Vorlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2014

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

Teil 2.2: Data-Mining

v. 23.05.2014

2.2 Data-Mining

[mit freundlicher Genehmigung basierend auf einem englischen Foliensatz von Prof. Dr. Wil van der Aalst (TU Eindhoven)]

Literatur:

[vdA11] Wil van der Aalst: **Process Mining: Discovery, Conformance and Enhancement of Business Processes**, Springer-Verlag. 2011.

Unibibliothek (6 Exemplare): http://www.ub.tu-dortmund.de/katalog/titel/1332248 (Bei Engpässen kann eine **Kopiervorlage** der relevanten Ausschnitte zur Verfügung gestellt werden.)

• Kapitel 3

[R10] Thomas A. Runkler: **Data Mining: Methoden und Algorithmen Intelligenter Datenanalyse**, Vieweg+Teubner. 2010.

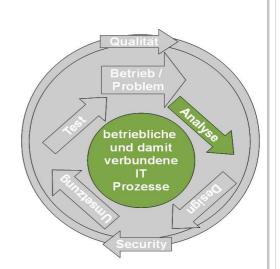
Unibibliothek: http://www.ub.tu-dortmund.de/katalog/titel/1294605

Kapitel 8

Einordnung 2.2: Data-Mining

Methodische Grundlagen des Software-Engineering SS 2014

- Geschäftsprozessmodellierung
- Process-Mining
 - Einführung: Process-Mining
 - Petrinetze
 - Data-Mining
 - Datenbeschaffung
 - Prozessextraktion
 - Konformanzanalyse
 - Mining: Zusätzliche Perspektiven
 - Betriebsunterstützung
 - Werkzeugunterstützung
 - Analysiere "Lasagne Prozesse"
 - Analysiere "Spaghetti Prozesse"
 - Kartographie und Navigation
 - Epilog
- Modellbasierte Entwicklung sicherer Software



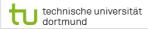
3 fakultät für informatik

Einleitung Data-Mining

- **Vorheriger Abschnitt:** Verifikation von Petrinetzen und Einschränkungen modellbasierter Analyse.
- Dieser Abschnitt: "Data-Mining":
 - Datenbasierte Modellanalyse

Überblick Data-Mining

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung



5 fakultät für informatik

Data-Mining vs. Process-Mining

Process-Mining: Data-Mining auf Prozess-Daten.

→ Kurzer Hintergrund zu Data-Mining.

Vergleich Data-Mining vs. Process-Mining:

- **Process-Mining**: Ende-zu-Ende Prozesse.
- Data-Mining: Datenbasiert und nicht prozessbasiert.
- **Qualität** von Data-Mining und Process-Mining bewerten: viele Ähnlichkeiten, aber auch Unterschiede.
- Process-Mining-Techniken können Vorteile aus Erfahrungen im Bereich des Data-Mining ziehen.



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kapitel 3: Seite 59 1. Abschnitt

Datensatz 1

Methodische Grundlagen des Software-Engineering SS 2014

drinker	smoker	weight	age	
yes	yes	120	44	
no	no	70	96	
yes	no	72	88	
yes	yes	55	52	
no	yes	94	56	
no	no Daton ii	hor 960 kürzlich vor	oz Storbono Porconon	
	Studie i	 Daten über 860 kürzlich verstorbene Personen. Studie über Auswirkung von Alkoholkonsum, Raucher und Körpergewicht auf Lebenserwartung. 		

Fragen:

- Welchen Einfluss hat Rauchen und Trinken auf Körpergewicht?
- Trinken Leute, die rauchen, auch?
- Welche Faktoren beeinflussen Lebenserwartung am meisten?
- Gruppen mit ähnlichem Lebensstil identifizierbar?



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3.1: Seite 60

Datensatz 2

linear algebra	logic	program- ming	operations research	workflow systems		duration	result
9	8	8	9	9		36	cum laude
7	6	-	8	8		42	passed
-	-	5	4	6		54	failed
8	6	6	6	5		38	passed
6	7	6	-	8		39	passed
9	9	9	9	8		38	cum laude
5	5	-	6	Daten übe	er 420 S	tudenten,	um
					•	ischen Kur	
Eragen				Gesamtle	istung ir	n Bacheloi	r zu unters

Fragen:

- Haben Noten bestimmter Kurse eine hohe Korrelation?
- Welche Wahl treffen Studenten mit Auszeichnung (cum laude)?
- Welche Kurse verzögern den Abschluss signifikant?
- Warum brechen Studenten ab?
- Gruppen mit ähnlichem Lernverhalten identifizierbar?

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3:1: Abbildung: Seite 60, Fragen Seite 61

Datensatz 3

cappuccino	latte	espresso	americano	ristretto	tea	muffin	bagel
1	0	0	0	0	0	1	0
0	2	0	0	0	0	1	1
0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	1	2	0
0	0	0	1	1	0	0	0

Daten über 240 Bestellungen in einem Café, aufgenommen von der Kasse.

Fragen:

- Welche Produkte werden häufig zusammen gekauft?
- Wann kaufen Kunden bestimmte Produkte?
- Gruppen typischer Kunden charakterisierbar?
- Wie fördert man Verkauf von Produkten mit hoher Gewinnmarge?

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3.1: Abbildung & Fragen Seite 61

Variablen

- Datensatz besteht aus **Instanzen** (Individuen, Entitäten, Fälle, Objekte oder Aufzeichnungen).
- Variablen: als Attribute, Features oder Datenelemente bezeichnet.

Zwei Typen:

- Kategorielle Variablen:
 - Ordinal (hoch mittel niedrig,
 mit Auszeichnung bestanden durchgefallen) oder
 - **Nominal** (true false, rot pink grün).
- Numerische Variablen (geordnet, können nicht einfach aufgezählt werden).



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kapitel 3.1: Seite 61 letzter Abschnitt nach Fragen – Seite 62 1. Abschnitt

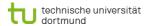
Überwachtes Lernen

- Klassifizierte Daten (Labeled Data): Jede Instanz durch Response-Variable gekennzeichnet.
- **Ziel**: Erkläre Response-Variable (abhängige Variable) in Form von Predictor-Variablen (unabhängige Variable).
- Klassifikationstechniken (z.B.: Lernen mit Entscheidungsbäumen): Setzen kategorielle Response-Variablen voraus.

Ziel: Instanzen anhand Predictor-Variablen klassifizieren.

• Regressionstechniken: Benötigen numerische Response-Variablen.

Ziel: Zu Daten passende Funktion mit wenigsten Fehlern finden.



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kapitel 3.1: Seite 61 Letzter Abschnitt - Seite 64
 1. Abschnitt

Nicht überwachtes Lernen

• Nicht überwachtes Lernen verwendet unlabeled data. Variablen nicht in Response- und Predictor-Variablen unterteilt.

Beispiele:

- Clustering (z.B.: k-means clustering und agglomerative hierarchical clustering).
- Pattern discovery (association rules).

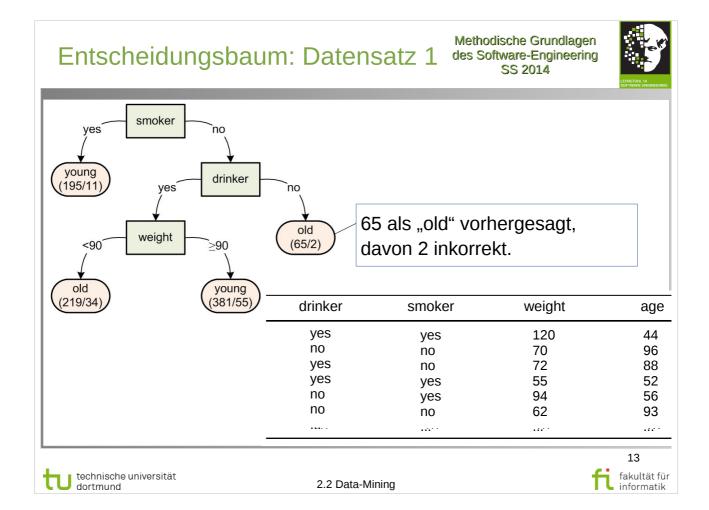


2.2 Data-Mining

Literatur:

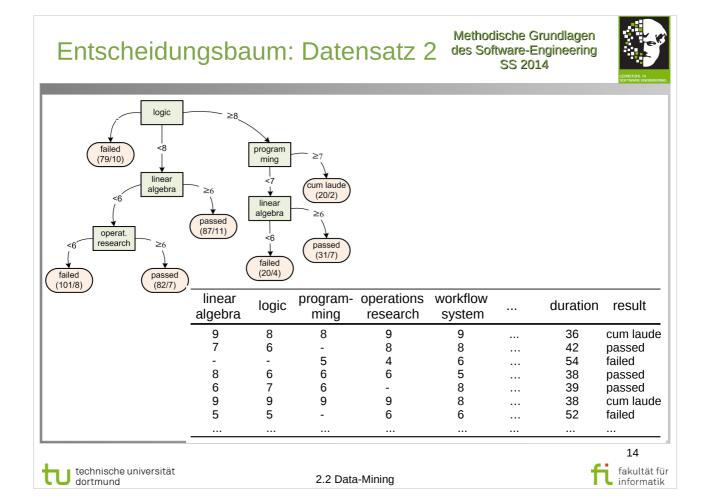
Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kapitel 3.1: Seite 64 Abschnitt "Unsupervised Learning"



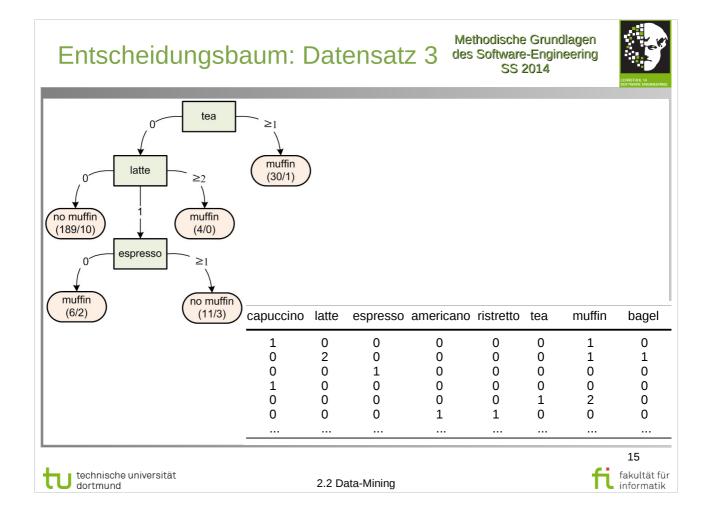
Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3.1: Seite 65



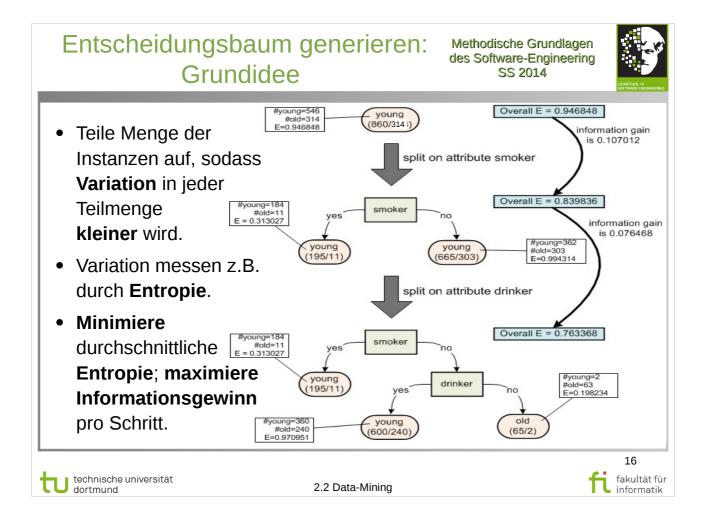
Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kapitel 3.2: Obige Abbildung Seite 66, untere Abbildung Seite 60



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kapitel 3.2: Obige Abbildung Seite 66, untere Abbildung Seite 61



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3.2: Seite 68 letzter Abschnitt – Seite 70

Entropie

Methodische Grundlagen des Software-Engineering SS 2014

Entropie E: informationstheoretisches Maß für "Chaos" in einer Multimenge:

- Benötigte Anzahl Bits zur **Kodierung** der Multimenge (*E* >= 0).
- Häufiges Ziel: Minimierung von *E* anstreben.

Annahme: Element v_i in Multimenge c_i -mal enthalten; Multimenge hat n Elemente.

Einzelentropie: $-\log_2(p_i)$, wobei $p_i=c_i/n$.

Gesamt-Entropie: gewichtetes Mittel der Einzel-Entropien: $E = -\sum_{i=1}^{K} (p_i \log_2(p_i))$

Beispiel 1: Alle Elemente haben denselben Wert $(p_1=1) \rightarrow E = -\log_2 1 = 0$

- Beispiel 2:
- 4 mögliche Elemente V = {a,b,c,d}
- Sequenz: bacaabadabadcaba...
- Relative Häufigkeiten: $p_1 = 0.5$; $p_2 = 0.25$; $p_3 = 0.125$; $p_4 = 0.125$
- E = 1.75

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kapitel 3.2: Seite 67-68

Iterative Dichotomiser 3 (ID3): Entscheidungsbaum generieren

Methodische Grundlagen des Software-Engineering SS 2014

Anwendung:

- Bei großer Datenmenge viele verschiedene Attribute von Bedeutung.
 - → Entscheidungsbaum ohne große Berechnungen generieren.

Algorithmus:

- Iterativ
- Benutzt Entropie zur Bestimmung von Baum-Knoten.
- Abbruch, falls jedem Blattknoten eine Klassifikation zugeordnet.

Eingabe:

• Menge zu klassifizierender Objekte, Wurzelknoten, Menge noch zu vergebener Merkmale

Ausgabe:

Struktur mit Tupeln (Entscheidungsbaum)

technische universität dortmund

2.2 Data-Mining

Literatur:

- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)

Iterative Dichotomiser 3 (ID3) Algorithmus: Informell

Methodische Grundlagen des Software-Engineering SS 2014

Aufruf von ID3 ausgehend von

- Menge {1,...,n} der Indizes aller zu klassifizierender Objekte,
- Wurzelknoten des Entscheidungsbaums,
- Menge {1,...,p} aller noch zu vergebenden Merkmale.

Am aktuellen Knoten gehören **alle Daten derselben Klasse** → **Abbruch!** Sonst:

- Erwarteten **Informationsgewinn** *gi* für jedes zu vergebendes Merkmal berechnen.
- Merkmal j bestimmen, der höchsten Informationsgewinn liefert.
- Anhand Werte des **Gewinnermerkmals** *j* Datensatz in **disjunkte Teilmengen** zerlegen.
- Für jede nichtleere Teilmenge neuen Knoten anhängen.
- Für jeden angehängten Knoten rekursiv zugehörigen Teilbaum berechnen.

Ausgabe: Entscheidungsbaum bzw. Struktur mit Tupeln

2.2 Data-Mining

Literatur:

- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)

Iterative Dichotomiser 3 (ID3) Algorithmus: Pseudocode

Gegeben: $X = \{x_1, ..., x_n\} \subset \{1, ..., v_1\} \times ... \times \{1, ..., v_n\}, \quad y = \{y_1, ..., y_n\} \subset \{1, ..., c\}$

Aufrufen: $ID3(\{1,...,n\}, Wurzel, \{1,...,p\})$

Prozedur ID3(I,N,K)

1. Wenn alle y(l) gleich dann abbrechen

2. Berechne Informationsgewinn $g_j((X(I),y(I)))=E(X)-\sum_{i\in v}(\frac{|X_j|}{|X|})E(X_j)\forall j\in K$

X: Datensatz, E(X): Entropie im Datensatz, c: Klassifikation X_i : Untermenge von X, |X|: Mächtigkeit von X, |X|: Mächtigkeit von X_i

3. Bestimme Gewinnermerkmal $i = argmax \{g_i((X(I), y(I)))\}$

4. Zerlege I in V_i disjunkte Teilmengen

$$I_i = \{k \in I | x_k^{(i)} = k\} j = 1,..., v_i$$

5. für j mit $I_i \neq \{\}$

- Generiere neuen Knoten N_i und hänge ihn an N

Aufrufen: $ID3(I_i, N_i, I \setminus \{i\})$

2.2 Data-Mining

Literatur:

- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)
- Besonders Abb. 8.7 (S.103)

Iterative Dichotomiser 3 (ID3) Beispiel (1)

Bedingte Entropie:

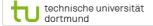
 Maß über den Wert einer Zufallsvariable, welche verbleibt, nachdem das Ergebnis einer anderen Zufallsvariable bekannt wird.

$$H(C|A_t) = -\sum_{i=1}^{k_t} p_i \sum_{j=1}^{k} (\frac{X_{i,j}}{X_i}) \log_2(\frac{X_{i,j}}{X_i})$$

Größe:

	giftig	essbar	$x_{klein} = 3$	$p_{klein} = \frac{3}{5} = 0.6$
klein	1	2		ว ว
groß	0	2	$x_{groß} = 2$	$p_{groß} = \frac{2}{5} = 0.4$

$$\begin{split} H(C|A_{\text{Größe}}) &= -[0.6(\frac{1}{3}\log_2(\frac{1}{3}) + \frac{2}{3}\log_2(\frac{2}{3})) + 0.4(\frac{0}{2}\log_2(\frac{0}{2}) + \frac{2}{2}\log_2\frac{2}{2})] \\ &= -[0.4(-\log_2(3) + \frac{2}{3}) + 0] \approx \textbf{0.4562} \end{split}$$



2.2 Data-Mining

Literatur:

- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)

Iterative Dichotomiser 3 (ID3) Beispiel (2)

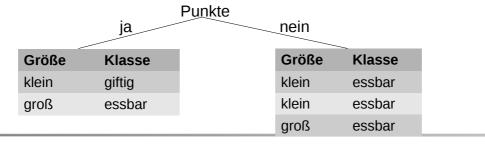
Methodische Grundlagen des Software-Engineering SS 2014

Punkte:

	giftig	essbar	$x_{ia}=2$	$p_{i_0} = \frac{2}{1} = 0.4$
ja	1	1	ja	$\rho_{ja} = 5$
nein	0	3	$x_{nein}=3$	$p_{nein} = \frac{3}{5} = 0.6$

$$H(C|A_{Punkte}) = -\left[0.4\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) + 0.6\left(\frac{0}{3}\log_2\frac{0}{3} + \frac{3}{3}\log_2\frac{3}{3}\right)\right] - \left[0.4(-1) + 0\right] = \mathbf{0.4}$$

- → Bedingte Entropie minimal für das Attribut Punkte.
- Entscheidungsbaum nach Rekursionsebene I:



2.2 Data-Mining

Literatur:

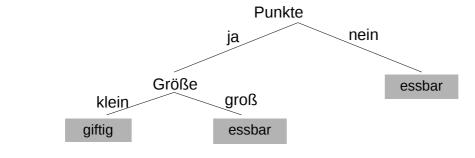
- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)

Iterative Dichotomiser 3 (ID3) Beispiel (3)

Rekursionsstufe II:

- Objektsammlung M_{nein} besteht aus 3 Beispielen, die alle in die Klasse der essbaren Pilze gehören. $\rightarrow M_{nein}$ trivial
- Objektsammlung M_{ja} trivial, der Entscheidungsbaum besteht nur aus Blättern mit Label giftig bzw. essbar.

Entscheidungsbaum nach Rekursionsebene II:



http://www2.informatik.uni-hamburg.de/wsv/teaching/praktika/GwvPRAK_WiSe10/aufg05_ID3_script.pdf

technische universität dortmund

2.2 Data-Mining

Literatur:

- Abschnitt 8.6 (Entscheidungsbäume, ab S.99)
- ID3 (S.102-104)

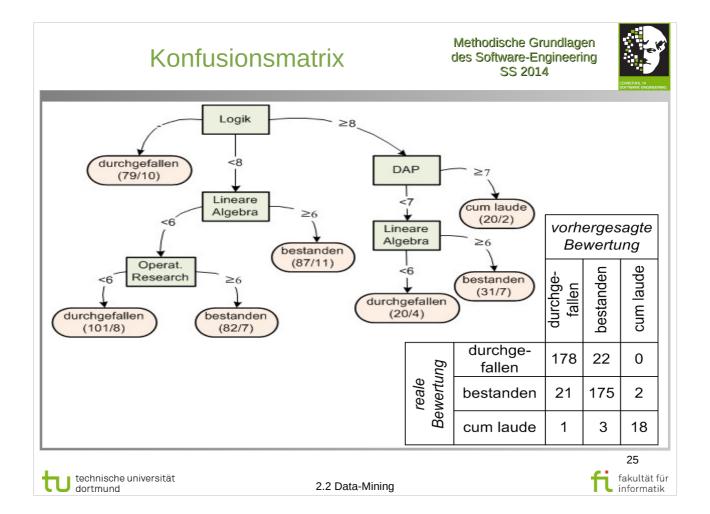
Überblick Data-Mining

 Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen

2.2 Data-Mining

- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

technische universität dortmund 24 fakultät für informatik



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kapitel 3.2: Obige Abbildung Seite 66, untere Abbildung Seite 83 (Kap. 3.6)

Konfusionsmatrix: Metriken

Bsp. für 2			vorhero Kla		
	Klassen + und -		+	-	
	reale Klasse	+	tp	fn	p
	reć Kla	-	fp	tn	n
			p'	n'	N

Name	Formel
Error	(fp+fn)/N
accuracy	(tp+tn)/N
tp-Rate	tp/p
fp-Rate	fp/n
precision	tp/p'
recall	tp/p (= tp-Rate!)

tp: Anzahl true positives; korrekterweise als positiv klassifiziert.

fn: Anzahl false negatives; als negativ klassifiziert, aber positiv.

fp: Anzahl false positives; als positiv klassifiziert, aber negativ.

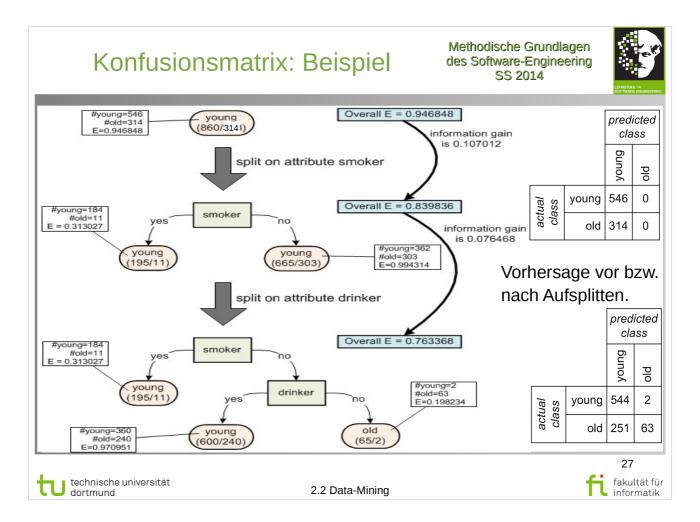
tn: Anzahl true negatives; korrekterweise als negativ klassifiziert.

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kapitel 3.6: Seite 83-84



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

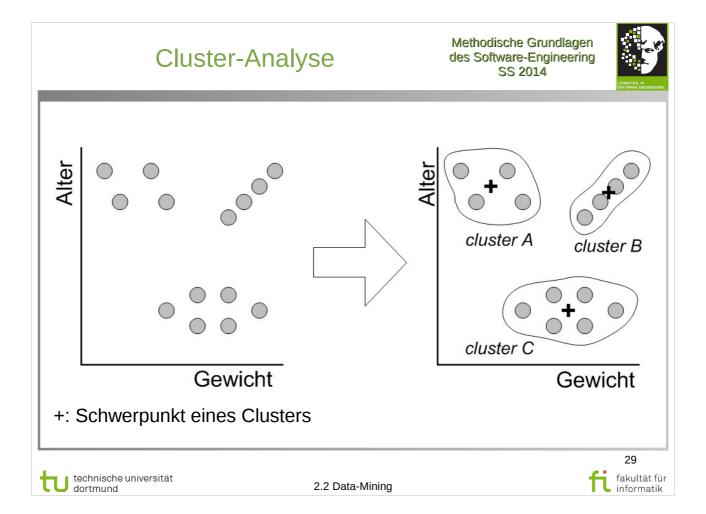
Linke Abbildung: Kap. 3.2 Seite 69

• Rechte Abbildung: Kap. 3.6 Seite 85

Überblick Data-Mining

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

technische universität dortmund 28 fakultät für informatik



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kapitel 3.3: Seite 71

K-Means-Cluster-Analyse mittels Lloyd Algorithmus: Informell

Methodische Grundlagen des Software-Engineering SS 2014

Von **Stuart P. Lloyd** 1982 vorgestellt (benannt: k-Means).

- Anzahl *K* zu ermittelnder Cluster vorher festlegen.
- Start (*i*=0): Positionen der **Clusterschwerpunkte** zufällig initialisieren.
- Objekte nächstgelegenen Schwerpunkten zuordnen. (i=1)
- Bei jeder Iteration *i* Schwerpunkt und nächstliegende Kandidaten neu berechnen.
- Dies Wiederholen bis **Summe quadratischer Distanz** einzelner Objekte zu ihrem jeweiligen Clusterschwerpunkt über alle Cluster ein **Minimum** erreicht.
 - → Mathematische Darstellung: $J = \sum_{n=1}^{N} \sum_{k=1}^{K} \| \overrightarrow{x_n} \overrightarrow{\mu_k} \|^2$
- $\overrightarrow{x_n}$ Datensätze und $\overrightarrow{\mu_k}$ Schwerpunkte der Cluster.
- Entscheidungskriterium für Cluster-Zugehörigkeit der Testobjekte: Abstände der Testvektoren von Clusterschwerpunkten.

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

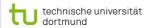
Kap. 3.3: Seite 71 letzter Abschnitt – Seite 72 letzter Abschnitt

k-Means-Cluster-Analyse mittels Lloyd Algorithmus: Pseudocode

k-Means(P, k):

- 1: Wähle Punkte $C = \{c_1, \dots, c_k\}$ zufällig gleichverteilt
- 2: repeat
- Assoziiere jeden Punkt aus P mit dem Zentrumspunkt c_j mit dem geringsten Abstand, um eine Partitionierung P₁, P₂,..., P_k zu erhalten
- 4: Berechne für jede Teilmenge P_j den Zentroid und verwende diese Menge von Zentroiden als neue Menge von Zentrumspunkten
- 5: until Menge der Zentrumspunkte ändert sich nicht mehr
- Beginn mit zufälligen Zentrumspunkten.
- Zur Verringerung der Gesamtfehler der Approximation neue Punkte in 3. und 4. wählen.

Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129-136, 1982.



2.2 Data-Mining

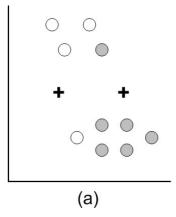
Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.4: Seite 74

k-Means-Cluster-Analyse Beispiel

k-Means-Clustering: Anzahl *k* von Clustern a-priori festgelegt.



k-Means-Algorithmus veranschaulicht für k=2:

(a) "Schwerpunkte" zufällig setzen; Punkte nächstgelegenen Schwerpunkten zuordnen.



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kap. 3.3: Seite 71 letzter Abschnitt – Seite 72 letzter Abschnitt

Agglomerative Methodische Grundlagen des Software-Engineering Hierarchische Cluster-Analyse SS 2014 abcdefghij efghij abcd efg hii ab cd hi fg е h а b С d е f g (a) (b) (a) Agglomerative hierarchische Cluster-Analyse: Bottom-up-Vorgehen. (b) Visualisierung durch Dendrogramm.

technische universität dortmund

2.2 Data-Mining

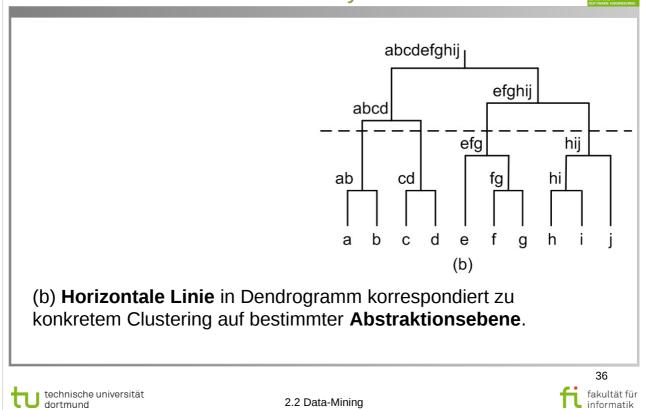
Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kap. 3.3: Seite 72 letzter Abschnitt – Seite 73 erster Abschnitt

Ebenen bei Agglomerativer Hierarchischer Cluster-Analyse

informatik



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business **Processes**

• Kap. 3.3: Seite 73

Überblick Data-Mining

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

technische universität dortmund 38 fakultät für informatik

Assoziationsregel-Lernen

Ziel: Regeln der Form "IF X THEN Y" lernen: $X \Rightarrow Y$

Definiere Maße für Relevanz / Gültigkeit / Aussagekraft der Regel:

$$support(X \Rightarrow Y) = N_{X \wedge Y}/N$$

$$confidence(X \Rightarrow Y) = N_{X \wedge Y}/N_X$$

$$lift(X \Rightarrow Y) = \frac{N_{X \wedge Y}/N}{(N_X/N)(N_Y/N)} = \frac{N_{X \wedge Y}N}{N_X N_Y}$$

 $(N_x$: Anzahl Datensätze, die alle Eigenschaften in X erfüllen).

Welche Bedeutung könnten hohe / niedrige Werte haben?

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business **Processes**

2.2 Data-Mining

• Kap. 3.4: Seite 74

Beispiel: Einkaufswagen-Analyse

Methodische Grundlagen des Software-Engineering SS 2014

cappuccino	latte	espresso	americano	ristretto	tea	muffin	bagel
1	0	0	0	0	0	1	0
0	2	0	0	0	0	1	1
0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	1	2	0
0	0	0	1	1	0	0	0

Zwei Beispiel-Hypothesen:

 $tea \land latte \Rightarrow muffin$

→ Leute, die *tea* oder *latte* bestellen, bestellen auch *muffins*.

 $tea \Rightarrow muffin \land bagel$

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

- Obige Abbildung: Kap. 3.1 Seite 61
- Untere Abbildung: Kap. 3.4 Seite 74 letzter Abschnitt – Seite 75 1. Abschnitt

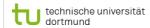
Beispiel: tea ∧ latte => muffin

 $tea \land latte \Rightarrow muffin, d.h.: X = tea \land latte \text{ und } Y = muffin$

$$support(X \Rightarrow Y) = N_{X \land Y}/N = N_{tea \land latte \land muffin}/N = 15/240 = 0.0625$$

$$confidence(X \Rightarrow Y) = N_{X \land Y}/N_X = N_{tea \land latte \land muffin}/N_{tea \land latte} = 15/20 = 0.75$$

$$lift(X \Rightarrow Y) = \frac{N_{X \land Y} N}{N_X N_Y} = \frac{N_{tea \land latte \land muffin} N}{N_{tea \land latte} N_{muffin}} = \frac{15 \times 240}{20 \times 40} = 4.5$$



2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.4 Seite 75 ab 1. Abschnitt

Brute-force-Algorithmus

Definition: Für gegebenen *support*-Schwellwert *minsup*: Menge Z heißt *frequent item-set*, wenn $N_{_{Z}}$ / N >= minsup.

Assoziationsregeln wie folgt generierbar:

Schwellwert überschreitet oder gleich ist.

- 1) Generiere *frequent item-sets*: alle Mengen Z sodass N_z/N größer als gegebener Schwellwert für *support* und |Z| >= 2.
- Für jedes frequent item-set Z betrachte Partition in nicht-leere Teilmengen X, Y.
 Behalte Regeln X => Y, für die confidence gegebenen

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kap. 3.4: Seite 75 letzter Abschnitt

Beobachtung

Beobachtung:

Unter welcher Voraussetzung ist **Teilmenge** einer *frequent item-set* ebenfalls eine *frequent item-set* ?

technische universität dortmund

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.5: Seite 76

Optimierte Generierung von frequent item-sets mit o.g. Idee

- 1. Create I_1 . This is the set of singleton frequent item-sets, i.e., item-sets with a support above the threshold *minsup* containing just one element.
- 2. k := 1
- 3. If $I_k = \emptyset$, then output $\bigcup_{i=1}^k I_i$ and end. If $I_k \neq \emptyset$, continue with the next step.
- 4. Create C_{k+1} from I_k . C_{k+1} is the candidate set containing item-sets of cardinality k+1. Note that one only needs to consider elements that are the union of two item-sets A and B in I_k such that $|A \cap B| = k-1$ and $|A \cup B| = k+1$. (wg. o.g. Beobachtung)
- 5. For each candidate frequent item-set $c \in C_{k+1}$: examine all subsets of c with k elements; delete c from C_{k+1} if any of the subsets is not a member of I_k . (wg. o.g. Beobachtung)
- 6. For each item-set c in the pruned candidate frequent item-set C_{k+1} , check whether c is indeed frequent. If so, add c to I_{k+1} . Otherwise, discard c.
- 7. k := k + 1 and return to Step 3.

2.2 Data-Mining

Literatur:

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

Kap. 3.5: Seite 76

Überblick Data-Mining

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

technische universität dortmund 47 fakultät für informatik

(eustomer	seq. number	timestamp	items	
		1	02-01-2011:09.02	{cappuccino}	
	Wil	2	03-01-2011:10.06	{espresso,muffin}	
		3	05-01-2011:15.12	{americano, cappuccino}	
Seque	nce-	4	06-01-2011:11.18	{espresso,muffin}	
		5	07-01-2011:14.24	{cappuccino}	
Mining		6	07-01-2011:14.24	$\{americano, cappuccino\}$	
(-	0.000	1	30-12-2010:11.32	{tea}	
	Mary	2	30-12-2010:12.12	{cappuccino}	
		3	30-12-2010:14.16	{espresso,muffin}	
		4	05-01-2011:11.22	$\{bagel, tea\}$	
. 		1	30-12-2010:14.32	{cappuccino}	
	Bill	2	30-12-2010:15.06	{cappuccino}	
		3	30-12-2010:16.34	{bagel, espresso, muffin}	
		4	06-01-2011:09.18	$\{ristretto\}$	
		5	06-01-2011:12.18	{cappuccino}	
	0.00		***		
$X = \langle$	$\{cap\}$	puccina	$\{espresse$	o } \rangle	
'		•	<i>J</i> , C <i>I</i>	$o\},\{latte,muffin\}$	
				48	
■ technische	universität		2.2 Data-Mining	fakult	

Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.5: Seite 78

Methodische Grundlagen **Episode-Mining** des Software-Engineering SS 2014 32 Zeitfenster der Länge 5: "Episode": Prozessmodell-Fragment. 3 Beispiele: d d а а E2 E3 (weitere sind möglich, z.B. unter Verwendung von e,f). Wie oft treten diese Episoden hier auf (d.h. wie oft gibt es vollständigen Ablauf eines Modells in Zeitfenster der Länge 5) ?

technische universität dortmund

2.2 Data-Mining

Literatur:

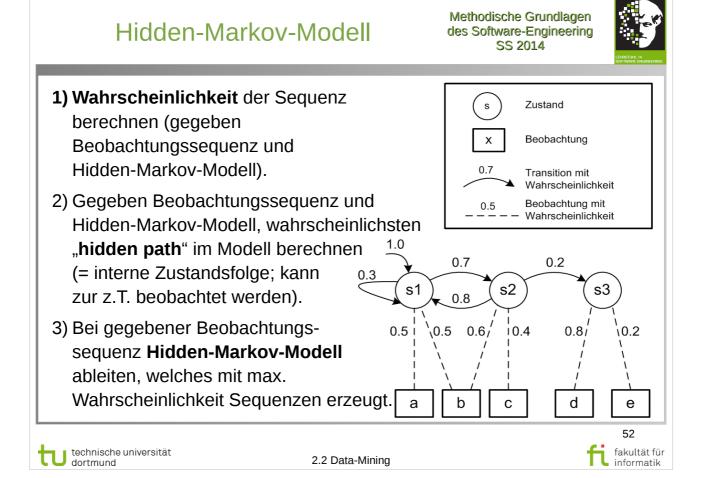
Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.5: Seite 79

Überblick Data-Mining

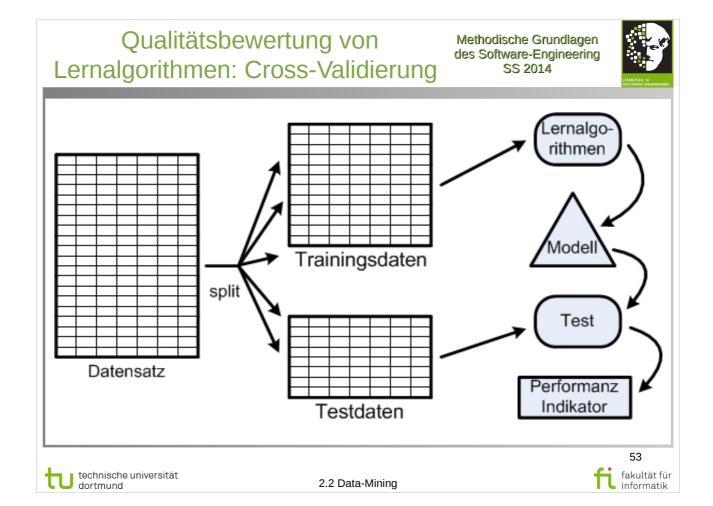
- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen
- Konfusionsmatrix
- Cluster-Analyse
- Assoziationsregel-Lernen
- Sequence- und Episode-Mining
- Hidden-Markov-Modell und Validierung

technische universität dortmund fakultät für informatik



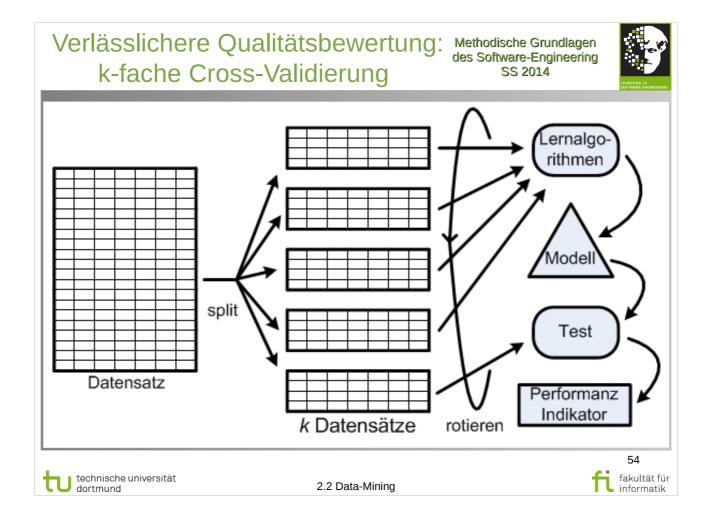
Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

 Kap. 3.5: Seite 81 vorletzter Abschnitt; Abbildung Seite 82



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.6: Seite 86



Wil van der Aalst: Process Mining: Discovery, Conformance and Enhancement of Business Processes

• Kap. 3.6: Seite 87

Zusammenfassung

In diesem Abschnitt:

- Von Datensätzen zu Entscheidungsbäumen durch überwachtes / nicht überwachtes Lernen.
- Konfusionsmatrix.
- Cluster-Analyse.
- Assoziationsregel-Lernen.
- Sequence- und Episode-Mining.
- Hidden-Markov-Modell und Validierung.

Im nächsten Abschnitt:

• Datenbeschaffung.

technische universität dortmund

55

fakultät für informatik