
-	-	5	4	6		54	failed
8	6	6	6	5		38	passed
6	7	6	-	8		39	passed
9	9	9	9	8		38	cum laude
5	5	-	6	Daten übe	er 420 S	Studenten,	um
	•••		•••		•		rsnoten und r zu untersu

Fragen:

- Haben Noten bestimmter Kurse eine hohe Korrelation?
- Welche Wahl treffen Studenten mit Auszeichnung (cum laude)?
- Welche Kurse verzögern den Abschluss signifikant?
- Warum brechen Studenten ab?
- Gruppen mit ähnlichem Lernverhalten identifizierbar?



cappuccino	latte	espresso	americano	ristretto	tea	muffin	bagel
1	0	0	0	0	0	1	0
0	2	0	0	0	0	1	1
0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	1	2	0
0	0	0	1	1	0	0	0
		•••					

Daten über 240 Bestellungen in einem Café, aufgenommen von der Kasse.

Fragen:

- Welche Produkte werden häufig zusammen gekauft?
- Wann kaufen Kunden bestimmte Produkte?
- Gruppen typischer Kunden charakterisierbar?
- Wie fördert man Verkauf von Produkten mit hoher Gewinnmarge?

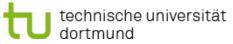


- Datensatz besteht aus Instanzen (Individuen, Entitäten, Fälle, Objekte oder Aufzeichnungen).
- Variablen: als Attribute, Features oder Datenelemente bezeichnet.

Zwei Typen:

- Kategorielle Variablen:
 - Ordinal (hoch mittel niedrig,
 mit Auszeichnung bestanden durchgefallen) oder
 - Nominal (true false, rot pink grün).
- Numerische Variablen (geordnet, können nicht einfach aufgezählt werden).

- Klassifizierte Daten (Labeled Data): Jede Instanz durch Response-Variable gekennzeichnet.
- **Ziel**: Erkläre Response-Variable (abhängige Variable) in Form von Predictor-Variablen (unabhängige Variable).
- Klassifikationstechniken (z.B.: Lernen mit Entscheidungsbäumen):
 Setzen kategorielle Response-Variablen voraus.
 Ziel: Instanzen anhand Predictor-Variablen klassifizieren.
- Regressionstechniken: Benötigen numerische Response-Variablen.
 Ziel: Zu Daten passende Funktion mit wenigsten Fehlern finden.

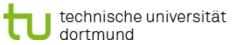


Nicht überwachtes Lernen

Nicht überwachtes Lernen verwendet unlabeled data.
 Variablen nicht in Response- und Predictor-Variablen unterteilt.

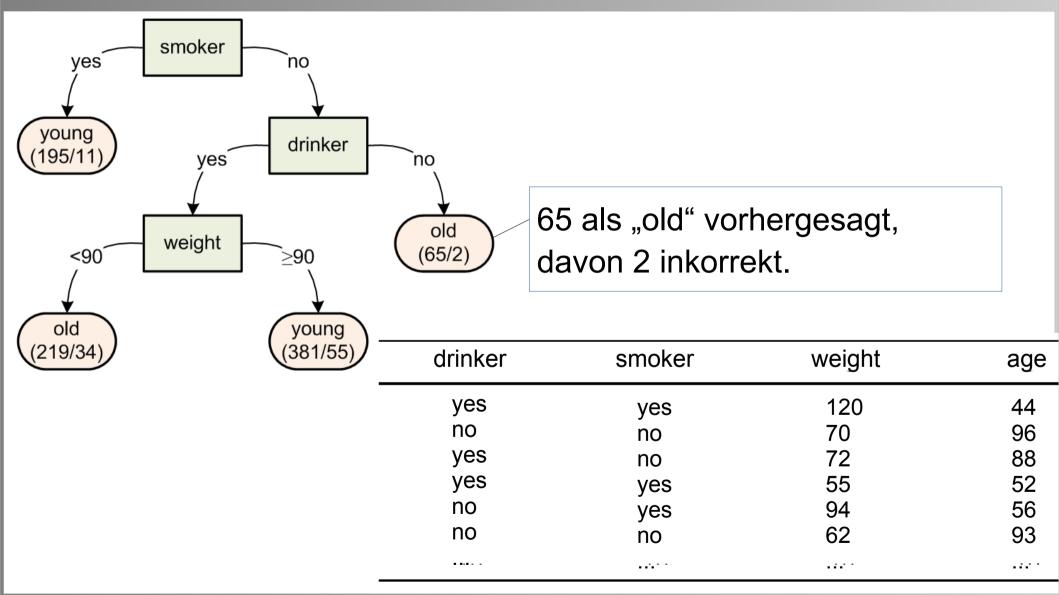
Beispiele:

- Clustering (z.B.: k-means clustering und agglomerative hierarchical clustering).
- Pattern discovery (association rules).



Entscheidungsbaum: Datensatz 1

Methodische Grundlagen des Software-Engineering SS 2014

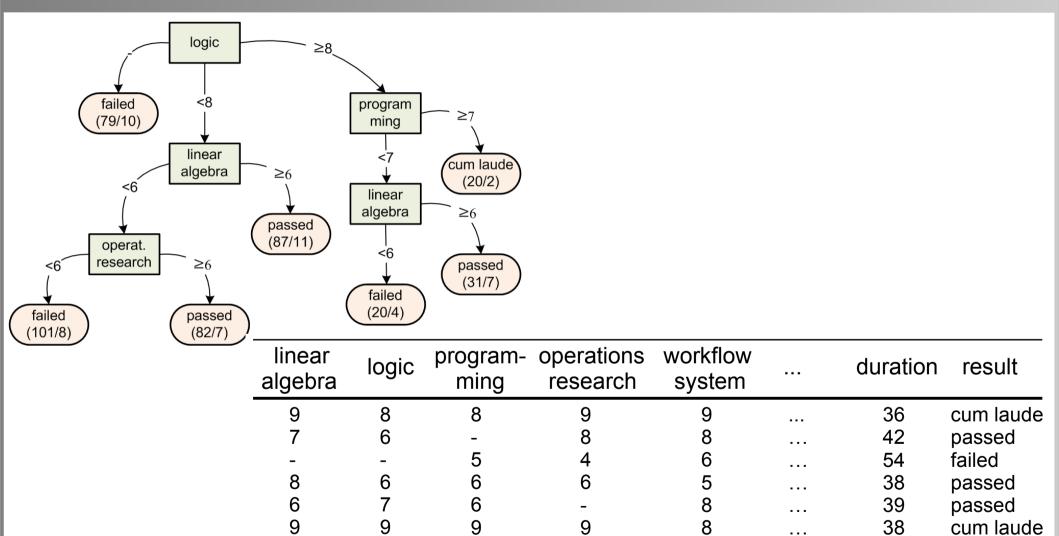


Entscheidungsbaum: Datensatz 2

5

5

Methodische Grundlagen des Software-Engineering SS 2014



14

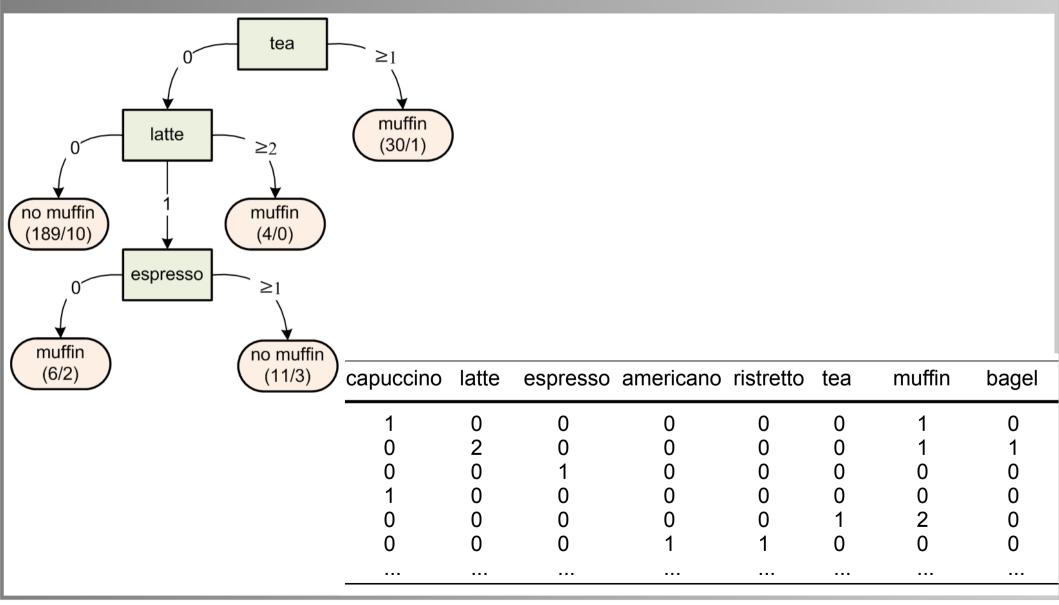
failed

52

. . .

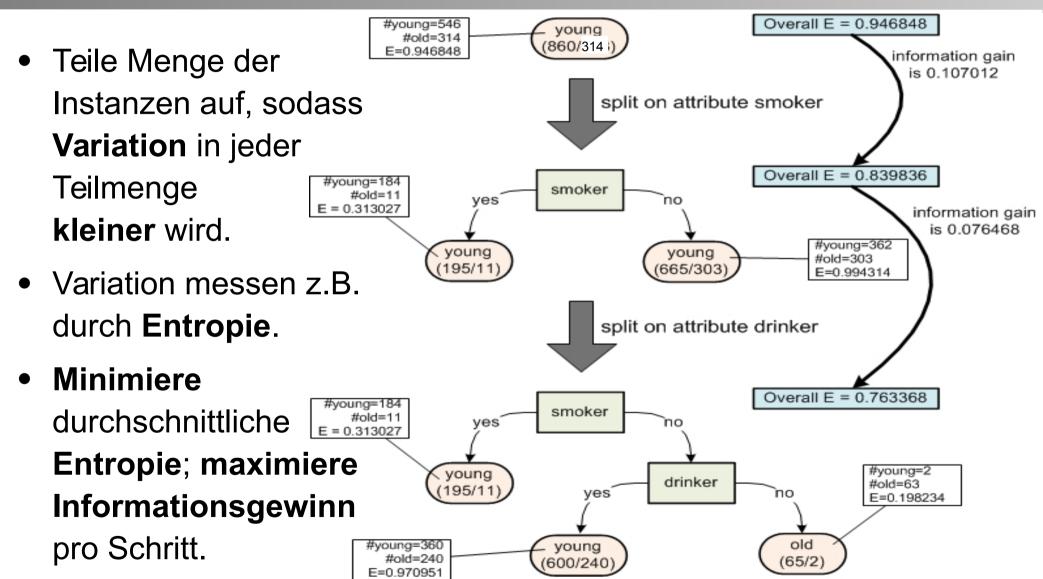
Entscheidungsbaum: Datensatz 3

Methodische Grundlagen des Software-Engineering SS 2014



Entscheidungsbaum generieren: Grundidee

Methodische Grundlagen des Software-Engineering SS 2014



Entropie *E*: **informationstheoretisches Maß** für "Chaos" in einer Multimenge:

- Benötigte Anzahl Bits zur **Kodierung** der Multimenge ($E \ge 0$).
- Häufiges Ziel: Minimierung von E anstreben.

Annahme: Element v_i in Multimenge c_i-mal enthalten; Multimenge hat n Elemente.

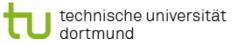
Einzelentropie: $-\log_2(p_i)$, wobei $p_i=c_i/n$.

Gesamt-Entropie: gewichtetes Mittel der Einzel-Entropien: $E = -\sum_{i=1}^{n} (p_i \log_2(p_i))$

Beispiel 1: Alle Elemente haben denselben Wert $(p_1=1) \rightarrow E = -\log_2 1 = 0$

Beispiel 2:

- 4 mögliche Elemente V = {a,b,c,d}
- Sequenz: bacaabadabadcaba...
- Relative Häufigkeiten: $p_1 = 0.5$; $p_2 = 0.25$; $p_3 = 0.125$; $p_4 = 0.125$
- E = 1.75



Iterative Dichotomiser 3 (ID3): Entscheidungsbaum generieren

Methodische Grundlagen des Software-Engineering SS 2014

Anwendung:

- Bei großer Datenmenge viele verschiedene Attribute von Bedeutung.
 - → Entscheidungsbaum ohne große Berechnungen generieren.

Algorithmus:

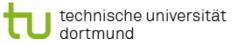
- Iterativ
- Benutzt Entropie zur Bestimmung von Baum-Knoten.
- Abbruch, falls jedem Blattknoten eine Klassifikation zugeordnet.

Eingabe:

 Menge zu klassifizierender Objekte, Wurzelknoten, Menge noch zu vergebener Merkmale

Ausgabe:

Struktur mit Tupeln (Entscheidungsbaum)



Iterative Dichotomiser 3 (ID3) Algorithmus: Informell

Methodische Grundlagen des Software-Engineering SS 2014

Aufruf von ID3 ausgehend von

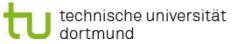
- Menge {1,...,n} der Indizes aller zu klassifizierender Objekte,
- Wurzelknoten des Entscheidungsbaums,
- Menge {1,...,p} aller noch zu vergebenden Merkmale.

Am aktuellen Knoten gehören alle Daten derselben Klasse → Abbruch!

Sonst:

- Erwarteten Informationsgewinn gi für jedes zu vergebendes Merkmal berechnen.
- Merkmal j bestimmen, der höchsten Informationsgewinn liefert.
- Anhand Werte des Gewinnermerkmals j Datensatz in disjunkte Teilmengen zerlegen.
- Für jede nichtleere Teilmenge neuen Knoten anhängen.
- Für jeden angehängten Knoten rekursiv zugehörigen Teilbaum berechnen.

Ausgabe: Entscheidungsbaum bzw. Struktur mit Tupeln



Iterative Dichotomiser 3 (ID3) Algorithmus: Pseudocode

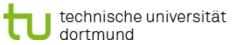
Methodische Grundlagen des Software-Engineering SS 2014

Gegeben:
$$X = \{x_1, ..., x_n\} \subset \{1, ..., v_1\} \times ... \times \{1, ..., v_p\}, \quad y = \{y_1, ..., y_n\} \subset \{1, ..., c\}$$

Aufrufen: $ID3(\{1,...,n\}, Wurzel, \{1,...,p\})$

Prozedur ID3(I,N,K)

- 1. Wenn alle *y(I)* gleich dann abbrechen
- 2. Berechne Informationsgewinn $g_j((X(I),y(I)))=E(X)-\sum_{j\in y}(\frac{|X_j|}{|X|})E(X_j)\forall j\in K$ X: Datensatz, E(X): Entropie im Datensatz, c: Klassifikation
 - X_j : Untermenge von X,|X|: Mächtigkeit von X, $|X_j|$: Mächtigkeit von X_j
- 3. Bestimme Gewinnermerkmal $i = argmax\{g_j((X(I), y(I)))\}$
- 4. Zerlege I in V_i disjunkte Teilmengen $I_i = \{k \in I | x_k^{(i)} = k\} j = 1, ..., V_i$
- 5. für *j* mit *l* _{*j*}≠{}
- Generiere neuen Knoten N_j und hänge ihn an N_j
- Aufrufen: $ID3(I_i, N_i, I \setminus \{i\})$



Bedingte Entropie:

 Maß über den Wert einer Zufallsvariable, welche verbleibt, nachdem das Ergebnis einer anderen Zufallsvariable bekannt wird.

$$H(C|A_t) = -\sum_{i=1}^{k_t} p_i \sum_{j=1}^{k} (\frac{X_{i,j}}{X_i}) \log_2(\frac{X_{i,j}}{X_i})$$

Größe:

	giftig	essbar
klein	1	2
groß	0	2

$$x_{klein} = 3$$
 $p_{klein} = \frac{3}{5} = 0.6$
 $x_{groß} = 2$ $p_{groß} = \frac{2}{5} = 0.4$

$$H(C|A_{Gr\"{o}Be}) = -\left[0.6\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) + 0.4\left(\frac{0}{2}\log_2\left(\frac{0}{2}\right) + \frac{2}{2}\log_2\frac{2}{2}\right)\right]$$

$$= -\left[0.4\left(-\log_2(3) + \frac{2}{3}\right) + 0\right] \approx \mathbf{0.4562}$$

Iterative Dichotomiser 3 (ID3) Beispiel (2)

Methodische Grundlagen des Software-Engineering SS 2014

Punkte:

	giftig	essbar
ja	1	1
nein	0	3

$$x_{ja}=2$$
 $p_{ja}=\frac{2}{5}=0.4$ $x_{nein}=3$ $p_{nein}=\frac{3}{5}=0.6$

$$H(C|A_{Punkte}) = -\left[0.4\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) + 0.6\left(\frac{0}{3}\log_2\frac{0}{3} + \frac{3}{3}\log_2\frac{3}{3}\right)\right] - \left[0.4\left(-1\right) + 0\right] = \mathbf{0.4}$$

- → Bedingte Entropie minimal für das Attribut Punkte.
- Entscheidungsbaum nach Rekursionsebene I:

Punkte					
	ja		nein		
Größe	Klasse	I	Größe	Klasse	
Oloise	Masse		Oloise	Masse	
klein	giftig		klein	essbar	
groß	essbar		klein	essbar	
			groß	essbar	

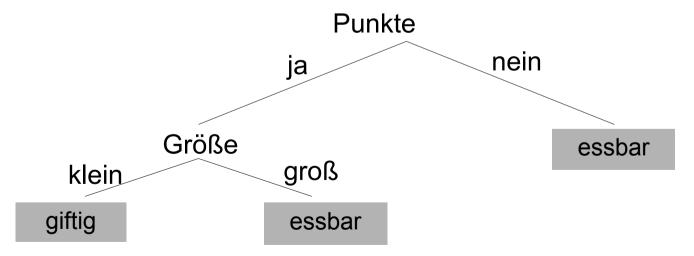
Iterative Dichotomiser 3 (ID3) Beispiel (3)

Methodische Grundlagen des Software-Engineering SS 2014

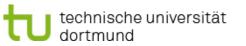
Rekursionsstufe II:

- Objektsammlung M_{nein} besteht aus 3 Beispielen, die alle in die Klasse der essbaren Pilze gehören. $\rightarrow M_{nein}$ trivial
- Objektsammlung M_{ja} trivial, der Entscheidungsbaum besteht nur aus Blättern mit Label giftig bzw. essbar.

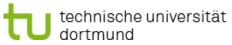
Entscheidungsbaum nach Rekursionsebene II:



http://www2.informatik.uni-hamburg.de/wsv/teaching/praktika/GwvPRAK WiSe10/aufg05 ID3 script.pdf

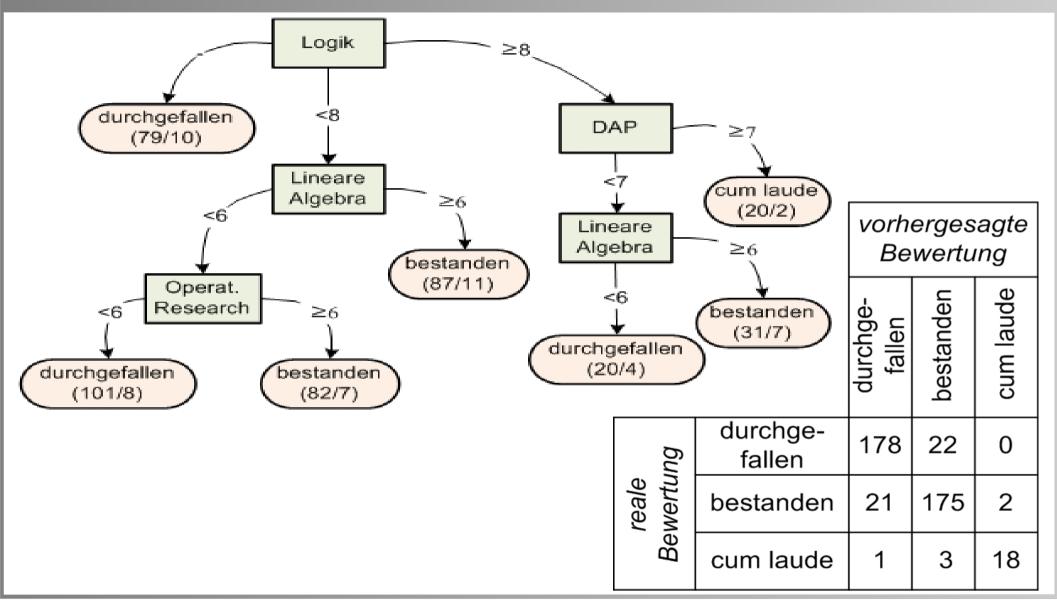


- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung



Konfusionsmatrix

Methodische Grundlagen des Software-Engineering SS 2014



Konfusionsmatrix: Metriken

Methodische Grundlagen des Software-Engineering SS 2014

Bsp. für 2 Klassen + und -		vorherg Kla		
		+	1	
reale <lasse< td=""><td>+</td><td>tp</td><td>fn</td><td>p</td></lasse<>	+	tp	fn	p
rea Kla	-	fp	tn	n
		p'	n'	N

Name	Formel
Error	(fp+fn)/N
accuracy	(tp+tn)/N
tp-Rate	tp/p
fp-Rate	fp/n
precision	tp/p'
recall	<i>tp/p</i> (= tp-Rate!)

tp: Anzahl true positives; korrekterweise als positiv klassifiziert.

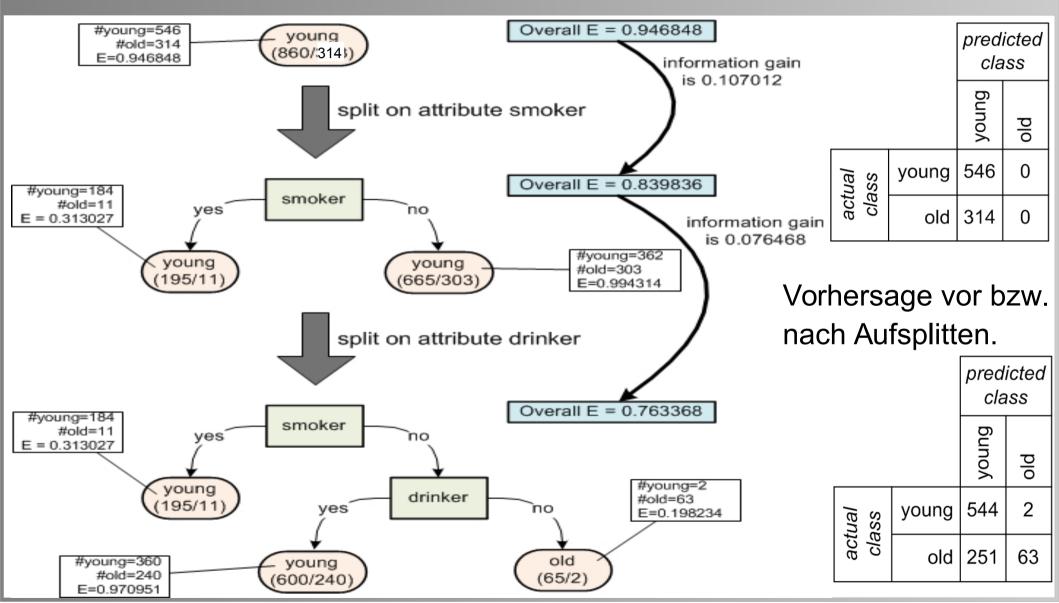
fn: Anzahl false negatives; als negativ klassifiziert, aber positiv.

fp: Anzahl false positives; als positiv klassifiziert, aber negativ.

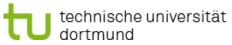
tn: Anzahl true negatives; korrekterweise als negativ klassifiziert.

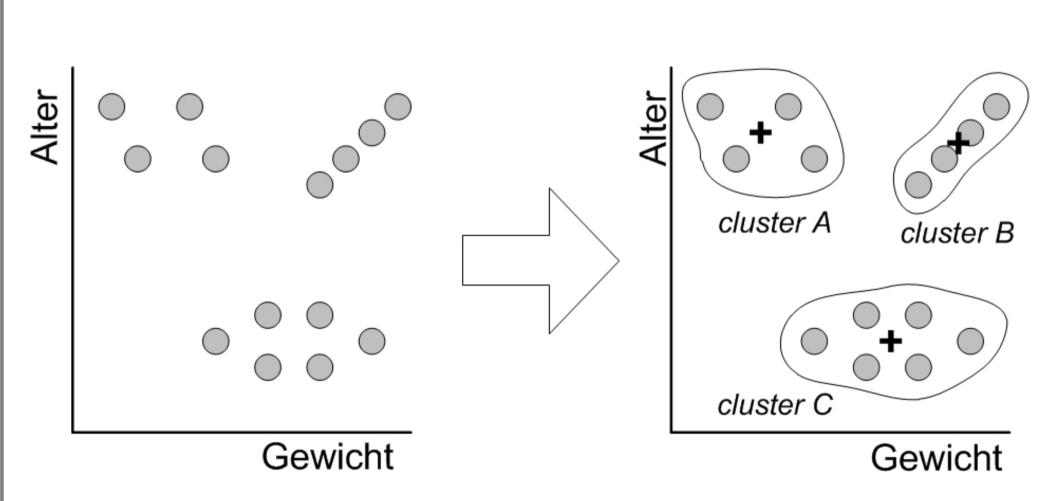
Konfusionsmatrix: Beispiel

Methodische Grundlagen des Software-Engineering SS 2014



- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung





+: Schwerpunkt eines Clusters

K-Means-Cluster-Analyse mittels Lloyd Algorithmus: Informell

Methodische Grundlagen des Software-Engineering SS 2014

Von Stuart P. Lloyd 1982 vorgestellt (benannt: k-Means).

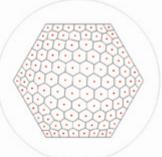
- Anzahl K zu ermittelnder Cluster vorher festlegen.
- Start (*i*=0): Positionen der **Clusterschwerpunkte** zufällig initialisieren.
- Objekte nächstgelegenen Schwerpunkten zuordnen. (*i*=1)
- Bei jeder Iteration i Schwerpunkt und nächstliegende Kandidaten neu berechnen.
- Dies Wiederholen bis **Summe quadratischer Distanz** einzelner Objekte zu ihrem jeweiligen Clusterschwerpunkt über alle Cluster ein **Minimum** erreicht.
 - → Mathematische Darstellung: $J = \sum_{n=1}^{N} \sum_{k=1}^{N} \| \overrightarrow{x_n} \overrightarrow{\mu_k} \|^2$
- $\overrightarrow{x_n}$ Datensätze und $\overrightarrow{\mu_k}$ Schwerpunkte der Cluster.
- Entscheidungskriterium für Cluster-Zugehörigkeit der Testobjekte:
 Abstände der Testvektoren von Clusterschwerpunkten.

k-Means-Cluster-Analyse mittels Lloyd Algorithmus: Pseudocode

Methodische Grundlagen des Software-Engineering SS 2014

k-Means(P, k):

- 1: Wähle Punkte $C = \{c_1, \dots, c_k\}$ zufällig gleichverteilt
- 2: repeat
- 3: Assoziiere jeden Punkt aus P mit dem Zentrumspunkt c_j mit dem geringsten Abstand, um eine Partitionierung P_1, P_2, \ldots, P_k zu erhalten
- 4: Berechne für jede Teilmenge P_j den Zentroid und verwende diese Menge von Zentroiden als neue Menge von Zentrumspunkt en
- until Menge der Zentrumspunkte ändert sich nicht mehr
- Beginn mit zufälligen Zentrumspunkten.
- Zur Verringerung der Gesamtfehler der Approximation neue Punkte in 3. und 4. wählen.

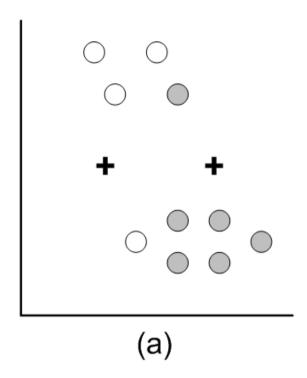


Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129-136, 1982.

k-Means-Cluster-Analyse Beispiel

Methodische Grundlagen des Software-Engineering SS 2014

k-Means-Clustering: Anzahl *k* von Clustern a-priori festgelegt.



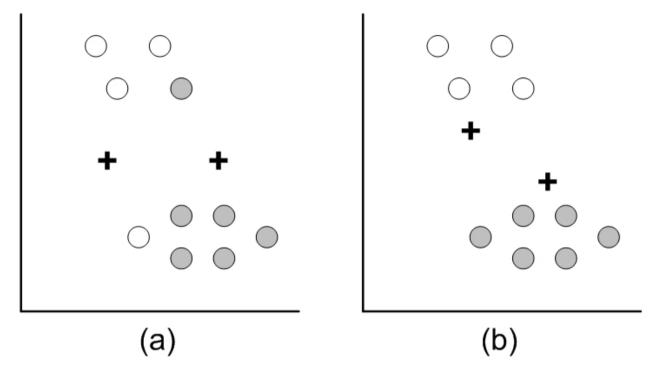
k-Means-Algorithmus veranschaulicht für *k*=2:

(a) "Schwerpunkte" zufällig setzen; Punkte nächstgelegenen Schwerpunkten zuordnen.

k-Means-Cluster-Analyse Beispiel

Methodische Grundlagen des Software-Engineering SS 2014

k-Means-Clustering: Anzahl *k* von Clustern a-priori festgelegt.



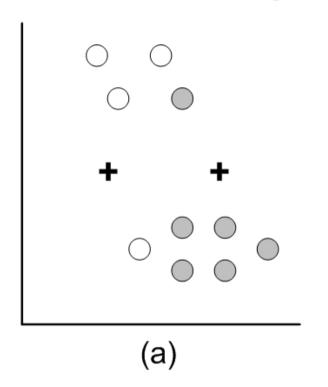
k-Means-Algorithmus veranschaulicht für k=2:

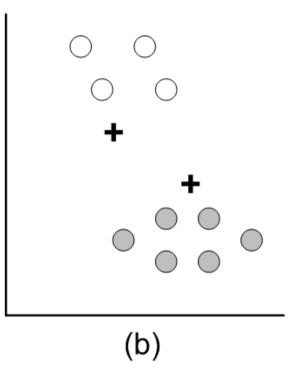
- (a) "Schwerpunkte" zufällig setzen; Punkte nächstgelegenen Schwerpunkten zuordnen.
- (b) Schwerpunkte neu berechnen und Punkte neu zuordnen.

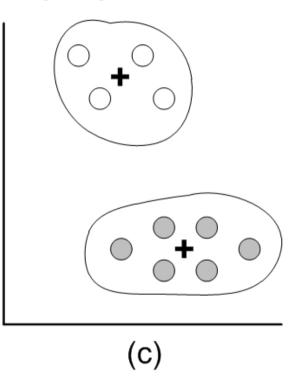
k-Means-Cluster-Analyse Beispiel

Methodische Grundlagen des Software-Engineering SS 2014

k-Means-Clustering: Anzahl *k* von Clustern a-priori festgelegt.

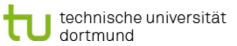






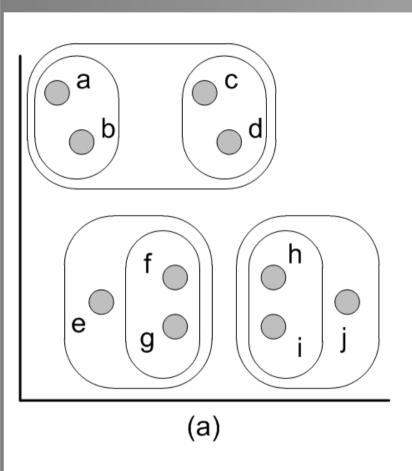
k-Means-Algorithmus veranschaulicht für k=2:

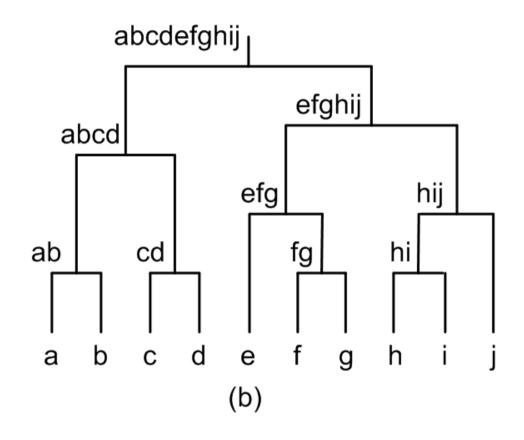
- (a) "Schwerpunkte" zufällig setzen; Punkte nächstgelegenen Schwerpunkten zuordnen.
- (b) Schwerpunkte neu berechnen und Punkte neu zuordnen.
- (c) Fixpunkt erreicht.



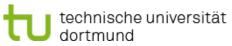
Agglomerative Hierarchische Cluster-Analyse

Methodische Grundlagen des Software-Engineering SS 2014



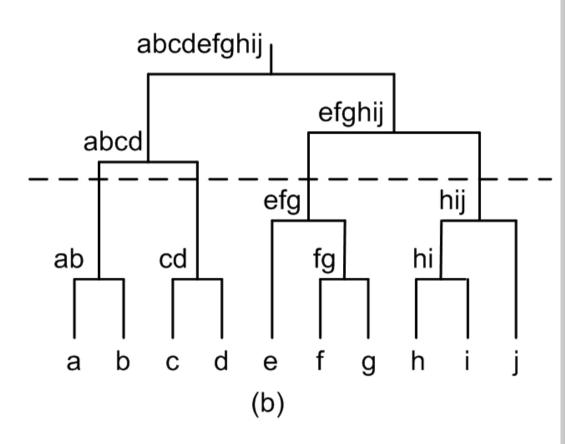


- (a) Agglomerative hierarchische Cluster-Analyse: Bottom-up-Vorgehen.
- (b) Visualisierung durch Dendrogramm.

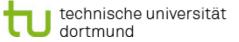


Ebenen bei Agglomerativer Hierarchischer Cluster-Analyse

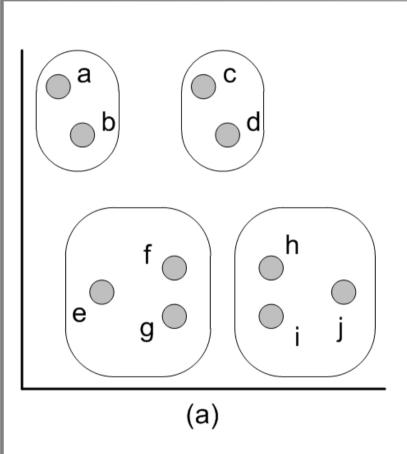
Methodische Grundlagen des Software-Engineering SS 2014

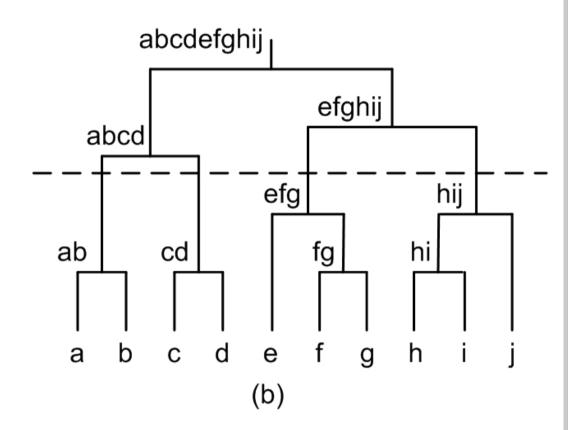


(b) **Horizontale Linie** in Dendrogramm korrespondiert zu konkretem Clustering auf bestimmter **Abstraktionsebene**.

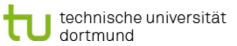


Ebenen bei Agglomerativer Hierarchischer Cluster-Analyse





- (b) Horizontale Linie in Dendrogramm korrespondiert zu konkretem Clustering auf bestimmter Abstraktionsebene.
- (a) Aus dem Dendrogramm resultierende Cluster.



- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

Ziel: Regeln der Form "IF X THEN Y" lernen: $X \Rightarrow Y$

Definiere Maße für Relevanz / Gültigkeit / Aussagekraft der Regel:

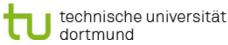
$$support(X \Rightarrow Y) = N_{X \land Y}/N$$

$$confidence(X \Rightarrow Y) = N_{X \land Y}/N_X$$

$$lift(X \Rightarrow Y) = \frac{N_{X \land Y}/N}{(N_X/N)(N_Y/N)} = \frac{N_{X \land Y} N}{N_X N_Y}$$

 $(N_{\downarrow}$: Anzahl Datensätze, die alle Eigenschaften in X erfüllen).

Welche Bedeutung könnten hohe / niedrige Werte haben ?



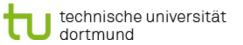
Assoziationsregel-Lernen: Maße und Bedeutung

$$support(X \Rightarrow Y) = N_{X \land Y}/N$$

$$confidence(X \Rightarrow Y) = N_{X \land Y}/N_X$$

$$lift(X \Rightarrow Y) = \frac{N_{X \land Y}/N}{(N_X/N)(N_Y/N)} = \frac{N_{X \land Y}N}{N_X N_Y}$$

- **Support**: So hoch wie möglich (oft niedrig). Niedriger Support: relativ geringe Fallzahl, evtl. "zufällig" geltende Regel.
- Confidence: Immer <=1 (da X[↑]Y => X). Möglichst nahe an 1.
- Lift:
 - Hoch: positive Korrelation.
 - Niedrig: negative Korrelation.
 - **Nahe 1**: Unabhängigkeit (bei probabilistisch unabhängigen Ereignissen X, Y gilt $p(X^{\setminus}Y)=p(X)*p(Y)$).



Beispiel: Einkaufswagen-Analyse

Methodische Grundlagen des Software-Engineering SS 2014

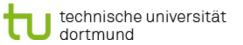
cappuccino	latte	espresso	americano	ristretto	tea	muffin	bagel
1	0	0	0	0	0	1	0
0	2	0	0	0	0	1	1
0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	1	2	0
0	0	0	1	1	0	0	0
					• • •		• • •

Zwei Beispiel-Hypothesen:

 $tea \land latte \Rightarrow muffin$

 $tea \Rightarrow muffin \land bagel$

→ Leute, die *tea* und *latte* bestellen, bestellen auch *muffins*.



41

$$tea \land latte \Rightarrow muffin, d.h.: X = tea \land latte \text{ und } Y = muffin$$

$$support(X \Rightarrow Y) = N_{X \land Y}/N = N_{tea \land latte \land muffin}/N = 15/240 = 0.0625$$

$$confidence(X \Rightarrow Y) = N_{X \land Y}/N_X = N_{tea \land latte \land muffin}/N_{tea \land latte} = 15/20 = 0.75$$

$$lift(X \Rightarrow Y) = \frac{N_{X \land Y} N}{N_X N_Y} = \frac{N_{tea \land latte \land muffin} N}{N_{tea \land latte} N_{muffin}} = \frac{15 \times 240}{20 \times 40} = 4.5$$

Definition: Für gegebenen *support*-Schwellwert *minsup*: Menge Z heißt *frequent item-set*, wenn $N_{_{7}}$ / $N \ge minsup$.

Assoziationsregeln wie folgt generierbar:

- 1) Generiere *frequent item-sets*: alle Mengen Z sodass N_Z/N größer als gegebener Schwellwert für *support* und |Z| >= 2.
- 2) Für jedes *frequent item-set Z* betrachte Partition in nicht-leere Teilmengen *X*, *Y*.
 - Behalte Regeln *X* => *Y*, für die *confidence* gegebenen Schwellwert überschreitet oder gleich ist.

Beobachtung:

Unter welcher Voraussetzung ist **Teilmenge** einer *frequent item-set* ebenfalls eine *frequent item-set* ?

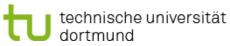
Beobachtung: Jede nicht-leere Teilmenge einer frequent item-set ist ebenfalls frequent: Durch Teilmengen-Bildung kann sich Menge der zu erfüllenden Eigenschaften allenfalls verringern (nicht vergrößern), daher kann sich der support allenfalls vergrößern (nicht verringern), da es einfacher wird, alle Eigenschaften zu erfüllen.

- 1. If an item-set is *frequent* (i.e., an item-set with a support above the threshold), then all of its non-empty subsets are also frequent. Formally, for any pair of non-empty item-sets X, Y: if $Y \subseteq X$ and $N_X/N \ge minsup$, then $N_Y/N \ge minsup$.
- 2. If, for any k, I_k is the set of all frequent item-sets with cardinality k and $I_l = \emptyset$ for some l, then $I_k = \emptyset$ for all $k \ge l$.
- → Maximale frequent item-sets ausgehend von 1-elementigen frequent item-sets generierbar.

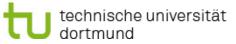
45

Optimierte Generierung von frequent item-sets mit o.g. Idee

- 1. Create I_1 . This is the set of singleton frequent item-sets, i.e., item-sets with a support above the threshold *minsup* containing just one element.
- 2. k := 1
- 3. If $I_k = \emptyset$, then output $\bigcup_{i=1}^k I_i$ and end. If $I_k \neq \emptyset$, continue with the next step.
- 4. Create C_{k+1} from I_k . C_{k+1} is the candidate set containing item-sets of cardinality k+1. Note that one only needs to consider elements that are the union of two item-sets A and B in I_k such that $|A \cap B| = k-1$ and $|A \cup B| = k+1$. (wg. o.g. Beobachtung)
- 5. For each candidate frequent item-set $c \in C_{k+1}$: examine all subsets of c with k elements; delete c from C_{k+1} if any of the subsets is not a member of I_k . (wg. o.g. Beobachtung)
- 6. For each item-set c in the pruned candidate frequent item-set C_{k+1} , check whether c is indeed frequent. If so, add c to I_{k+1} . Otherwise, discard c.
- 7. k := k + 1 and return to Step 3.



- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

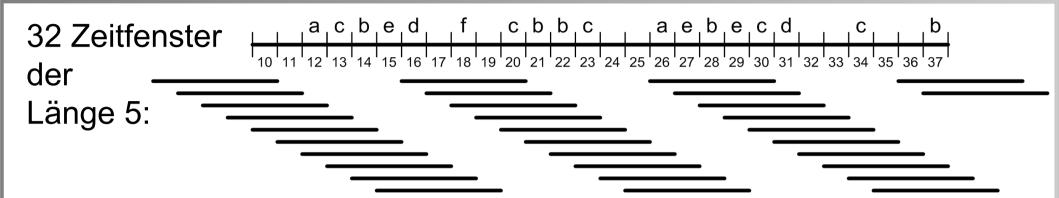


-	customer seq. number		timestamp	items	
_		1	02-01-2011:09.02	{cappuccino}	
	Wil	2	03-01-2011:10.06	$\{espresso, muffin\}$	
		3	05-01-2011:15.12	{americano,cappuccino}	
Sequence-		4	06-01-2011:11.18	$\{espresso, muffin\}$	
•		5	07-01-2011:14.24	$\{cappuccino\}$	
Min	iing	6	07-01-2011:14.24	{americano, cappuccino}	
_		1	30-12-2010:11.32	{tea}	
	Mary	2	30-12-2010:12.12	$\{cappuccino\}$	
		3	30-12-2010:14.16	$\{espresso, muffin\}$	
		4	05-01-2011:11.22	$\{bagel, tea\}$	
_		1	30-12-2010:14.32	{cappuccino}	
	Bill	2	30-12-2010:15.06	$\{cappuccino\}$	
		3	30-12-2010:16.34	$\{bagel, espresso, muffin\}$	
		4	06-01-2011:09.18	$\{ristretto\}$	
		5	06-01-2011:12.18	$\{cappuccino\}$	

 $X = \langle \{cappuccino\}, \{espresso\} \rangle$ $Y = \langle \{cappuccino\}, \{espresso\}, \{latte, muffin\} \rangle$

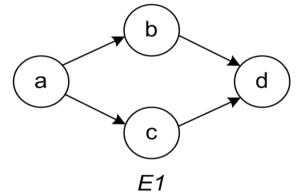
Episode-Mining

Methodische Grundlagen des Software-Engineering SS 2014



"Episode": Prozessmodell-Fragment.

3 Beispiele:



(b)

F2

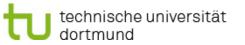
C

a

E3

(weitere sind möglich, z.B. unter Verwendung von e,f).

Wie oft treten diese Episoden hier auf (d.h. wie oft gibt es vollständigen Ablauf eines Modells in Zeitfenster der Länge 5)?

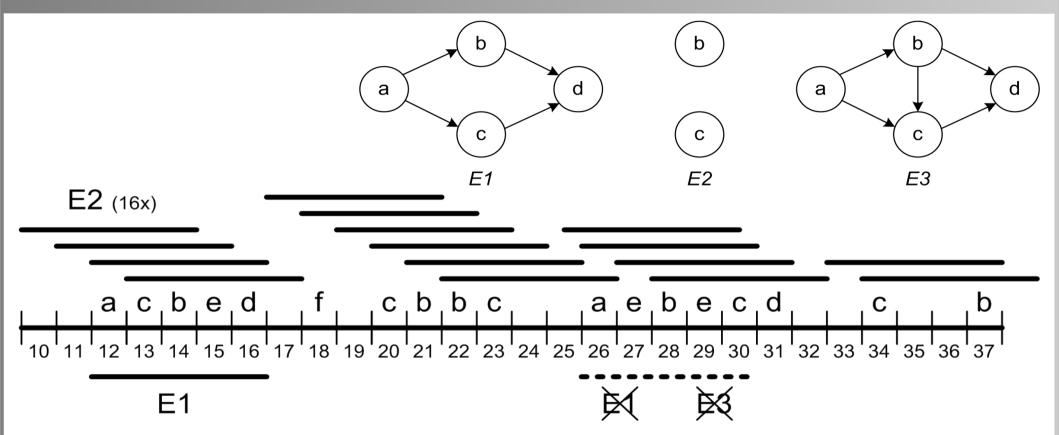


49

d

Auftritte von Episoden

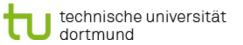
Methodische Grundlagen des Software-Engineering SS 2014



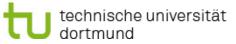
16 Auftritte von E2 (b, c in beliebiger Reihenfolge).

Davon 1 Auftritt von E1: *E2* => *E1* hat *confidence* 1/16.

Weitere Auftritte von E1 und E3 bei Fenstergröße 6.



- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung



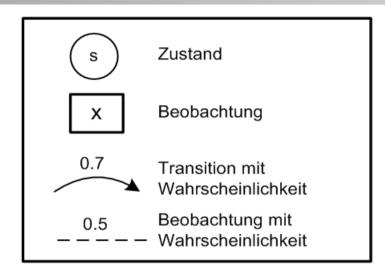
Hidden-Markov-Modell

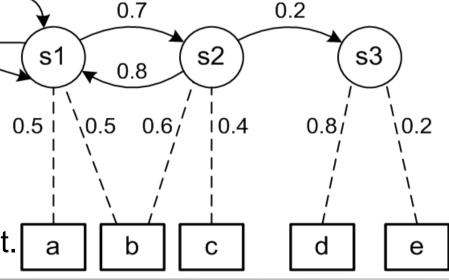
Methodische Grundlagen des Software-Engineering SS 2014

- 1) Wahrscheinlichkeit der Sequenz berechnen (gegeben Beobachtungssequenz und Hidden-Markov-Modell).
- 2) Gegeben Beobachtungssequenz und Hidden-Markov-Modell, wahrscheinlichsten "hidden path" im Modell berechnen (= interne Zustandsfolge; kann 0.3

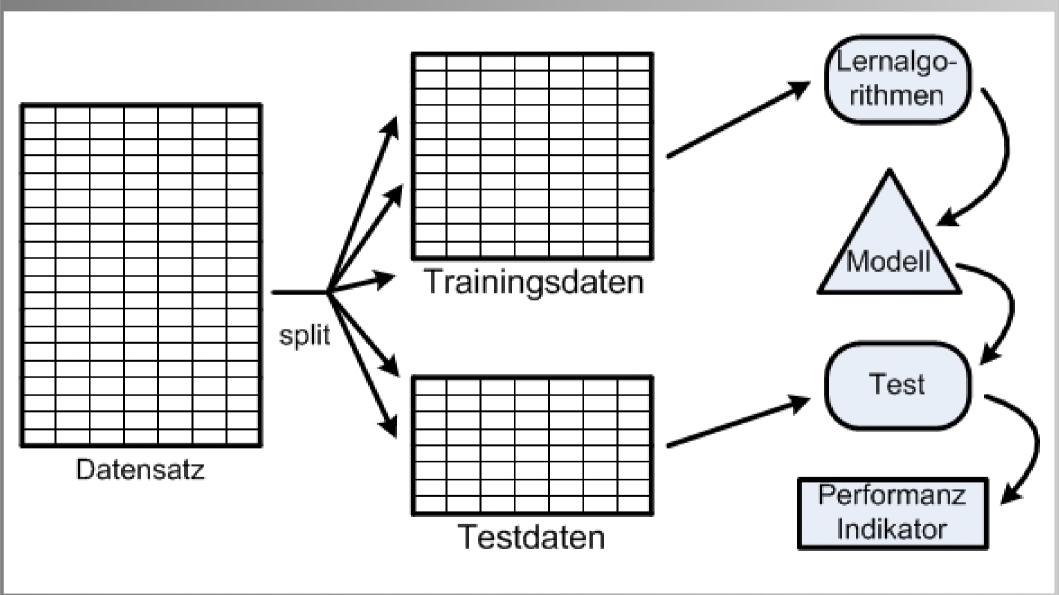
(= interne Zustandsfolge; kann zur z.T. beobachtet werden).

3) Bei gegebener Beobachtungssequenz **Hidden-Markov-Modell**ableiten, welches mit max.
Wahrscheinlichkeit Sequenzen erzeugt.

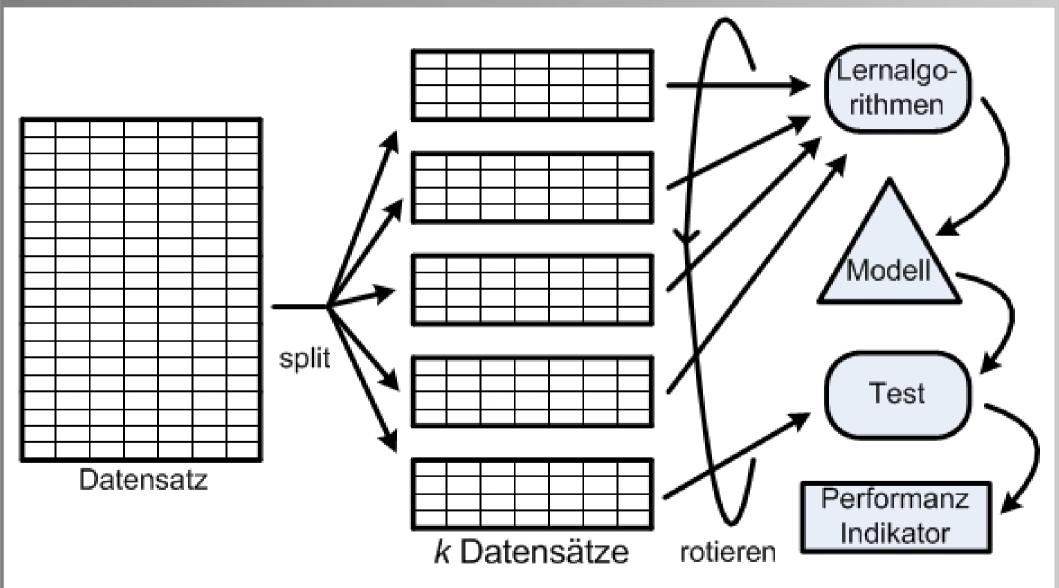




Qualitätsbewertung von Lernalgorithmen: Cross-Validierung



Verlässlichere Qualitätsbewertung: k-fache Cross-Validierung



In diesem Abschnitt:

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen.
- Konfusionsmatrix.
- Cluster-Analyse.
- Assoziationsregel-Lernen.
- Sequence- und Episode-Mining.
- Hidden-Markov-Modell und Validierung.

Im nächsten Abschnitt:

Datenbeschaffung.

