
SWK

JJ+HS

Introduction

Patterns

Components

References

Software-Konstruktion
Wintersemester 2010/2011

Prof. Dr. Jan Jürjens and Dr.-Ing. Holger Schmidt

TU Dortmund – Department of Computer Science
Software Engineering (LS 14)

http://ls14-www.cs.tu-dortmund.de/

Slides are based on the lecture “Muster- und Komponenten-basierte
Softwareentwicklung” by Prof. Dr. Maritta Heisel

1/ 420

http://ls14-www.cs.tu-dortmund.de/

SWK

JJ+HS

Introduction

Patterns

Components

References

Organizational issues I

Exercise sessions: Holger Schmidt and Gregor Kotainy

Distribution of lectures and exercises as needed

Dates

Freitags, 14:15-15:00, GB IV - 318
Freitags, 14:15-15:00, GB IV - 228
Freitags, 15:15-16:00, GB IV - 318
Freitags, 15:15-16:00, GB IV - 228
Freitags, 16:15-17:00, GB IV - 318
Freitags, 17:15-18:00, GB IV - 318

Course material will be published under

http://ls14-www.cs.tu-dortmund.de/main2/jj/

teaching/index.html

(check regularly!)

2/ 420

http://ls14-www.cs.tu-dortmund.de/main2/jj/teaching/index.html
http://ls14-www.cs.tu-dortmund.de/main2/jj/teaching/index.html

SWK

JJ+HS

Introduction

Patterns

Components

References

Organizational issues II

Prerequisite: basic knowledge of software engineering as taught
in the course “Softwaretechnik”; knowledge of a programming
language does not suffice!

Certificate

You have to pass the exam (60 minutes) to get a certificate for
this course. The exam schedule will be announced soon on the
webpage of this course.

Who studies in another program as the Bachelor?

3/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Content

Patterns

Architectural styles (coarse-grained design)
Design patterns (fine-grained design)
Idioms (implementation)

Components

Component definition and specification
Component models

Java Beans

Component-based software development process

4/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Software engineering: definition

Software Engineering 6= Programming!

Software Engineering (Balzert):

Goal-oriented provision and systematic use of principles,
methods, concepts, notations and tools for team-based
development and application of large software systems
according to engineering principles. Goal-oriented means e.g.
taking costs, time and quality into account.

Software system

A system, whose system components and system elements
consist of software.

Software: program + documentation

5/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Phases of software engineering processes

Analysis
Goal: understand the problem

Design
Goal: obtain structure of software to be built

Implementation
Goal: obtain executable software solving the problem

Testing
Goal: find defects in implementation

6/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why do mere programming skills not suffice?

(Practically) all software contains defects.

“Software and cathedrals are much the same:
first we build them, then we pray.”

Sam Redwine

This leads to an immense economic loss and the
endangering of human life.

Why is that so?

What are new promising areas of research?

7/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Studies of the Standish-Group (CHAOS Research),
1994/1996/1998/2000/2002/2004/2006/2008

Copyright © 2008 The Trends in IT Value report is protected by copyright and is the sole property of The Standish Group International, Incorporated. It may not under any circumstances be
retransmitted in any form, repackaged in any way, or resold through any media. All rights reserved.

S
P

E
C

IA
L R

E
P

O
R

T
: Trends in IT Value

Driver 4: Maintaining Suitable Risk

Risk is everywhere – throughout the organization. You
cannot eliminate it and it might be harmful to minimize it.
The challenge is to maintain a suitable risk that provides
the most progress and benefits. In the development of new
software we have outlined in our CHAOS research the 100
best practices to build and develop software. Regarding
the risk of operational failure, we have outlined several
techniques in our IT readiness report. In creating and
maintaining IT value the suitable risk driver is made up of
three elements: fewer moving parts, incremental adoption,
and a vertical stack

In terms of downtime, the more elements that go into the
operation of an application, the greater the opportunity
for something to break. Fewer moving parts means less
opportunity for things to break. We call these moving
parts “downtime triggers.” Everything that goes into the
operation of an application is a potential downtime trigger.
Each trigger should be weighted against the progress and
benefit that trigger brings to the smooth operation of the
application. This is also true in projects – the less you do,
the greater the chance it will get it done.

A little while ago a Standish Group executive met with a
former CEO of very successful software company. This
CEO was and still is a great supporter of the work being
done at CHAOS University on project failure. For the last
few years the CEO has been working on getting a new start-
up off the ground. The CEO had a great and wonderful
vision, and many IT executives thought that vision would
be a panacea for them and their organizations. However,
he could not get the company off the ground. He then
remembered our work on keeping projects small and
cut out a small piece of the software. His sales started
climbing. Time and time again, the “big bang” has proven
to be a big failure. Incremental adoptions and an iterative
project and process do much better.

Having a vertical stack improves both cost and quality. A
vertical stack is an infrastructure built and maintained by a
single supplier, such as the operating system, middleware,
and database technology. There are many examples of
this type of vertical stack, from vendors such as IBM,
Microsoft, and HP. The reason a vertical stack lowers risk
is that all the software is naturally integrated. As it turns
out, the majority of software errors occur between the
integration points rather than in the main body code. In

addition, there is cooperation among a
vendor’s internal product line groups to
fix a problem versus the blame game
that can go on when multiple vendors
are involved.

Standish Definition: “Risk” means a threat to the
organization, installation, and project success. The threat
can be physical, poor estimating, financial, or political. In
quantitative terms, risk is the probability of an undesired
outcome. First, risk should be considered by the types of
events, such as a key person leaving the project before
its resolution. Second, risk should be concerned with the
probability of occurrence; for example, there is only a
10% chance that a key person will leave before the project
is completed.

5

CHAOS PROJECT RESOLUTION

The above chart shows the results of project

resolution over the last decade. This data is from

our CHAOS Research project on project success

and failure and covers more than 60,000 projects.

2008
32%
24%
44%

8/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why can’t software be built in the same way as
cars and houses?

Software is something special, because it

is intangible
does not wear off through use, but ages because of
changes or no changes
is not restricted through physical laws
is easily alterable
is difficult to measure, i.e. describe in a quantitative way
does not exhibit a continuous but a discrete behavior (no
safety margins possible, small causes can have great
effects)

Therefore, we need specific methods
for constructing software!

9/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Summary

Computer Science (and thus software engineering) is a
very young science.

Only a small part of software development is programming.

Due to the special features of software, specific engineering
methods are necessary, but have not reached maturity yet.

An important goal is to develop software with fewer
defects.

For this, promising and exciting new approaches exist.

10/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Recent Developments:
From “Art” to “Engineering”

11/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Which steps lead from “Art” to “Engineering”? I

Model-based development

Develop sequence of models, each describing different
aspects of the software system
Models can be analyzed and checked for coherence

Object Orientation

Software architecture follows data, not functionality
Software as dynamic collection of communicating objects
Improved reusability through encapsulation of data

Patterns

Templates for the different artifacts generated in software
development
Useful in all phases of software development
Reuse through instantiation

12/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Which steps lead from “Art” to “Engineering”? II

Component software

Build software systems from ready-made parts

Aspect-oriented programming

Write different programs, each covering different aspects
(e.g. computation vs. graphical representation) of the
software
Compilers combine the different aspect programs to one
executable program

Software Engineering for special applications
e.g. Internet and multimedia applications

13/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why patterns and components?

Both belong to the promising new developments

Both are based on reuse:

Patterns allow re-use of software development
knowledge
Components allow re-use of pre-fabricated software

Both can be used in combination

14/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Patterns: basic ideas

Templates for documents set up during software
development

Serve to represent and re-use software development
knowledge

Represent essence, abstract from details

Are used by instantiation

Are available for (almost) all phases of software
development

15/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Components: basic ideas

Assemble software from pre-fabricated parts

Re-compilation not necessary

Source code may be inaccessible

Important: interface descriptions and component models

Interoperability is an issue

16/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Architectural Patterns

17/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Software architecture

The software we construct for solving a software development
problem must be structured further.
That structure is called architecture. It is the result of
(coarse-grained) design. It structures the software in terms of

Components
These carry out computations. Examples: Filters, data
bases, objects, abstract data types
Connectors
Means of interaction between components. Examples:
procedure calls, pipes, event broadcast

18/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Definition Bass et al. (1998)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which
comprise software components, the externally visible prop-
erties of those components, and the relationships among
them.

19/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Important points of the definition

Only properties of components that are externally visible
are described.

These (and only these) constitute the assumptions that
can be made by components about one another.

Internal details that are unimportant for the interaction of
components are abstracted from.

An architecture can define more than one structure. For
example, assignment of “modules” to teams, set of
parallel processes existing at runtime.

20/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Why architectures?

All software has an architecture, even if nobody knows it!

However, that architecture should be explicitly designed and
documented, because this entails that the software

is better comprehensible

can be analyzed more easily, e.g. for efficiency

can be better maintained

can be implemented systematically

21/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Architectural styles

Are patterns on the level of coarse-grained design, and are
also called architectural patterns

Classify software systems

The architecture of a software should be an instance of
some architectural style

22/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures I

Passive components:

process the requests sequentially and may return values

used in call-and-return systems

23/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures II

Independent components:

can be implemented as communicating processes

may initiate actions on their own (active)

communicate using messages, pipes/streams, or shared
memory

different components can run on one computer with shared
memory, or components can be distributed over a network

exchange data, but do not control each other

goal: modifiability of the software by decoupling different
computations

24/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures III

Reasons for independent components:

Software should run on a multiprocessor-platform

Software could be structured as a set of loosely coupled
components, i.e. a component should be able to make
reasonable progress while waiting for events from other
components

Performance is important. It can be improved by assigning
tasks to the processes and assigning processes to
processors.

25/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Structure of software / components I

function-oriented (FO, main program/subroutine)

object-oriented (OO)

26/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

function-oriented software

main program

subroutine1 subroutine2 subroutine3

Hierarchical decomposition of functionality, based on a
uses-relation
One single control-line, directly supported by programming
languages
Implicit subsystem structure: subprograms as modules
Hierarchical deduction: correctness of a subprogram
depends on the correctness of the subprograms it calls.

27/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Object-oriented software

Object Object

Object

Orientation of the architecture on the data
If modifiability and the ability of integration (through
well-defined interfaces) is important, consider using an
object-oriented design.
Encapsulation: access only possible through defined
operations. The user of a service does not need to know,
how it is implemented. The implementation can be
changed.
Disadvantage: object identities must be known.

28/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Interfaces between components / coupling

Types of component coupling:

call-and-return (for passive components)

messages / events (for independent components)

pipes / streams (for all, even network pipes exist)

shared memory (for all local components)

29/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Call-and-return

Call-and-return (control flow with some associated data):

Used to connect passive components

Corresponds to the call of an operation in a programming
language

Technically, a shared memory (stack or processor registers)
is used to pass parameters and return values

Works for function-oriented (main program/subroutine)
and object-oriented software

If the sequence of computations is fixed and components
cannot make reasonable progress while waiting for the
results of other components, consider using synchronous
calls.

30/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events I

Messages or Events (control flow with some associated data):

Asynchronous vs. synchronous (call-and-return)
communication

between active components usually asynchronous
communication is used

message queues are used to implement asynchronous
communication

asynchronous messages cannot have a return value - an
additional message in the opposite direction is necessary

31/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events II

Sender-/Receiver relationship

1:1 - The sending component sends a message to one
known receiver component

1:1U - The sending component sends a message to a
unknown receiver component - The receiver has to register
to get the message

1:N - The sending component sends a message to all
components that are registered to receive the message (see
Observer pattern)

32/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events III

Distribution, several components of a software may run:

within a single task (asynchronous messages are not
necessary)

within a single process in separate tasks, but the same
memory region

locally on one computer in separate processes
(communication is between different processes)

remote on different computers (communication is over a
network connection)

33/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events IV

Data

no parameters, only single event (only control flow)

only limited data (e.g., a pointer)

only simple data types

serializable data

any object

34/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events V

Implementations:

Events in Java (synchronous, 1toN, within single process,
any object, OO)
Delegates in .NET (asynchronous, 1toN, within single
process, any object, OO)
Signals and Slots in C++ with QT (asynchronous, 1toN,
within single process, any object, OO)
Remote procedure calls (Windows RPC/Sun RPC)
(synchronous or asynchronous, 1to1, remote, serializable
data, FO)
Remote Method Invocation (Java RMI) (synchronous,
1to1, remote, serializable data, OO)

35/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events VI

Corba (synchronous/asynchronous since 2000, 1to1,
remote, serializable object, OO)

Windows Events/Mutex/Semaphore received with
WaitForSingleObject command (asynchronous, 1toN,
within single process, no parameters, FO)

Unix Signals sent with kill -x (asynchronous, 1to1, local,
no parameters, FO)

Windows Message Queues (asynchronous, 1to1, remote,
serializable data, FO)

36/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes / Streams

Streams (data flow with necessary control messages):

Network sockets

Unix pipes (only between components of one computer)

Windows named pipes (only between components of one
computer)

37/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Shared Memory

Shared Memory (can only be used for data flow):

usually possible within a single process

if different tasks work on one memory region,
synchronization is necessary

files can be used as a shared memory between different
processes

most operating systems provide functionality to reserve a
shared memory that can be used by different processes

38/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Control flow vs. data flow

Control flow Data flow

Decisive question: how does
the location of control move
through the program?

Decisive question: how does
the data move through the
program?

Data can go along with con-
trol, but is not decisive.

The control is activated
where the data is situated.

Important: sequence of com-
putations

Important: availability and
transformation of data

39/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Organization of components

Batch sequential (independent components using file
system as shared memory or passive components with
call-and-return)

Pipes & filters (can be implemented with pipes, messages
or as call-and-return system)

Layered architectures (using calls or messages)

Client-server architecture, using streams (e.g. Sockets) or
remote messages (e.g., RPCs)

Data-centered systems (repositories)

Data bases
Blackboards

Event systems (implemented with messages, Observer
pattern applied)

40/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Batch sequential

Processing steps are independent programs that run as
different processes

Each step terminates before the next one begins

Data are transferred as a whole

File can be used as a shared memory between the different
processes

Process

Data Flow

Notation

tape
Validate

tape
Sort

tape
Update

tape
Report

report

tape

Data transformation

Examples: typical transformational applications such as
computing salaries, or the like

41/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & Filters

Name of that style originates from programs written in the
Unix programming environment

Filters: transform streams of input data into streams of
output data in an incremental way
Pipes: move data from a filter output to a filter input
General scheme of computation:
let pipes and filters operate in a non-deterministic manner
until no further computations are possible

pipes

filters

Specialization: pipelines, i.e., linear sequences of filters

42/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages of pipes & filters architectures

The overall input-output behavior is determined by a
simple composition of the behavior of the individual filters.

Re-use of filters is possible.

Easy to maintain and to improve by adding or replacing
filters.

Concurrency is supported in a natural way, because filters
can operate independently of each other.

Can be analyzed well, for example concerning throughput
of deadlocks.

43/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Disadvantages of pipes & filters architectures

Often lead to batch-processing, i.e. concurrency is not
utilized

Not appropriate for interactive applications

Efficiency may be problematic

All components have to parse the input

44/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) I

Alternative 1: push pipeline with passive filter components
and synchronous calls. Activity starts with the data source.

45/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) II

Alternative 2: pull pipeline with passive filter components and
synchronous calls. Data sink starts the activity by calling for
data.

46/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) III

Alternative 3: pipeline with active filter components that pull,
process and than push data. Each filter runs in its own thread
of control. Buffering pipes are used for communication and
synchronize the flow of data.

47/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Comparison of batch sequential and pipes & filters

Both decompose software systems into fixed sequences of
computations

In both cases components interact only through data flow

batch sequential pipes & filters

coarse-grained, total fine-grained, incremental

no concurrency concurrency possible

not interactive often interactive, but inelegant

48/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Layered architectures

Hierarchical Organization. Each layer offers services for the
layers above.

Application

Adapter

Operating system or

hardware abstraction layer (HAL)

Well-known Example: ISO/OSI-Reference model for
communication protocols.

49/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures I

Advantages:

Design is performed on successive lower abstraction layers,
i.e. services are defined at first in an abstract way and
then in an increasingly concrete way.
Can be changed easily, since changes in one layer (should)
only effect the adjacent layers.
Portability is supported.
Can be implemented as a call-and-return system or
composed from independent components.

50/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures II

Disadvantages:

It is often difficult to identify and clearly separate different
abstraction layers.
The previous reason and reasons of efficiency often lead to
layer bridging in practice, i.e. not only adjacent layers
communicate directly with each other.

51/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures III

Reasons for a layered architecture:

If the software tasks can be divided into classes, of which
one is application-specific and the other is usable for
several applications, but platform specific, consider using a
layered architecture.
Also consider using a layered architecture, if the software
should be portable or an already developed infrastructure
can be used.

52/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-server architectures

A server serves several clients, which are usually distributed
over a net. Service requests are always initiated by the client,
and can be served in a synchronous or asynchronous way.

Example: web-server and browser (client)

The repository architecture style is a special client-server
architecture

Client-dispatcher-server design pattern is often applied

53/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) I

Shared Data

Client Client

Client
Client

Client

Client

Bidirectional Data Flow

Computational Component/ObjectConcrete Class

Notation

Characteristics:

The integration of data is an important goal.
The software can be described by describing how the
repository can be used and changed by the different
parties.
Components that access the repository are relatively
independent from each other, and the repository is
independent of them.

54/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) II

New components can be easily added and are not effected
by changes of other components

If components act independently from each other, then such a
repository architecture is a client-server-architecture at the
same time =⇒ Architectural styles are not disjoint!

Databases
The data storage is passive, the sequence of the operations is
defined through the input streams.

Blackboards
A blackboard is an active repository: it sends messages to
interested components, when certain data has changed.
Overlap with event/action-style.

55/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) III

Heuristics for Repository Architectures

Central problem is the storage, representation,
administration as well as access to a large number of
connected, persistent data.
Choose a database architecture, if the execution order of
the components is determined through a stream of queries
and transactions, and if the data are highly structured or
in case a commercial database system is available, which
can then be used for the desired purpose.
Choose a blackboard architecture, if consumer and
producer of data should be easily exchangeable.
If it is probable that the representation of data will
change, prefer an object-oriented architecture.

56/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Event systems I

Also called Event/Action-Style

Independent components do not need to know each other

Components publish that they offer certain data or services

Other components announce interest in particular events
or data
=⇒ publish/subscribe-principle

Often an event- or message manager is responsible for
distributing the messages

Choose an event-system, if

producers and consumers of events should be decoupled.

scalability is important. Here, new processes can be
added, that react to already defined events.

57/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Event systems II

EVENTS Event
Manager OUT2

RESULT2IN2

Component 2

RESULT1IN1

OUT1
Component 1

IN3

OUT3

RESULT3

Component 3

Each component defines incoming procedure calls and
outgoing events in its interface
The communication among components takes place by
publishing events that trigger procedure calls
Sequence of the called procedures is not deterministic
Decoupling of implementation and use of components
Implemented using the Observer design pattern

58/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Relation between architectural patterns and design
patterns I

Event Systems:

Implemented using Observer pattern

Components:

Structured using Facade pattern

A component is often implemented using the Singleton
pattern

User Interface Components:

Implemented using MVC pattern (with Composite,
Observer, Strategy, and Factory Method)

59/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Relation between architectural patterns and design
patterns II

Streams:
If a stream interface is given but messages should be
exchanged efficiently, apply

Forwarder-Receiver pattern

Remote Procedure Call (RPC):
In RPC implementations the following design patterns are
applied:

Client-Dispatcher-Server pattern to locate the service

Proxy pattern for the operation stubs of the client

60/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on architectural patterns?

The the software system needs to be structured.
That structure is called architecture of the software
system. It consists of components and connectors.
Software architectures describe the structure of the
solution of a problem.
Software architectures can be classified. These classes are
called architectural styles.
Usually, several architectures can be used to structure a
software. These differ in non-functional characteristics
(quality attributes).

61/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design Patterns

62/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design patterns (Gamma et al. (1995)):
characterized by

Usage for detailed design

Object-oriented paradigm

“Description of a family of solutions for a software design
problem” (Tichy)

Class

Class Class

Class Structuring of architectural components

63/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Gamma et al. (1995))

creational
concern the process of object creation

structural
deal with the composition of classes or objects

behavioral
characterize the ways in which classes or objects interact
and distribute responsibility

Second criterion: scope
specifies whether the pattern applies primarily to classes or to
objects.

64/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Tichy) I

Coupling/decoupling patterns
System is divided into units that can be changed
independently from each other
e.g. Iterator, Facade, Proxy

Unification patterns
Similarities are extracted and only described at one place.
e.g. Composite, Abstract Factory

Data-structure patterns
Process states of objects independently of their
responsibilities
e.g. Memento, Singleton

65/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Tichy) II

Control flow patterns
Influence the control flow; provide for the right method to
be called at the right time
e.g. Strategy, Visitor

Virtual machines
Receive programs and data as input, execute programs
according to data
e.g. Interpreter
(Remark: no clear boundary to architectural styles)

66/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages of design patterns (Tichy)

Improvement of team communication
Design pattern as “short formula” in discussions

Compilation of essential concepts, expressed in a concrete
form

Documentation of the “state of the art”
Help for less experienced designers, not constantly
reinventing the wheel

Improvement of the code quality
Given structure, code examples

67/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of design patterns (Gamma et al.
(1995)) I

Name and Classification A good name is important, because it
will become part of the design vocabulary.

Intent What does the pattern do? Which problems does
it solve?

Also Known As Other familiar names.

Motivation Scenario which illustrates the design problem and
how the pattern solves the problem.

Applicability What are the situations in which the design
pattern can be applied? How can one recognize
these situations?

Structure Class and interaction diagrams.

Participants Classes and objects, which are part of the
pattern, as well as their responsibilities.

68/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of design patterns (Gamma et al.
(1995)) II

Collaborations How do the participants collaborate to carry out
their responsibilities?

Consequences What are the trade-offs and results of using the
pattern? What aspect of system structure does it
let one vary independently?

Implementation What pitfalls, hints, or techniques should one
be aware of when implementing the pattern? Are
there any language-specific issues?

Sample Code Code fragments in C++ or Smalltalk.

Known Uses At least two examples of applications taken from
existing systems of different fields.

Related Patterns Similar patterns and patterns that are often
used in combination with the described pattern.

69/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Model-View-Controller (MVC)
Gamma et al. (1995); Buschmann et al. (1996)

Architectural style/design patternhybrid

Aggregate design pattern out of

Composite
Observer
Strategy
Factory Method

Clear distinction of data (model), data representation on a
screen (view) and control of data manipulation or views
(controller)

70/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

How MVC works – an overview

View(s)

Model

User

Controller

71/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of MVC, Trygve M. H. Reenskaug

Intent Interactive applications with a flexible
human-computer interface.

Motivation Adaptability and reuse

Participants MVC separates the application into three
(independent) components

Model offers core functionality and data
View provides information to the user
Controller handles user input

All three components are related by a change-propagation
mechanism.

View and Controller constitute the user interface.

72/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

MVC class diagram

myModel
myView
initialize(Model,View)
handleEvent
update

ControllercreategetData
attach

call update

coreData
setOfObservers
attach(Observer)
detach(Observer)
notify

getData
service

myModel
myController
initialize(Model)
makeController
activate
display
update

Model

View

manipulate
display

attach
call service

Observer

update

Model: does not know View or Controller beforehand,
announces change by calling update, related components request
model state by getData, if needed keep data in a data base

View: connected to Model, displays data (visually, acoustically,
or similar) normally on a screen

Controller: administrates Views, manipulates data on behalf of
the user, ”brain” of the application

73/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design Patterns of MVC in detail

74/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite I

Classification object/structural

Intent
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets you treat individual objects and
compositions of objects uniformly.

Also Known As —.

Motivation
Users can build complex diagrams out of simple components by
using graphics applications.
Problem: Code that uses the corresponding classes must treat
primitive and container objects differently, even if most of the
time the user treats them identically. The Composite pattern
describes how a recursive composition can be designed so that
the client does not have to distinguish between primitive
objects and containers.

75/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite II

Example:

aPicture

aPicture aLine aRectangle

aText aLine aRectangle

common operations: draw(), move(), delete(), scale()

76/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite III

Applicability
Use the Composite pattern when

you want to represent part-whole hierarchies of objects.

you want clients be able to ignore the difference between
compositions of objects and individual objects. Clients will
treat all objects in the composite structure uniformly.

Structure (abstract classes and operations are noted in italics)

*

children
getChild(int)
operation()

Composite

Component

operation()
getChild(int)

Leaf

operation()

77/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite IV

Participants

Component (graphic)

declares the interface for objects in the composition
implements default behavior for the interface common to
all classes, as appropriate
declares an interface for accessing and managing its child
components
(optional) defines an interface for accessing a component’s
parent in the recursive structure, and implements it if
that’s appropriate

Leaf (rectangle, line, text etc.)

represents leaf objects in the composition. A leaf has no
children.
defines behavior for primitive objects in the composition

78/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite V

Composite (picture)

defines behavior for components having children
stores child components
implements child-related operations in the Component
interface

Client (not contained in the class diagram)

manipulates objects in the composition through
Component interface

Collaborations
Clients use the Component class interface to interact with
objects in the composite structure. If the recipient is a leaf,
then the request is handled directly. If the recipient is a
composite, then it usually forwards the request to its child
components, possibly performing additional operations before
and/or after forwarding.

79/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VI

Consequences
The Composite pattern

defines class hierarchies consisting of primitive objects and
composite objects.
Whenever client code expects a primitive object, then it
can also take a composite object.

makes the client simple
Clients can treat composite structures and individual
objects uniformly. Clients normally don’t know (and
shouldn’t care) whether they’re dealing with a leaf or a
composite object. This simplifies client code, because it
avoids having to write tag-and-case-statement-style
functions over the classes that define the composition.

80/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VII

makes it easier to add new kinds of components.
Newly defined subclasses of Composite or Leaf work
automatically with existing structures and client code.
Clients don’t have to be changed for new component
classes.

can make your design overly general
The disadvantage of making it easy to add new
components is that it makes it harder to restrict the
components of a composite. Sometimes you want a
composite to have only certain components. With
Composite, you can’t rely on the type system to enforce
those constraints for you. You’ll have to use run-time
checks instead.

81/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VIII

Implementation Gamma et al. (1995) considers the following
aspects:

1. Explicit parents references
Should be defined in the Component class.

2. Sharing components
Can be useful to reduce storage requirements, but destroys
tree structure.

3. Maximizing the Component interface
Necessary to make clients unaware of the specific Leaf or
Composite classes they are using. Default implementation
in Component can be overwritten in subclasses.

82/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite IX

4. Declaring the child management operations
Declaration of add- and remove-operations in the class
Component results in transparency; all components can be
treated uniformly. Costs safety, because meaningless
operations can be called, e.g. adding to objects to leafs.
Defining child management in the Composites class gives
safety, but is at the expense of transparency (leaves and
composites have different interfaces).

5. Should Component implement a list of components?
Incurs a space penalty for every leaf.

6. Child ordering
When child ordering is an issue, applying the Iterator
pattern is recommended.

83/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite X

7. Caching to improve performance
Useful, if the compositions have to be traversed or
searched frequently.

8. Who should delete components?
In languages without garbage collection, it’s usually best
to make a composite responsible for deleting its children
when it’s destroyed.

9. What’s the best data structure for storing components?
Depends on aspects of efficiency.

84/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XI

Sample Code
Equipment such as computers and stereo components are often
organized into part-whole or containment hierarchies.

1 c l a s s Equipment {
2 p u b l i c :
3 v i r t u a l Equipment () ;
4 const char ∗ Name () { r e t u r n name ; }
5 v i r t u a l Watt Power () ;
6 v i r t u a l C u r r e n c y N e t P r i c e () ;
7 v i r t u a l C u r r e n c y D i s c o u n t P r i c e () ;
8 v i r t u a l v o i d Add (Equipment ∗) ;
9 v i r t u a l v o i d Remove (Equipment ∗) ;

10 v i r t u a l I t e r a t o r <Equipment∗>∗ C r e a t e I t e r a t o r () ;
11 p r o t e c t e d :
12 Equipment (const char ∗) ;
13 p r i v a t e :
14 const char ∗ name ;
15 } ;

85/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XII

Equipment declares operations that return the attributes of a
piece of equipment, like its power consumption and cost. A
CreateIterator -operation returns an iterator for accessing its
parts.

Further classes such as FloppyDisk as class for leaves and
CompositeEquipment for composite equipment are defined in
the Gamma et al. (1995).

86/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XIII

Known Uses
View -class in Model/View/Controller
Composite structure for parse trees
Portfolio containing assets

Related Patterns
Often the component-parent link is used for a Chain of
Responsibility.
Decorator is often used with composites. When
decorators and composites are used together, they will
usually have a common parent class.
Flyweight lets you share components, but they can no
longer refer to their parents.
Iterator can be used to traverse composites.
Visitor localizes operations and behavior that would
otherwise be distributed across Composite and Leaf
classes.

87/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

File system should be able to handle file structures of any
size and complexity.

Directories and (basic) files should be distinguished.

The code, e.g. for selecting the name of a directory should
be the same as for files. The same holds for size, access
rights, etc.

It should be easy to add new types of files (e.g. symbolic
links).

88/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the composite pattern

getChildren()
read()
write()
add()

getChildren()
read()
write()
add()

children

getName()
getProtection()

*

Node

remove()
add()
write()

File Directory

remove()

read()
getChildren()

remove()

89/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) I

Classification object/behavioral

Intent
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Also Known As Dependents, Publish-Subscribe

90/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) II

Applicability
Use the Observer pattern when

change to one object requires changing others,
and you do not know how many objects need to be
changed.

an object should be able to notify other objects without
making assumptions about who these objects are.

data changes a one place, but many other components
depend on this data

the number and identity of dependent components is not
known a priori or may change over timer

polling is not feasible.

91/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) III

Structure

GetState()

SetState()

observerState

Update()

ConcreteObserver

Attach(Observer)

Detach(Observer)

Notify()

Subject

ConcreteSubject

observers

subject

Update()

Observer

subjectState

92/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) IV

Participants

Subject

knows its observers
provides an interface for attaching and detaching Observer
objects

Observer

defines an update interface for objects that should be
notified of changes in a subject

ConcreteSubject

stores state of interest to ConcreteObserver object
sends a notification to its observers when its state changes
Also called publisher.

93/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) V

ConcreteObserver

maintains a reference to a ConcreteSubject object

stores state that should stay consistent with the
ConcreteSubject’s

implements the update-interface of Observer

components/objects depend on changes

Also called subscriber.

94/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) VI

Dynamics:

Related Patterns Mediator, Singleton

95/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

When the name of a file or directory is changed
(setName), the representation of the name on the display
will be updated, too.

96/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Observer pattern

GetName()

SetName()

Attach(Observer)

Detach(Observer)

Notify()

Subject

File

observers

subject

Update()

Observer

Display

concreteSubject concreteObserver

filename obsStateOfFilename

Update()

97/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy I

Classification object/behavioral

Intent
Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Also Known as Policy

Applicability Use the Strategy pattern when

many related classes differ only in their behavior. Strategy
provides a way to configure a class with one of many
behaviors.
you need different variants of an algorithm.
an algorithm uses data that clients should not know about.
a class defines many behaviors, and these appear as
multiple conditional statements in its operations.

98/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy II

Structure

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Context

ContextInterface()

strategy

99/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy III

Participants

Strategy

declares an interface common to all supported algorithms.
Context uses this interface to call algorithm defined by a
ConcreteStrategy .

ConcreteStrategy

implements the algorithm using the Strategy interface.

Context

is configured with a ConcreteStrategy object
may define an interface that lets Strategy access its data

Related Patterns Flyweight

100/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

It is not allowed to delete directories which contain files or
are write protected.

101/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Strategy pattern

Strategy

deleteDirectory()

ConcreteStrategyA

deleteDirectory()

ConcreteStrategyB

deleteDirectory()

ConcreteStrategyC

deleteDirectory()

isEmpty() !isEmpty() isProtected()

Directory

DirectoryInterface()

strategy

102/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method I

Classification creational

Intent
Define an interface for creating an object, but let subclasses
decide which class to instantiate.

Also Known As Virtual Constructor

Applicability Use the Factory Method pattern when

a class cannot anticipate the class of objects it must
create.

a class wants its subclass to specify the object it creates.

classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate.

103/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method II

Structure

Creator

FactoryMethod()

AnOperation()

Product

ConcreteProduct ConcreteCreator

FactoryMethod()

AnOperation()

<<create>>

104/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method III

Participants

Product (Files)

defines the interface of objects the FactoryMethod()
creates

ConcreteProduct (Text-File)

implements the Product interface

Creator (Application)

declares the FactoryMethod(), which returns an object of
type Product

ConcreteCreator (Open Office)

overrides the FactoryMethod() to return an instance of a
ConcreteProduct

Related Patterns
Abstract Factory, Template Method, Prototypes

105/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

The file system offers the creation of files, where the kind
of file to be created (.txt, .ods, .xls) depends on the
particular application.

106/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Factory Method pattern

<<create>>

Save()

Close()

Files

Open()

Text−File OpenOffice

CreateFiles()

Application

CreateFiles()

NewFiles()

OpenFiles()

107/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton I

Classification object/creational

Intent Ensure a class only has one instance and provide a
global point of access to it.

Motivation
It’s important for some classes to have exactly one instance
(e.g., printer spooler). That class should be responsible for
keeping track of its sole instance. The class can ensure that no
other instance can be created, and it can provide a way to
access the instance.

Applicability Use the Singleton pattern when

there must be exactly one instance of a class, and it must
be accessible to clients from a well-known access point.
the sole instance should be extensible by subclassing, and
clients should be able to use an extended instance without
modifying their code.

108/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton II

Structure

if uniqueInstance = null
then uniqueInstance := new Singleton
endif
return uniqueInstance

uniqueInstance
singletonData

Singleton

GetSingletonData()
singletonOperation()

instance()

Participants

Singleton

defines an instance operation that lets clients access its
unique instance.
may be responsible for creating its own unique instance.

109/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton III

Collaborations

Clients access a singleton instance solely through the
singleton’s instance-operation.

Consequences

Controlled access to the sole instance.

Improvement over global variables.

Permits refinement of operations and representation
through subclassing

Permits a variable (!) number of instances.

Related Patterns Abstract Factory, Builder, Prototype

110/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Consider users in a multi-user system:

User logs in to the system.

generates an object of the class UserSession

We want to ensure that

a only a maximum number of user sessions exist per user.
user sessions are only generated if authentication was
successful.

Basic concept:

singleton-pattern
variation necessary

111/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Singleton pattern

Declare class UserSession to be a singleton.

Instantiation of instance is named createUserSession.

Extend implementation of createUserSession by further
case distinctions (number of user sessions is smaller than
allowed maximum, successful authentication).

112/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade I

Classification object/structural

Intent Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes
the subsystem easier to use.

Applicability Use the Facade pattern when

you want to provide a simple interface to a complex
subsystem. A facade can provide a simple default view of
the subsystem that is good enough for most clients.
there are many dependencies between clients and the
implementation classes of an abstraction. Introduce a
facade to decouple the subsystem from clients and other
subsystems.
you want to layer your subsystems. Use a facade to define
an entry point to each subsystem level.

113/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade II

Structure

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Facade

Participants

Facade

knows which subsystem classes are responsible for a
request
delegates client requests to appropriate subsystem objects

subsystem classes

implement subsystem functionality
handle work assigned by the facade object
have no knowledge of the facade, i.e. no reference to it

114/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade III

Consequences The facade

shields clients from subsystem components, thereby
reducing the number of objects that clients deal with and
making the subsystem easier to use.
promotes weak coupling between subsystems and clients.
Weak coupling lets you vary the components of the
subsystem without affecting its clients.
doesn’t prevent applications from using subsystem classes
if they need to. Thus you can choose between ease of use
and generality.

Related Patterns Abstract Factory, Mediator

115/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Uniform interface for file system:

File system API contains different classes, whose
interaction is difficult to understand.

In particular, the admissible consequences for generating
file structures are not clear.

In real file systems: uniform interfaces for handling the
different phenomena file, directory, alias, . . .

116/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Facade pattern

FileFacade

ls(): String

pwd(): String

mkfile(name: String, content: String)

mkdir(name: String)
cd(dir: String)

pwd(): String

mkfile(name: String, content: String)

mkdir(name: String)
cd(dir: String)
ls(): String

FileSys

− root: Directory
− cwd: Directory

Implementing FileSys of FileFacade contains two private
attributes
Creation routine generates a root-directory “/” and sets
cwd to root
pwd calls cwd .getName
mkfile calls cwd .add
. . .

117/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy I

Classification object/structural
Intent Provide a surrogate or placeholder for another object to
control access to it.
Also Known As Surrogate
Applicability Proxy is applicable whenever there is a need for a
more versatile or sophisticated reference to an object than a
simple pointer.
Some situations in which the Proxy pattern is applicable:

1. A remote proxy provides a local representative for an
object in a different address space.

2. A virtual proxy creates expensive objects on demand
(delayed loading, delayed generation).

118/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy II

3. A protection proxy controls access to the original object.
Protection proxies are useful when objects should have
different access rights.

4. A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed.
Typical uses include

counting the number or references to the real object so
that it can be freed automatically when there are no more
references (also called smart pointer)
loading a persistent object into memory when it’s first
referenced
checking that the real object is locked before it’s accessed
to ensure that no other object can change it.

119/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy III

Structure

request()

Proxy

Subject

request()

original

Client<<use>>

RealSubject

request()

120/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy IV

Participants

Proxy

maintains a reference that lets the proxy access the real
subject
provides an interface identical to Subject’s so that a proxy
can be substituted for the real subject
controls access to the real subject and may be responsible
for creating and deleting it

Subject

defines common interfaces for RealSubject and Proxy , so
that the proxy can be used anywhere a real subject is
expected

RealSubject

defines the real object that the proxy represents

Related Patterns Adapter, Decorator
121/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Introduction of aliases

file alias

“symbolic link” in Unix
“alias” in MacOS
“shortcut” in Windows95+

operations on files and aliases

alias permits all operations that are possible on originals
forwards operations to the original
special interpretations of operations is possible in special
cases (e.g., for copying)

122/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Proxy pattern to the file system

New class Link as proxy for Node

getChildren()
read()
write()
add()

getChildren()
read()
write()
add()

File

remove()

getChildren()
read()
write()
add()

Link

remove()

*

original

children

getName()
getProtection()

*

Node

remove()
add()
write()

Directory

read()
getChildren()

remove()

123/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server I

Classification structural

Intent/Problem Buschmann et al. (1996)

Software system uses servers distributed over a network

Connection between components have to be established
before communication

Core functionality should be separated from
communication details

Clients should not need to know where servers are located

124/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server II

Also Known As -

Motivation/Applicability Services are located on different
servers

Structure

125/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server III

Participants/Consequences/Implementation

Provide a dispatcher to act as an intermediate layer
between client and server

Dispatcher implements a name service to provide location
transparency

Dispatcher establishes the communication

Servers provide services to other components

Servers have unique names and are connected to the
dispatcher

Clients rely on the dispatcher to locate a particular service
and to establish a connection

126/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server IV

Dynamics

127/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server V

Sample Code see Buschmann et al. (1996)
Known Uses RPCs, CORBA
Related Acceptor and Connector

128/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) I

Classification structural
Intent/Problem Buschmann et al. (1996)

Commonly distributed applications use efficient low-level
mechanisms for inter-process communication (e.g.,
TCP/IP, message queues)
Low-level mechanisms often introduce dependencies on
the underlying operating system and network protocol,
which restricts portability
Higher-level mechanisms like remote procedure calls are
less efficient
Communication mechanism should be exchangeable
The senders should only need to know the names of their
receivers
The communication should not have major impact on
performance

129/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) II

Also Known As Peer-to-peer
Motivation/Applicability Efficient communication between
peers
Structure

130/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) III

Participants/Consequences/Implementation

Distributed peers collaborate to solve a particular problem.

A peer may act as a client, a server, or both.

The details of the underlying communication mechanism
are hidden from peers

System-specific functionality (name mapping to physical
locations, communication channel establishment,
marshaling) is encapsulated into separate components.

A forwarder marshals the data and sends messages to
other peers

A receiver receives and unmarshals the data.

131/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) IV

Dynamics

132/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on design patterns? I

Design patterns are object-oriented patterns at detailed
design level.

They are closer to implementation than architectural
styles.

According to the classification of Gamma et al. (1995),
there are behavioral, creational and structural patterns.

Design patterns support achieving desirable properties in
implementing object-oriented software, e.g. independent
modification of parts, limitation of communication paths
etc.

133/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on design patterns? II

We have presented and used the following patterns for
MVC:

1. Composite
2. Observer
3. Strategy
4. Factory Method

plus the patterns
5. Singleton
6. Facade
7. Proxy
8. Client-dispatcher-server
9. Forwarder-Receiver

134/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idioms

135/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Characteristics

Specific patterns for (object-oriented) programming
languages

Low abstraction level

Describe, how certain aspects of components or relations
between components can be implemented by means of a
specific programming language

136/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Literature

Buschmann et al. (1996)

Coplien (1992)

Coplien (1998)
http://users.rcn.com/jcoplien/Patterns/

C++Idioms/EuroPLoP98.html

137/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application

Solution of implementation-specific problems in a certain
programming language, e.g.

memory management
creation of objects

Implementation of design patterns

Description of programming styles, e.g.

names for operations
formatting of source code

Simplified communication between developers

138/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for implementing “Singleton” in C++ I

Name Singleton (C++)

Problem An implementation of the Singleton design pattern is
needed to ensure that only one instance of a class exists
at runtime.

Solution Change the constructor of the corresponding class to a
private operation. Declare a static attribute theInstance,
which refers to the single instance of the class. Initialize
the pointer in the class declaration with null. Define a
public static operation getInstance(), which returns the
value of the attribute. When the operation is called for
the very first time, the single instance of the class is
constructed using the operator new. Furthermore, this
instance is assigned to the attribute theInstance.

139/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for implementing “Singleton” in C++ II

Example

class Singleton {
static Singleton *theInstance;

Singleton();

public:

static Singleton *getInstance() {
if (! theInstance)

theInstance = new Singleton;

return theInstance;

}
};
//...

Singleton* Singleton::theInstance = 0;

140/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for Implementing “Singleton” in Smalltalk I

Name Singleton (Smalltalk)

Problem An implementation of the Singleton design pattern is
needed to ensure that only one instance of a class exists
at runtime.

Solution Override the operator new of the corresponding class
such that it triggers an exception. Add the class attribute
TheInstance to the class, which contains the single
instance of the class. Implement the operation
getInstance(), which returns this instance. When the
operation is called for the very first time, the single
instance of the class is constructed using the operator
super new. Furthermore, this instance is assigned to the
attribute TheInstance.

141/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for Implementing “Singleton” in Smalltalk II

Example

new

self error: ’cannot create new object’

getInstance

TheInstance isNil ifTrue:

[TheInstance := super new].

^TheInstance

142/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer I

Example Problem of the C++ memory management. Several
clients have a reference to a commonly used object. This
issue leads to two unwanted situations:

1. A client object deletes the commonly used object
while it is referenced by another client.

2. No client object references the commonly used
object, but the object was not deleted.

Context Memory management of dynamically allocated,
multiple-referenced instances of a class.

143/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer II

Problem Objects will be passed as parameters to functions
using pointers. The following forces rule:

several clients refer to the same object

“dangling references” should be avoided

object that are not referenced should be deleted

solution should contain only a small portion of
additional client code

144/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer III

Solution counting of references of multiple-referenced
objects

body class will be extended by reference counter

only a handle class is allowed to refer to objects of
the body class

objects will be passed as value parameters and hence
automatically allocated and deleted

handle class manages reference counter of body class
instances

by overloading the operator “->” in
object->operation() using operator->() in the
handle class, its instances can be used as if they were
pointers on body class instances

145/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer IV

Client

Handle h

Handle

Body *body

operator−>()

~Handle()

operator=()

Handle(Handle&)

Handle(...)

Body

int refCounter

service()

−~Body()

−Body(...)

{holds by value}1 1..* 1

Implementation 1. Declare the constructors and the
destructor of the body class as private or protected
methods to prevent uncontrolled creation and
deletion of objects.

2. Declare the handle class as a friend class of the body
class; hence it can access the features of the body
class.

3. Extend the body class by a reference counter
(refCounter).

146/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer V

4. Add an attribute to the handle class pointing at a
body object.

5. Implement the copy constructor (Handle(Handle&))
and the assignment operator of the handle class by
copying the pointer to the body object and
incrementing the reference counter. Implement the
destructor (∼Handle) of the handle class by
decrementing the reference counter and deleting the
body class object (if the reference counter reaches 0).

6. Implement the public arrow operator of the handle
class as follows:

Body* operator->() const { return body; }
7. Extend the handle class by one or more constructors,

which create a body class instance the handle object
points at. Each of these constructors initializes the
reference counter of its body class object with 1.

147/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer VI

Sample solution C++-Code . . .

Variants CountedBody -Idiom (cf. Coplien 1992): each client
has the illusion that it uses its own body class object,
even though it is referenced by other clients. The body
class object must be copied if a client modifies it.

148/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned?

Idioms are patterns on a low level of abstraction.

They are tailor-made for specific (object-oriented)
programming languages.

They constitute concrete guidelines to solve specific
programming problems in a specific programming
language.

149/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Summary

150/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Patterns for different software development phases

Architectural styles
Structuring the software using components and connectors

Design patterns
Fine-grained design of architectural components,
communication between components or objects

Idioms
Realization of a problem solution using a specific
programming language

151/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Conclusions

There are patterns for practically all phases of software
development.

Patterns enable developers to construct software
systematically.

Patterns have the potential to improve not only the
software development process, but also the resulting
software products.

152/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components

153/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component technology - introduction

New trend in software technology

Basic idea: build software system from smaller (already
developed and tested) parts

Re-build (compiling) of components usually not nessecary;
we distingish between

White-box components (source code available), and
Black-box components (only binary available)

Interface desciptions and component model/standard are
important

Current Technologies: (Enterprise) Java Beans, OSGi
Service Platform, Component Object Model (COM),
Corba Component Model (CCM)

The component approach tries to apply standard
engineering methods to software development

154/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Definitions of “Component” I

Generally, “component” only means “part of ...”

Doug McIlroy coined the term “software-component” at
the Garmisch conference in October 1968

The term is overloaded, e.g., for software architectures

155/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Definitions of “Component” II

Some definitions for (black-box) components:

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties. (Szyperski et al. (2002))

A package of software that is independently developed and
that defines interfaces for the services it provides and the
services it requires. (D’Souza and Wills (1998))

A software element that conforms to a component model
and can be independently deployed and composed without
modification according to a composition standard
(Heineman and Councill (2001)).

More definitions, see Szyperski et al. (2002), Chapter 11.

156/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component forms I

Features of components have in the different life-cycle states
(Cheesman and Daniels (2001)):

To use a component it must conform to the Component
Standard in use, like Enterprise Java Beans (EJB) or
Microsoft COM+.

Component Specification: valid definition of the
component.

Component Interface or just Interface is a major part of
the component specification.

It should be possible to replace one Component
Implementation with another with the same Component
Specification.

Installed Component: installed copy of the
implementation.

Component Object: instance of an Installed Component.
157/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component forms II

158/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract
What are preconditions and postconditions good for?

159/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contracts in daily life, Meyer (1997)

Contractual partners are clients and sellers or service
providers.

Both expect advantages from the contract and are willing
to make a commitment.

160/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example

I want to travel from Berlin to Duisburg.

Commitments Advantages
Passenger Pay ticket getting to Duisburg

Be there at
departure time
must keep
precondition

Has advantages from
the postcondition

Traffic
provider

Must take the
passenger to
Duisburg

receives the price for the
ticket; does not have to
take passengers who have
not paid or did not arrive
in time

Must guaran-
tee postcondi-
tion

Can assume precondi-
tion

161/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of explicit contracts

Meyer:

A contract document protects both the client, by specifying
how much should be done, and the supplier, by stating that the
supplier is not liable for failing to carry out tasks outside of the
specified scope.

Application to software
A contract is a formal agreement between a software / a class
and its environment / clients. It specifies the rights and duties
for both sides.

162/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contents of implementation contracts

Precise description of the functional properties of instances of a
class at its interface:

What does the class require from its clients?

What does the class guarantee to its clients?

What combinations of attribute values are permitted?

163/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contract

If the client fulfills the requirements of the server, then the
server will provide the specified functionality.

The client can rely on the assertions of the server. The
internals of the server class are of no interest to the client.

If the client does not fulfill the requirements of the server,
then the server has no obligations whatsoever, it can
behave arbitrarily (including breakdown).

It is not the server that has to test if the
precondition holds, but the client!

164/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Stack (generic class)

class Stack[T]
attribute nb elements: integer

max size: integer
method empty(): Boolean

full(): Boolean
push(x: T)
pop()
top(): T

end class Stack[T]

165/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of the stack operations with
preconditions and postconditions I

empty()

pre true
post noChange and

Result = true ⇔ nb elements = 0

full()

pre true
post noChange and

Result = true ⇔ nb elements = max size

push(x: T)

pre not full
post not empty and

nb elements = old nb elements + 1 and
top = x

166/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of the stack operations with
preconditions and postconditions II

pop()

pre not empty

post not full and
nb elements = old nb elements - 1
and ”top element of the stack is deleted”

top(): T

pre not empty

post noChange and
Result = ”top element of the stack”

167/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Commitments and advantages

Commitments Advantages

Client Call push(x) only if
stack is not full

Element x is put on
stack, top() results in x ,
nb elements increases by 1.

Must keep precondi-
tion

Has advantages from
postcondition

Server Makes sure that x is
placed on the stack

Unnecessary to handle the
case if stack is full.

Must guarantee
postcondition

Can assume precondition

168/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Method specification – precondition

Methods form the operational interface between client and
server.
Hence, a contract on the level of methods must describe the
condition under which a client is allowed to call a method
(precondition) and the effect the server guarantees in that case
(postcondition).

Precondition: Predicate on the parameters of the method and
the attributes of the class.

Requirement of the server to its clients – must hold when
method is called.
Example: not full

169/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Method specification – postcondition

The effect of a method describes the state that holds after the
method has terminated and the values of the output
parameters in terms of the input parameters and the state that
holds when the method is called.

Postcondition: Relation between input parameters, attributes
of the class before executing the method, and
the attributes of the class after executing the
method, and the output parameters.

Example: not empty and nb elements = old nb elements + 1
and top = x

170/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Class invariant

Not all combinations of attribute values describe an admissible
instance of a class.

class invariant: Property describing an integrity condition on
the attributes of a class.

Example: 0 ≤ nb elements ≤ max size and max size ≥ 1

The class invariant is implicitly contained in the pre- and
postconditions of all methods!

171/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contract – Relation between client and server

Commitment of the client

Satisfy preconditions of creation routines
(constructor)
Satisfy preconditions of methods

Commitment of the server:

Creation routines establish class invariant
Methods keep class invariant
Methods establish postconditions

172/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Relation to abstract data types

Classes correspond to implementations of abstract data
types (ADTs).

In an ADT specification of a stack, we would have the
following axioms:
pop(push(x,s)) = s
top(push(x,s)) = x

These axioms cannot be expressed in terms of pre- and
postconditions of single methods, because they express
relations between several different methods.

However, a stack implementation should guarantee that
the axioms are fulfilled.

173/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contracts and inheritance

If an inheritance hierarchy is part of an interface, i.e., clients
can access servers polymorphically, then a subclass must keep
all contracts of all superclasses.

The class invariant must imply all the class invariants of
the superclasses.

Preconditions of re-defined methods must be implied by
the preconditions of the super-methods.

Postconditions of re-defined methods must imply the
postconditions of the super-methods.

These conditions guarantee that a client does not experience
any “surprises” when using a polymorphic server without
knowing its exact dynamic type.

174/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract: Overview

State

Method

Input Output

Pre−state Post−state

Precondition describes input and pre-state

Postcondition describes relation between input/pre-state
and output/post-state

175/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract: If precondition is not satisfied

State

Method

Input ???

Pre−state ???

If we call a method with the precondition not satisfied

we do not know if there is any output and – if so – how it
looks like

we do not know if the method will terminate and – if so –
how the post-state will look like

176/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of Design by Contract

Contracts make given restrictions explicit.

Clear distribution of functionality at the interface between
client and server.

Avoiding unnecessary checks through overly defensive
programming.

Abstraction from the implementation of the server
(replaceability).

(Partial) checks at runtime by assertions.

177/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

The principle of design by contract makes explicit the
obligations of users and providers of services.

The caller of a method/a procedure (i.e., the client) must
guarantee that the precondition is fulfilled; the server must
in turn guarantee that the postcondition is fulfilled.

Assertions should be added to the code and checked at
runtime. Thus, errors are easier to find.

178/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO

This part describes approaches for structuring object-oriented
software systems into (white-box) components. Often, these
components cannot be built separately.

179/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO I

In the source code and in UML models, we usually have
associations between classes. These associations can be either
references to other components, or the referenced objects are
part of one component.

class ClassA implements InterfaceI{
private ClassB b;

private ClassC c;

}
class ClassB implements InterfaceI{

private ClassC c;

}
class ClassC {

...

}

180/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO II

ClassC

ClassA

ClassB

ClassC

ClassBClassA

<<interface>>

<<provides>>

ClassA

InterfaceI

ClassBb

c

ClassC

c

Extracted from Code:

<<provides>>

ClassA

ClassB

ClassC

Design variant 3:

Design variant 2:

Design variant 1:

181/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO III

Be careful
Not all objects can be clearly associated to a certain
component: some objects are used to exchange complex data
between components and exchanged as parameters, e.g. a user
object is created in the user interface component and sent to
the application component for further processing.

182/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO IV

Example:

Class1PartOfA

Class2PartOfA

Address

name: String

street: String

phone: String

isValid(): Bool

Address

name: String

street: String

phone: String

isValid(): Bool

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceI

InterfaceJ

ClassA

Class1PartOfA

Class2PartOfA

InterfaceJ

InterfaceI

InterfaceI<<provides>>

183/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels I

A component may be:

Just an object of a class

May use other objects to provide its functionality
The public operations of the class represent the
component interface
It is not clear which of the objects used to provide the
functionality (associated) are part of that component, and
which are not.
Other objects created by this object can be considered to
be part of the component
Usually are not built separately

184/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels II

Object with explicit provided interfaces

May use other object to provide its functionality
Still not clear which of the objects used to provide the
functionality are part of that component
Implementation can be better replaced
Usually are not built separately

Notation: Class with provided Interface / Lollipop notation /
Component according Cheesman and Daniels (2001):

<<interface>>

ClassA

InterfaceI
<<interface>>

<<provides>>

ClassA

InterfaceI

ClassA
<<comp spec>>ClassA

InterfaceI

ClassA

185/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels III

Object with explicit provided and required interfaces

Loose coupling, other components used to provide the
functionality are connected during instantiation or
initialization
Advantage: components can be easily tested separately
Other object used to provide the functionality may be
created, and they are considered to be part of the
component

Notation for 2 connected classes / Lollipop notation / Component
according Cheesman and Daniels (2001) / Composite Structure:

<<interface>>

ClassA

InterfaceI

ClassA

ClassUsingAClassUsingA

ClassA

ClassUsingA

InterfaceI

<<interface>>

<<provides>>

ClassA

InterfaceI

<<requires>> <<uses>> ClassUsingA

ClassA
<<comp spec>>

<<comp spec>>

ClassUsingA

InterfaceI

ClassA

ClassUsingA

186/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels IV

Composition in class diagrams and composite structure
diagrams:

Class1PartOfA

Class2PartOfA

<<interface>>

<<provides>>

ClassA

InterfaceI

InterfaceJ

ClassA

Class1PartOfA

Class2PartOfA

InterfaceJ

InterfaceI

InterfaceI<<provides>>

187/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels V

Object with explicit provided and required interfaces that
makes use of a component standard (e.g., providing events
or messages) to communicate with other components

Loose coupling, other components used to provide the
functionality are connected at run-time

Advantage: components can be easily tested separately

Usually, can be built separately

Same notation as for objects with explicit provided and required

interfaces

188/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels VI

All components are separate processes that communicate
using events or messages

Loose coupling, other components used to provide the
functionality are connected at run-time

Advantage: components can be easily tested separately

Usually, can be built separately

Same notation as for objects with explicit provided and required

interfaces

189/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Simple Java Components

This part describes an implementation approach for
components with explicit provided and required interfaces.

190/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of components with explicit
provided and required interfaces

A component has provided and required interfaces that
can be connected with other components.

A component only uses functionality from its required
interfaces, from the programming language, and a limited
set of operations of the operating system (e.g., tasks,
threads, memory allocation, timers, messages,
synchronization mechanisms).

Provided and required interfaces are represented by
interface classes.

Interface operations are called synchronously.

Advantage: These classes / components can be easily
tested separately.

191/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of interfaces in Java

� interface �
if name

method 1 (par1: Integer)
method 2 (): String

package project_name;

public interface if_name {

public void method_1 (int par1);

public String method_2 ();

}

The project name should be added as a package. Otherwise
additional parameters are necessary to compile the project.
Note: int is a simple data type, and String is a class.

192/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of provided interfaces in Java I

Tuner

bat2: Batterybat1: Battery

AndSpeaker
Amplifier

PowerSupply PowerSupply

LineInOut

Each provided interface is defined as an interface class, e.g.:

public interface LineInOut {

public void transmitMusic();

}

public interface PowerSupply {

public void powerOn();

}

193/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of provided interfaces in Java II

A component can implement / provide several interfaces, e.g.:

public class AmplifierAndSpeaker implements

LineInOut, PowerSupply {

public AmplifierAndSpeaker (){} //constructor

public void transmitMusic() { Play;}

public void powerOn() { Action2;}

}

All provided operations must be implemented as methods.

194/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java I

A component can use / require several interfaces, defined as
interface classes.

public class Tuner implements PowerSupply {

private LineInOut outputDevice;

public Tuner(){ outputDevice = NULL; }

public void connectTo(LineInOut par) {outputDevice = par;}

public void powerOn() {

while (true) {

if (outputDevice!=NULL) outputDevice.transmitMusic();

}

}

195/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java II

The required interfaces become private attributes
(outputDevice of type LineInOut).

The component has to provide methods to connect the
component to the required components (connectTo). In
these connect methods, the private attributes are
initialized.

Via these private attributes, the connected components
can be used. They should only be used if they are
initialized (if (outputDevice!=NULL) ...).

Alternatively, it is possible to leave out the method connectTo

and initialize the connected interface in the constructor.

The component Tuner also provides the interface
PowerSupply and implements the method powerOn.

196/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java III

public class Battery {

private PowerSupply suppliedDevice;

public Battery(){ suppliedDevice=NULL }

public void connectTo(PowerSupply suppliedDev) {

suppliedDevice = suppliedDev;

suppliedDevice.powerOn();

}

}

The component Battery powers on the supplied device when
connected. It requires the interface PowerSupply.

197/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java IV

The components bat1, bat2, myTuner, and myAmp can be
connected as follows:

Tuner

bat2: Batterybat1: Battery

AndSpeaker
Amplifier

PowerSupply PowerSupply

LineInOut

AmplifierAndSpeaker myAmp = new AmplifierAndSpeaker();

Tuner myTuner = new Tuner();

Battery bat1 = new Battery();

Battery bat2 = new Battery()

myTuner.connectTo(myAmp);

bat1.connectTo(myTuner);

bat2.connectTo(myAmp);

198/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component specifications

Structural notations for components:

Composite structure diagrams

Class diagrams

Component diagrams

Additionally to the structure, the behavior of the components
must be described using

Pre- and postconditions for all interface operations (design
by contract)

Sequence diagrams

State machines

199/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

In object orientation, a component can take different
forms. These different forms come along with different
coupling levels.

Advantage of loosely coupled components: they can be
built and tested separately.

Provided and required interfaces of components
implemented in Java are represented by interface classes.
The component has to provide methods to connect the
component to the required component.

200/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans

201/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans I

JavaBeans

are reusable software components for Java.

can be manipulated visually in a builder tool (e.g., Sun’s
NetBeans).

are classes written in the Java programming language.

encapsulate many objects into a single object (the
bean).

conform to the following convention: JavaBeans are

serializable.
have a no-argument constructor.
allow access to properties using getter and setter
methods.

202/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans II

More information:

Sun’s JavaBeans product webpage:
http://java.sun.com/javase/technologies/

desktop/javabeans/index.jsp

Sun’s JavaBeans API webpage:
http://java.sun.com/javase/technologies/

desktop/javabeans/api/index.html

Sun’s JavaBeans tutorials:
http://java.sun.com/docs/books/

tutorial/javabeans/

203/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Events

Events

are a mechanism for propagating state change
notifications between a source JavaBean and one or more
target JavaBeans.

are the basis to plug JavaBeans together in an
application builder.

can be caught and processed by JavaBeans.

have many different uses, but a common example is their
use in a window system toolkit for delivering notifications
of mouse actions, widget updates, keyboard actions, etc.

204/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Event Model I

Event notifications are propagated from sources to
listeners by Java method invocations on the target listener
objects.

Each distinct kind of event notification is defined as a
distinct Java method. These methods are then grouped in
EventListener interfaces that inherit from
java.util.EventListener.

Event listener classes identify themselves as interested in a
particular set of events by implementing some set of
EventListener interfaces.

205/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Event Model II

The state associated with an event notification is normally
encapsulated in an event state object that inherits from
java.util.EventObject and which is passed as the sole
argument to the event method.

Event sources identify themselves as sourcing particular
events by defining registration methods and accept
references to instances of particular EventListener
interfaces.

In circumstances where listeners cannot directly implement
a particular interface, or when some additional behavior is
required, an instance of a custom adaptor class may be
interposed between a source and one or more listeners in
order to establish the relationship or to augment behavior.

206/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Properties

Properties

are attributes of a Java Bean that can affect its
appearance or its behavior.

Example: a GUI button might have a property named
“Label” that represents the text displayed in the button.

can be accessed by other JavaBeans calling their getter
and setter methods.

typically are persistent, so that their state will be stored
away as part of the persistent state of the JavaBean.

can have arbitrary types, including both built-in Java types
such as int and class or interfaces types such as
java.awt.Color.

207/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Accessor Methods

For readable properties there will be a getter method to
read the property value.

For writable properties there will be a setter method to
allow the property value to be updated.

For simple properties the accessor type signatures are:

simple setter void setFoo(PropertyType value);

simple getter PropertyType getFoo();

208/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Indexed Properties I

An indexed property supports a range of values.
Whenever the property is read or written one specifies an
index to identify which value is required.

Property indexes must be of type int.

For indexed properties the accessor type signatures are:

indexed setter
void setter(int index, PropertyType

value);

indexed getter
PropertyType getter(int index);

209/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Indexed Properties II

array setter
void setter(PropertyType values[]);

array getter
PropertyType[] getter();

The indexed getter and setter methods may throw a
java.lang.ArrayIndexOutOfBoundsException runtime
exception if an index is used that is outside the current
array bounds.

210/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties I

Sometimes when a JavaBean property changes then either
the JavaBeans container (i.e., a program that uses the
JavaBean) or some other JavaBean may wish to be
notified of the change.

A JavaBean can choose to provide a change notification
service for some or all of its properties.

Such properties are commonly known as bound
properties, as they allow other components to bind
special behavior to property changes.

The PropertyChangeListener event listener interface is
used to report updates to simple bound properties.

211/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties II

If a JavaBean supports bound properties then it should
support a pair of event listener registration methods for
PropertyChangeListener:

add listener
public void

addPropertyChangeListener

(PropertyChangeListener x);

remove listener
public void

removePropertyChangeListener

(PropertyChangeListener x);

212/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties III

When a property change occurs on a bound property the
JavaBean should call the
PropertyChangeListener.propertyChange method on
all registered listeners, passing a PropertyChangeEvent

object that encapsulates the name of the property and its
old and new values.

The event source should fire the event after updating its
internal state.

213/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: JavaBean Person I

The class Person has a property name, that can be changed
using setName(). After a change, the JavaBean informs all
listeners of this change.

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

public class Person

{

private String name = "";

private PropertyChangeSupport changes =

new PropertyChangeSupport(this);

public void setName(String name)

{

String oldName = this.name;

this.name = name;

changes.firePropertyChange("name", oldName, name);

}
214/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: JavaBean Person II

public String getName()

{

return name;

}

public void addPropertyChangeListener(

PropertyChangeListener pcl)

{

changes.addPropertyChangeListener(pcl);

}

public void removePropertyChangeListener(

PropertyChangeListener pcl)

{

changes.removePropertyChangeListener(pcl);

}

}

215/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change I

Registered PropertyChangeListener can react to the
PropertyChangeEvent.

public class ReportChange implements PropertyChangeListener {

@Override

public void propertyChange(PropertyChangeEvent e)

{

System.out.printf("Property ’%s’: ’%s’ -> ’%s’%n",

e.getPropertyName(), e.getOldValue(), e.getNewValue());

}

}

216/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change II

Person person = new Person();

ReportChange reportChange = new ReportChange();

person.addPropertyChangeListener(reportChange);

person.setName("Ulli");

// expected output: Property ’name’: ’’ -> ’Ulli’

person.setName("Ulli");

// no output expected

person.setName("Chris");

// expected output: Property ’name’: ’Ulli’ -> ’Chris’

217/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties I

Sometimes when a property change occurs some other
bean may wish to validate the change and reject it if it is
inappropriate.

We refer to properties that undergo this kind of checking
as constrained properties.

In Java Beans, constrained property setter methods are
required to support the PropertyVetoException. This
documents to the users of the constrained property that
attempted updates may be vetoed.

218/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties II

The following operations in the setter method for the
constrained property must be implemented in this order:

1. Save the old value in case the change is vetoed.

2. Notify listeners of the new proposed value, allowing them
to veto the change.

3. If no listener vetoes the change (no exception is thrown),
set the property to the new value.

219/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties III

A simple constrained property might look like:
PropertyType getFoo();

void setFoo(PropertyType value)

throws PropertyVetoException;

In the body of a setter method, the fireVetoableChange

method is invoked on the VetoableChangeSupport

attribute of the Java Bean before the
firePropertyChange method is invoked on the property
that is changed.

220/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties IV

A simple setter method for a constrained property might
look like:
public void setFoo(boolean foo)

throws PropertyVetoException{
boolean oldValue = this.foo;

vetos.fireVetoableChange("foo",

oldValue, foo);

this.foo = foo;

changes.firePropertyChange("foo",

oldValue, foo);

}

221/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties V

The VetoableChangeListener event listener interface is
used to report updates to constrained properties. If a bean
supports constrained properties then it should support a
pair of event listener registration methods for
VetoableChangeListeners:
public void addVetoableChangeListener

(VetoableChangeListener x);

public void removeVetoableChangeListener

(VetoableChangeListener x);

222/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VI

When a property change occurs on a constrained property
the bean should call the
VetoableChangeListener.vetoableChange method on
all registered listeners, passing a PropertyChangeEvent

object that encapsulates the name of the property and its
old and new values.

223/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VII

sd A Non-Vetoed Property Change

Constrained
PropertyBean

Constrained
Property

vetos : Vetoable
ChangeSupport

vcl : Vetoable
ChangeListener

changes : Property
ChangeSupport

pcl : Property
ChangeListener

set

fireVetoableChange

vetoableChange

firePropertyChange

propertyChange

224/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VIII

If the event recipient does not wish the requested edit to
be performed it may throw a PropertyVetoException.
It is the source bean’s responsibility to catch this
exception, revert to the old value, and issue a new
VetoableChangeListener.vetoableChange event to
report the reversion.

The initial VetoableChangeListener.vetoableChange
event may have been relayed to a number of recipients
before one vetoes the new value.

225/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties IX

If one of the recipients vetoes, then one has to make sure
that all the other recipients are informed (fire another
VetoableChangeListener.vetoableChange event) that
the old value is restored. The source may choose to ignore
vetoes when reverting to the old value.

The event source should fire the event before updating its
internal state.

226/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change I

Registered PropertyChangeListener can react to the
PropertyChangeEvent.

public class ReportChangeVeto implements VetoableChangeListener {

@Override

public void vetoableChange(PropertyChangeEvent e)

throws PropertyVetoException

{

if ("Name".equals(e.getPropertyName()))

if ("Ulli".equal.(e.getNewValue()))

throw new PropertyVetoException("Not with me", e);

}

}

227/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change II

Person person = new Person();

ReportChangeVeto reportChangeVeto = new ReportChangeVeto();

person.addVetoableChangeListener(reportChangeVeto);

try

{

person.setName("Ulli");

}

catch (PropertyVetoException e)

{

// expected output: java.beans.

// PropertyVetoException: Not with me

e.printStackTrace();

}

228/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change III

sd A Vetoed Property Change

Constrained
PropertyBean

Constrained
Property

VetoableChange
Support

vcl:
VetoableChange

Listener

ovcl:
VetoableChange

Listener

set

f ireVetoableChange

vetoableChange

vetoableChange

throw
(PropertyVetoExceptio

n)

vetoableChange

vetoableChange

throw
(PropertyVetoExceptio

n)

229/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Component Model

Component model to specify the characteristics of a
JavaBean according to this model.

Based on a formalization of Sun’s JavaBeans model by
Heisel et al. (2002).

Described as a metamodel using a UML class diagram and
OCL constraints.

Instances of this metamodel constitute concrete JavaBean
specifications.

230/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel I
Class Model

231/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel II
OCL Constraints

The same vcs object must be used by all objects belonging to
the set cps.

context ConstrainedPropertyBean

inv: self.cps->forAll(

cp:ConstrainedProperty|cp.vcs=self.vcs)
232/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel III
OCL Constraints

The content of value is returned.

context ConstrainedProperty.get

post: result=self.value

233/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating a Simple JavaBean I

Write the SimpleBean code. Put it in a file named
SimpleBean.java.

import java.awt.Color;

import java.beans.XMLDecoder;

import javax.swing.JLabel;

import java.io.Serializable;

public class SimpleBean extends JLabel

implements Serializable {

public SimpleBean() {

setText("Hello world!");

setOpaque(true);

setBackground(Color.RED);

setForeground(Color.YELLOW);

234/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating a Simple JavaBean II

setVerticalAlignment(CENTER);

setHorizontalAlignment(CENTER);

}

}

SimpleBean extends the javax.swing.JLabel graphic
component and inherits its properties, which makes the
SimpleBean a visual component.

SimpleBean also implements the
java.io.Serializable interface.

235/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File I

Create a manifest, the JAR file, and the class file
SimpleBean.class.

Use the Apache Ant (http://ant.apache.org/) tool to
create these files.

Apache Ant is a Java-based build tool that enables one to
generate XML-based configurations files as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<project default="build">

<dirname property="basedir" file="${ant.file}"/>

<property name="beanname" value="SimpleBean"/>

<property name="jarfile"

value="${basedir}/${beanname}.jar"/>
236/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File II

<target name="build" depends="compile">

<jar destfile="${jarfile}"

basedir="${basedir}" includes="*.class">

<manifest>

<section name="${beanname}.class">

<attribute name="Java-Bean" value="true"/>

</section>

</manifest>

</jar>

</target>

237/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File III

<target name="compile">

<javac destdir="${basedir}">

<src location="${basedir}"/>

</javac>

</target>

<target name="clean">

<delete file="${jarfile}">

<fileset dir="${basedir}" includes="*.class"/>

</delete>

</target>

</project>

238/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE I

It is recommended to save an XML script in the
build.xml file, because Ant recognizes this file name
automatically.

Load the JAR file. Use the NetBeans IDE GUI Builder to
load the jar file.

1. Start NetBeans.

2. From the file menu select “New Project” to create a new
application for the bean. You can use “Open Project” to
add the bean to an existing application.

3. Create a new application using the “New Project Wizard”.

239/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE II

4. Select a newly created project in the list of projects,
expand the “Source Packages” node, and select the
“Default Package” element.

5. Click the right mouse button and select “New -
JFrameForm” from the pop-up menu.

6. Select the newly created form node in the project tree. A
blank form opens in the GUI builder view of an editor tab.

7. Open the palette manager for “Swing/AWT components”
by selecting “Palette Manager” in the “Tools” menu.

8. In the “Palette Manager” window select the beans
components in the palette tree and press the “Add from
JAR” button.

240/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE III

9. Specify a location for the SimpleBean JAR file and follow
the “Add from JAR Wizard” instructions.

10. Select the palette and properties options from the
“Windows” menu.

11. Expand the beans group in the palette window. The
SimpleBean object appears. Drag the SimpleBean object
to the GUI builder panel.

241/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE IV

The following figure represents the SimpleBean object loaded
in the GUI builder panel:

242/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Inspecting the JavaBean’s Properties and Events

The SimpleBean properties will appear in the Properties
window.

For example, one can change a background property by
selecting another color.

To preview the form, use the “Preview Design” button of
the GUI builder toolbar.

To inspect events associated with the SimpleBean object,
switch to the events tab of the “Properties” window.

243/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

JavaBeans are (mainly) visual components according to a
component model by Sun.

Consequently, they can be used to build graphical user
interfaces using builder tools such as NetBeans.

Formalization of the JavaBeans component model using
UML class diagram, sequence diagrams, and OCL.

Construction of a simple JavaBean.

244/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform

245/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform I
Wütherich et al. (2008)

OSGi defines a dynamic component model for Java, ie.
components can be installed, updated and uninstalled
without stopping or restarting the platform.

Components provided by OSGi are called bundles.
A bundle

contains an additional file with descriptive information, e.g.
about provided and required interfaces.
can implement a service. Services are registered at a
central Service Registry where other bundles can request
it.
can be in different states (e.g. installed, active). The
bundle lifecycle can be managed by the OSGi Framework
API.

246/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform II
Wütherich et al. (2008)

OSGi

used to stand for Open Service Gateway initiative.

is a standard defined by the OSGi Alliance
(http://www.osgi.org).

is used in applications ranging from mobile phones to the
Eclipse IDE1.

is realized by open source (e.g. Eclipse Equinox) and
commercial implementations.

consists of two parts: OSGi Framework and OSGi
Standard Services

1Integrated Development Environment247/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework

248/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework (OSGi Alliance (2010b)) I

The OSGi Framework implements a container for bundles.

The functionality of the framework is divided into the
following layers:

Execution Environment Defines the Java environment that is
needed to execute the OSGi Framework.

Module Defines a component model for Java.

Lifecycle Defines the states of a bundle.

Service Defines a service model.

Security Defines security relevant aspects.
249/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework (OSGi Alliance (2010b)) II

Interactions between layers:

250/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bundles

A Bundle
represents a component in the OSGi Framework.
consists of one or more Java packages.
is deployed as a Java ARchive (JAR) with additional
descriptive information.

The descriptive information is stored within the bundle
manifest MANIFEST.MF.

251/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundle Manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: My first bundle

Bundle-SymbolicName: org.example.mybundle

Bundle-Version: 1.0.0

Bundle Manifest Header Optional Description
Bundle-ManifestVersion yes Number corresponds to ver-

sion of the OSGi specification
(2 for current version).

Bundle-Name yes Defines a readable name for
the bundle.

Bundle-SymbolicName no Bundle symbolic name and
version must identify a unique
bundle.

Bundle-Version yes Specifies the version of the
bundle (default value is
0.0.0).

252/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages I

By default, the classes contained in a bundle are not
visible to classes from other bundles.

In order to use classes of one bundle in another bundle,
they must be exported and imported.

In OSGi, only packages (and thereby the contained
classes) may be exported and imported.

253/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages II

In order to offer a provided interface, a bundle must export
the package containing the interface. Therefore the
following line has to be added to the corresponding
MANIFEST.MF:
Export-Package: org.example.mypackage,

org.example.anotherpackage

A bundle that requires these interfaces has to import the
packages. This is done by adding the following line to the
MANIFEST.MF of that bundle:
Import-Package: org.example.mypackage,

org.example.anotherpackage

The OSGi Framework resolves these dependencies by
matching the imports and exports automatically as soon
as both bundles are installed.

254/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages III

An exported package can be supplied with a version:
Export-Package:

org.example.mypackage;version="1.0.0"

(The default value is 0.0.0.)

For an imported package, a version range can be specified:
Import-Package:

org.example.mypackage;version="[1.1.0,1.5.0)"

(i.e. org.example.mypackage can only be imported if its
version number is greater than or equal to 1.1.0 and less
than 1.5.0)

255/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces I

256/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces II

Bundle ”MyBundle”

Package containing the interface:

package org.example.mybundle.interfaces;

public interface GreetingInterface {

public void sayHello();

}

Package containing the implementation:

package org.example.mybundle.implementation;

import org.example.mybundle.interfaces.GreetingInterface;

public class GreetingImplementation implements

GreetingInterface {

public void sayHello() {

System.out.println("Hello!");

}

}

257/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces III

MANIFEST.MF of bundle ”MyBundle”:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with provided interface

Bundle-SymbolicName: org.example.mybundle

Bundle-Version: 1.0.0

Export-Package: org.example.mybundle.interfaces;

version="1.0.0"

258/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces IV

Bundle ”UsingBundle”

Package using the interface:

package org.example.helloworld;

import org.example.mybundle.interfaces.GreetingInterface;

public class HelloWorld {

public HelloWorld(GreetingInterface gi) {

gi.sayHello();

}

}

259/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces V

MANIFEST.MF of bundle ”UsingBundle”

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with required interface

Bundle-SymbolicName: org.example.usingbundle

Bundle-Version: 1.0.0

Import-Package: org.example.mybundle.interfaces;

version="[1.0.0,1.5.0)"

260/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bundle Lifecycle

A bundle that is installed within the OSGi Framework can
be in the states INSTALLED, RESOLVED,
STARTING, ACTIVE, STOPPING or UNISTALLED.

The lifecycle of a bundle can be managed by the API of
the OSGi Framework.

261/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle I
BundleActivator

One can specify actions a bundle should perfom when it is
started and stopped. To this end the following interface
BundleActivator is to be implemented:

public interface BundleActivator{
public void start(BundleContext context)

throws Exception;

public void stop(BundleContext context)

throws Exception;

}

262/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle II
BundleActivator

The implementing class (only one per bundle allowed) must
have a public, no-argument constructor.

Activator class of bundle ”SomeBundle”:

package org.example;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class HelloWorldActivator implements

BundleActivator {

public HelloWorldActivator() {}

public void start(BundleContext context)

throws Exception {

System.out.println("Hello OSGi-World!");

}

public void stop(BundleContext context)

throws Exception {

System.out.println("Goodbye OSGi-World!");

}

}
263/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle III
BundleActivator

MANIFEST.MF of bundle ”SomeBundle”:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with bundle activator

Bundle-SymbolicName: org.example

Bundle-Version: 1.0.0

Import-Package: org.osgi.framework;version="1.5.0"

Bundle-Activator: org.example.HelloWorldActivator

264/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle IV
BundleActivator

A bundle can use a BundleActivator to store the given
BundleContext:

...

public class HelloWorldActivator implements

BundleActivator {

private BundleContext bundleContext;

public void start(BundleContext context)

throws Exception {

this.bundleContext = context;

}

...

}

265/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle V
BundleContext

The BundleContext object represents the interface between all
bundles and the OSGi Framework.

This object provides methods to

install a new bundle:

public Bundle installBundle(String location)

throws BundleException

access all installed bundles:

public Bundle[] getBundles()

(de-)register listeners on bundles.
(de-)register services a bundle provides.
request services of other bundles.

266/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VI
Bundle

Every bundle that is installed within the OSGi framework
is represented by an object of type Bundle.

This object provides methods to manipulate the lifecycle
of the corresponding bundle:

public void start() throws BundleException

public void stop() throws BundleException

public void update() throws BundleException

public void uninstall() throws BundleException

267/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VII
Bundle

Example:

...

private BundleContext bundleContext;

// called by start method of activator class

public void setBundleContext(BundleContext context) {

this.bundleContext = context;

}

public void installAndStartABundle(String location) {

try {

Bundle bundle = bundleContext.installBundle(location);

bundle.start();

} catch (BundleException e) {

e.printStackTrace();

}

}

...

268/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VIII
BundleListener

To be able to react to a changed bundle state the interface
BundleListener has to be implemented:
public interface BundleListener

extends EventListener{
public void bundleChanged(BundleEvent event);

}
The BundleContext object provides a methods to (de-)register
a BundleListener:
public void addBundleListener(BundleListener

listener)

public void removeBundleListener(BundleListener

listener)

When the state of any bundle changes, the OSGi framework calls
the method bundleChanged.

269/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle IX
BundleListener

Implementation of a BundleListener:

public class ReportChange implements BundleListener {

public void bundleChanged(BundleEvent event) {

System.out.println(event.getBundle() + "changed its state");

}

}

Registration of a BundleListener:

...

public class HelloWorldActivator implements

BundleActivator {

private BundleContext bundleContext;

public void start(BundleContext context)

throws Exception {

this.bundleContext = context;

ReportChange reportChange = new ReportChange();

context.addBundleListener(reportChange);

}

...

}270/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Services I

A service is a simple Java object contained in a bundle.

Services are registered at a central Service Registry
where other bundles can request it.

The Service Registry is part of the OSGi Framework.

271/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Services II

To work with a service, the following steps are necessary:

272/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Register the service I

The bundle implementing the service must create the service and
register this service object via the BundleContext at the Service
Registry:
public ServiceRegistration registerService(String

name, Object service, Dictionary properties)

The service object is registered under a specific name (usually
the name of the interface that the service implements).

Dictionary is a Java class that maps keys to values. It can be
used to describe properties of the service.

273/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Register the service II

Bundle ”MyServiceBundle” registers the service

Activator class of bundle ”MyServiceBundle”:

package org.example.service.activator;

...

public class ServiceBundleActivator implements BundleActivator {

private ServiceRegistration registration;

public void start(BundleContext context) throws Exception {

GreetingImplementation gi = new GreetingImplementation();

registration = context.registerService

(GreetingInterface.class.getName(), gi, null);

}

public void stop(BundleContext context) throws Exception {...}

}

274/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service I

The BundleContext provides methods to request and
release a service:

Another bundle can request the registered service by its
specific name:

public ServiceReference getServiceReference

(String name)

By means of the returned ServiceReference, a reference
to the service object can be requested:

public Object getService

(ServiceReference reference)

275/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service II

To enable the OSGi Framework to manage which bundles
are using which services, a service has to be released when
it is not used any more:

public boolean ungetService

(ServiceReference reference)

The returned boolean value is false if the bundle never
used the service or the service was already deregistered.

A service object can be used by different bundles at the
same time.

276/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service III

”UsingServiceBundle” requests, uses and releases the
service of bundle ”MyServiceBundle”

Activator class of bundle ”UsingServiceBundle”:

package org.example.service.helloworld;

...

public class UsingServiceActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {

ServiceReference reference = context.getServiceReference

(GreetingInterface.class.getName());

GreetingInterface gi =

(GreetingInterface)context.getService(reference);

gi.sayHello();

context.ungetService(reference);

}

public void stop(BundleContext context) throws Exception {...}

}

277/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Deregister the service I

When the service should not be available any more, the
service can be deregistered by the bundle that registered
the service.

This is done by the ServiceRegistration object that
the method registerService returned:
public void unregister()

278/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Deregister the service II

Bundle ”MyServiceBundle” deregisters the service

Activator class of bundle ”MyServiceBundle”:

package org.example.service.activator;

...

public class ServiceBundleActivator implements BundleActivator {

ServiceRegistration registration;

public void start(BundleContext context)

throws Exception {...}

public void stop(BundleContext context) throws Exception {

registration.unregister();

}

}

279/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services I

Services are dynamic, i.e. they can be registered or
deregistered at any time.

The interface ServiceTrackerCustomizer acts as a
service listener:
public Object addingService

(ServiceReference reference)

public void modifiedService

(ServiceReference reference, Object service)

public void removedService

(ServiceReference reference, Object service)

280/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services II

Implementation of a ServiceTrackerCustomizer:

public class ReportServiceChange

implements ServiceTrackerCustomizer {

private BundleContext context;

public ReportServiceChange(BundleContext context) {

this.bundleContext = context;

}

public Object addingService(ServiceReference reference) {

System.out.println(reference.getBundle.getSymbolicName()

+ "was registered"); } }

return context.getService(reference);

}

public void modifiedService(ServiceReference reference,

Object service) {...}

public void removedService(ServiceReference reference,

Object service) {...}

}

281/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services III

To register a service listener, a bundle must create a
ServiceTracker:
public ServiceTracker(BundleContext context,

String name,

ServiceTrackerCustomizer customizer)

The constructor takes the name of the service that should
be monitored for changes.

The ServiceTracker object calls the corresponding
methods of the ServiceTrackerCustomizer when the
service is registered, deregistered or one of its properties
changes.

282/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services IV

Registration of a ServiceTrackerCustomizer:

...

private ServiceTracker tracker;

public void start(BundleContext context) throws Exception {

ReportServiceChange reportServiceChange =

new ReportServiceChange(context);

tracker = new ServiceTracker(context,

GreetingInterface.class.getName(), reportServiceChange);

tracker.open(); // to start the ServiceTracker

}

...

283/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Standard Services

284/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Standard Services

OSGi Standard Services (OSGi Alliance (2010a)):

are based on the OSGi Framework
offer an API for different recurring problems

Over 20 OSGi Standard Services are defined:

Declarative Services
Event Admin Service
Http Service
. . .

285/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Declarative Services I

In large applications, the service model of the OSGi
Framework has some drawbacks:

Start-up time:
Instantiation and registration of many services takes too
much time.
Memory usage:
For every registered service, all associated classes and
objects are loaded in memory.
Complexity:
Because services can be registered and deregistered at any
time, the programming model is complex.

286/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Declarative Services II

Declarative Services address these problems by
introducing service components which

are not activated until the service provided by the service
component is requested for the first time.

are not activated until all services required by the service
component are available.

287/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Service Component

A service component is defined in a bundle and consists of

a component class:

simple Java class
must have a public, no-argument constructor
can implement the methods
activate(ComponentContext) and
deactivate(ComponentContext) to specify actions that
should be performed when the component is (de-)activated

a component description
description of the component as an XML document
additional line in MANIFEST.MF:
Service-Component:

OSGI-INF/component-description.xml

The Service Component Runtime creates service
components and manages their lifecycle.

288/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A simple service component

Component class:

package org.example.simplecomponent;

import org.osgi.service.component.ComponentContext;

public class SimpleComponent {

protected void activate(ComponentContext context) {

System.out.println("activate");

}

protected void deactivate(ComponentContext context) {

System.out.println("deactivate");

}

}

Component description:

<?xml version="1.0"?>

<component name="simpleComponent">

<implementation class=

"org.example.simplecomponent.SimpleComponent"/>

</component>

289/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Delayed Component I

An instance of a service component can be registered as
an OSGi service.

This is done by adding the XML element service to the
component description:
<service>

<provide interface="...">

</service>

<provide interface="..."> is used to specify the
name the service should be registered under.

A service component that provides a service is not
activated until the service is requested for the first time.

Such a service component is called a delayed component.

290/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Delayed Component II

Lifecycle of a delayed component:

A service component is satisfied as soon as its dependencies
can be resolved.

291/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component as a service I

Service Interface:

package org.example.simplecomponent;

public class SimpleService {

public void sayHello();

}

Component class:

package org.example.simplecomponent;

import org.osgi.service.component.ComponentContext;

public class SimpleComponent implements SimpleService {

public void sayHello() {

System.out.println("Hello!");

}

}

292/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component as a service II

Component description:

<?xml version="1.0"?>

<component name="simpleComponent">

<implementation class=

"org.example.simplecomponent.SimpleComponent"/>

<service>

<provide interface=

"org.example.simplecomponent.SimpleService"/>

</service>

</component>

293/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Immediate Component I

A service component can use services registered by other
bundles or service components.

This is done by adding the XML element reference to
the component description:
<reference

name="..."

interface="..."

bind="..."

unbind="..."

/>

name: The local name of the reference.

interface: The name the service is registered under.

bind: The name of the method that is used to assign the
service to the component.

unbind: The name of the method that is used to remove
the service from the component.

294/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Immediate Component II

A service component that uses services is activated as
soon as all requested services are available.

Such a service component is called an immediate
component.

Lifecycle of an immediate component:

295/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component uses a service I

Component class:

package org.example.hellocomponent;

import org.osgi.service.component.ComponentContext;

public class HelloComponent {

private SimpleService service;

protected void setService(SimpleService service) {

this.service = service;

}

protected void unsetService(SimpleService service) {

this.service = null;

}

protected void activate(ComponentContext componentContext) {

sayHello();

}

}

296/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component uses a service II

Component description:

<?xml version="1.0"?>

<component name="helloComponent">

<implementation class=

"org.example.hellocomponent.HelloComponent"/>

<reference

name="SimpleService"

interface="org.example.simplecomponent.SimpleComponent"

bind="setService"

unbind="unsetService"

/>

</component>

297/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of service components

Delayed activation of services:
Services that are provided by service components will be
registered at the Service Registry when the implementing
bundle is started. But no service instance is created until
the service is requested for the first time. This reduces
start-up time and memory usage.

Resolution of service dependencies:
The Service Component Runtime resolves all service
dependencies. It instantiates and activates a service
component that uses services not until all necessary
services are available. Therefore, no service listeners have
to be implemented. This reduces complexity.

298/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned? I

OSGi defines a dynamic component model for Java.

In OSGi, components are called bundles. Bundles

consist of Java packages and an additional file with
descriptive information (e.g. about exports and imports).
have a lifecycle that can be controlled by the OSGi
Framework API.
can implement services which are registered at the Service
Registry where other bundles can request them

OSGi Standard Services offer an API for different recurring
problems, like Declarative Services which reduce start-up
time, memory usage and complexity when working with
services.

299/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned? II

Description Management Listener
Bundle OSGi component BundleActivator

(start and
stop methods),
BundleContext,
Bundle

BundleListener

Service Java object con-
tained in a bundle

Service Registry ServiceTracker-

Customizer,
ServiceTracker

Service
Component

Java object and
component descrip-
tion contained in a
bundle

Service Component
Runtime, activate

and deactivate

methods

Delayed
Component

Service component
which provides a
service

Service Component
Runtime, activate

and deactivate

methods

Immediate
Component

Service component
which uses services

Service Component
Runtime, activate

and deactivate

methods

300/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

A Process for Specifying

Component-Based Software

by Cheesman and Daniels (2001)

301/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Motivation

Major challenge in software engineering today: manage
change

For Cheesman and Daniels, the objective of component
reuse is of less importance.

Aim: provide advice, guidance, and examples for modeling
enterprise-scale component systems.

302/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Architectural layers

303/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example components in the layers

304/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Realization vs. usage contracts

305/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface- vs. component specification

306/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Workflow of the overall development process

307/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Stages of the process

308/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Stages of the specification workflow

309/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Models to be produced

310/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Notations used

311/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of UML extensions

312/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Requirements Definition

313/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Requirements definition: overview

1. Business process

2. Business concept model

3. System envisioning

4. Use cases

4.1. Actors and roles
4.2. Use case identification
4.3. Use case descriptions
4.4. Quality of service

314/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business process

Business process to be supported must be understood

Its description is not a statement of the requirements for
the IT system (software)

Notation: e.g., UML activity diagrams

315/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example of a business process

Running example: hotel reservation

316/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business concept model

Expresses domain knowledge about the application
domain; thus, it is not related to software.

Does not need to be tightly scoped to the problem

Notation: UML class diagrams

317/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example of a business concept model

318/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System envisioning I

Define the software boundary; make clear which functions are
the responsibility of the software.

Example:

A hotel reservation system is required that will allow
reservations to be made for any hotel in the chain. At
present each hotel has its own, incompatible, system.
Reservations can be made by telephone to a dedicated
central reservation center, by telephone direct to a
hotel, or via the Internet. A major advantage of the
new system will be the ability to offer rooms at
alternative hotels when the desired hotel is full.

319/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System envisioning II

Within a hotel, facilities for making reservations will
exist at the front desk, in the office, and at the
concierge’s desk. Each hotel has a reservation
administrator who is responsible for controlling
reservations at the hotel, but any authorized user may
make a reservation. The target time for making a
reservation by telephone or in person is three minutes.
To speed up the process, details of previous
customers will be stored and made available.

320/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use cases

Allocate responsibility for the business process steps. Notation:
swim lanes.

Note: responsibility decisions have a profound effect on the
shape of the resulting software. They are often taken too
quickly.

321/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Actors and roles

Actors are roles that initiate and control the steps
assigned to them, even though the software may play a
part in these steps.

To be flexible, generalization relations can be introduced.

322/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification I

Use cases

describe the interaction of actors with the software

are a functional specification of the software

define the boundary between the software and its
environment

describe the interaction that follows from a single
business event

323/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification II

Hotel example: five events (corresponding to five use cases)

1. Make Reservation (covering Check Availability, Make
Reservation, and Confirm Reservation steps)

2. Cancel Reservation

3. Amend Reservation (covering Amend Reservation and
Confirm Reservation)

4. Take Up Reservation (covering Take Up Reservation and
Notify Billing System)

5. Process No-Show (covering Process No-Show and Notify
Billing System)

324/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification III

Discussion

Not turning up is a bit of a noevent. A business rule must
define when the no-show event is generated, e.g. no
arrival until 8 p.m.

The processing of no-shows can either be triggered by a
clock and be performed automatically, or be initiated by a
user (which is chosen here).

Therefore, the use case is renamed Process No-Shows,
because it deals with all reservations that meet the
no-show business rule.

But who is the corresponding actor?
Introduce ReservationAdministrator (see above)

325/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification IV

Audit

Considering the business concept model, answer the following
questions:

about the classes

Do the things these boxes represent get created and
destroyed?
Does the software need to know about this?
If so, how does it find out?
Does this thing have attributes that might change?

about the associations

Do the relationships between these things change over
time?
If so, does the software need to know and how does it find
out?

326/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification V

327/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VI

328/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VII

We assume that all the things in our model might have
attributes that can change, so the full list of uses cases, so far
as we know now, is as follows:

Make Reservation

Cancel Reservation

Amend Reservation

Take Up Reservation

Process No-Shows

Add/Amend/Remove Hotel

Add/Amend/Remove Room

Add/Amend/Remove Room Type

Add/Amend/Remove Clerk

Amend Customer

Remove Dormant Customers

Amend Address

Remove Old Reservations
329/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VIII

Resulting use case diagram

330/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions I

For each use case, describe main success scenario, then add
extensions and variations.

331/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions II

332/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions III

If we were to continue with the other uses cases, we would find
that the extensions in Take Up Reservation occur in several use
cases. As a convenience, we can factor this out into a separate
use case:

333/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions IV

We can then simplify the Take Up Reservation use case:

334/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions V

Final use case diagram:

335/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Quality of service I

We ought to add a quality of service section to each use
case, stating our expectations, especially in the areas of
security and performance.

Where these requirements are system-wide, we can state
them separately.

For example, we might say:

Only authorized users (identified by a password)
may access the reservation service, other than
via the Internet.

336/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Quality of service II

For the Make a Reservation use case, our quality of service
statement might be

The system must support 200 simultaneous
users.

System response to any input must not exceed 2
seconds (95 percent) for direct connections and
5 seconds (90 percent) for Internet connections.

The system must support (total number of
rooms) * 10 active reservations, and assume 100
percent hotel occupancy.

337/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of requirements definition

The requirements workflow must deliver to the
specification workflow a business concept model and a set
of use cases.

The business concept model lists the important concepts
in the problem domain and shows the relationships
between them.

The use cases clarify the software boundary, identify the
actors who interact with the software, and describe those
interactions.

338/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component identification stage of the specification
workflow I

Business Concept
Model

Use Case
Model

Business

Type Model

Business
Interfaces

Architedure
Patterns

Component
Specs &
Architecture

System
Interfaces

Figure 5.1 The component identification stage of the specification workflow

339/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component identification stage of the specification
workflow II

Goal: create an initial set of interfaces and component
specifications, hooked together into a first-cut component
architecture.
Emphasis: discovery

What information needs to be managed?
What interfaces are needed to manage it?
What components are needed to provide that functionality?
How will they fit together?

Identify the system interfaces and system components in
the system services layer.
Identify the business interfaces and business type
components in the business services layer.
Take into account existing interfaces, databases, or
components that need to be interfaced with and that may
need adapting.
Try to apply architectural patterns.

340/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Focus of interface identification

Use Case Model

Business Concept Model

Figure 5.2 Interface inputs and correspondence to application architecture layers

Process is concerned with the UI-independent aspects of
an application, corresponding to the server side of things.

Refine business concept model (representing human’s eye
view) into business type model (representing software’s eye
view).

Use business type model to develop business interfaces.

The implementations of components supporting these
interfaces form the core business logic.

341/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Runtime behavior

When a user initiates a use case, the use case logic causes
the appropriate UI to be created and displayed.

The user is guided through the use case steps by the use
case logic.

Whenever the use case logic needs information to display
or needs to notify the system of a user action, it calls the
appropriate operation in the use case step logic.

This operation, in turn, uses operations defined in the core
business logic to perform its function.

Note: A component may only invoke operations on its own
level or in a level below itself.

342/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identifying system interfaces and operations

Identify one dialog type and one system interface per use
case.
Then go through each use case and for each step consider
whether or not there are any system responsibilities that
must be modeled.
If so, represent them as one or more operations on the
appropriate system interface.

Use
case

steps

Figure 5.3

Use case

G

dentify room requirements
System provides price
Request a r~ervation

Use cases map to system interfaces

Dialog
Type

System
Interface

343/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Make a reservation

Define initial system
interface called
IMakeReservation.

Step 2: system must allow
to get details of different
hotels (getHotelDetails()).

Step 3: Price and
availability for a given
request must be provided
(getRoomInfo()).

Step 7: operation
makeReservation() needed
that creates a reservation,
returns a reference
number, and confirms the
reservation.344/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Results of identifying system interfaces and
operations

Parameters of the operations are defined later when
considering the component interactions.

The interfaces we have defined at system level are specific
to that system and will not typically be reusable by
different systems.

Reuse of interfaces across systems is the purpose of the
business interfaces, to be discussed next.

345/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identifying business interfaces

The business interfaces are abstractions of the information that
must be managed by the system. The process for identifying
them is as follows:

1. Produce a scoped copy of the business concept model as
the business type model.

2. Refine the business type model and specify any additional
business rules with constraints.

3. Identify Core Business Types.

4. Create business interfaces for core types and then add
them to the business type model.

5. Refine the business type model to indicate business
interface responsibilities.

6. Check that the defined interfaces align with any overriding
policies, such as those defined in a corporate component
architecture.

346/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create the business type model

The business type model is represented by a UML class
diagram, like the concept model, but its purpose is
different.

Whereas the concept model is simply a map of the
information of interest in the problem domain, the business
type model contains the specific business information that
must be held by the system being specified.

The business type model is initially created by copying the
concept model and adding or removing elements until its
scope is correct.

Note: The business type model must be a precise model,
because it is the base from which the business interfaces will
emerge.

347/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example I

1

0..1

allocation

1

Figure 5.6 Scoping the business type model

348/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example II

Eliminate the HotelChain type because the system shall
support only a single chain of hotels.
Eliminate the Hotel-Customer association (see use case
definition phase).
Eliminate Payment and Bill because they are the domain
of a separate billing system.
Eliminate Clerk and Address to keep the example simpler.

." 10
"

e ... ID V
I

:..
...

:J ;:;
:

Q
j.

C
-

e !!
!.

:J ID V
>

V
>

.-
+

'< "C ID

..
...

.
...

.

~ ".
.

~ ".
.

...
.

349/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules I

Add any additional required business rules to the simple
ones captured directly through association role
multiplicities.

This means writing some constraints and introducing new
attributes.

Example:

Identify which associations can be derived from others:

A hotel reservation must be for rooms at that same hotel,
and the type of room specified must be available at that
same hotel.

350/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules II

Availability rules:

A room is available if the number of rooms reserved at all
dates in the requested range is less than the number of
rooms.
Introduce new parameterized attribute
available(DateRange) for RoomType, on which to hang
this rule.
You can never have more reservations for a date than
rooms (no overbooking).

Pricing rules

The price of a room for a stay is the sum of the prices for
the days in the stay.
Change price attribute on RoomType to be parameterized
by date.
Introduce new attribute stayPrice, on which to hang this
rule.

351/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules III

Adding the extra attributes allows us to write these rules in
OCL.

{Hotel::room.roomType->asSet =
Hotel:: roomTypd

{Reservation::hotel =

Reservation::roomType.hotel}

Figure 5.8 Business type model

352/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identify core types

The purpose of identifying core types is to start thinking
about which information is dependent on which other
information, and which information can stand alone.

A core business type is a business type that has
independent existence within the business.

Example: core types are Hotel and Customer.

353/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create business interfaces and assign
responsibilities I

General rule: create one business interface for each core
type of the business type model.
Each business interface manages the information
represented by the core type and its detailing types.
Naming convention: IxxxMgt

<interface type>
IHotelMgt

Figure5.9 Interface responsibility diagram of the business type model

354/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create business interfaces and assign
responsibilities II

Each type should be owned by exactly one interface
(composition relation).

Where to allocate Reservation (provides details to both
Hotel and Customer)?

Decision: allocate Reservation to Hotel; mark association
between Reservation and Customer to be navigable only
toward customer.

355/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Allocating responsibility for associations I

When an association exists between types managed by
different interfaces, this is an inter-interface association.

The association between Reservation and Customer is
such an association.

A decision has to be made where this information will be
recorded.

Inter-interface associations are a specific form of
dependency, which contradict the high-level goal to reduce
dependencies.

Therefore: try to avoid two-way references between
interfaces.

356/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Allocating responsibility for associations II

Decision: Reservation references Customer, and Customer
is independent of Reservation.

Association is navigable in only one direction.

ICustomerMgt IHotelMgt

Figure5.10 Assigning reference direction

1. How this is achieved in the implementation is, of course, a totally separate issue.

357/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating initial interface specifications I

The system interfaces that we created earlier, which are
not part of the business type model, form an initial set of
interface specifications that subsequent stages will refine
directly.

The business type model and the business interfaces are
internal workflow artefacts.

Once we are happy with the interface responsibility
diagram, we create another set of business interfaces in
the interface specifications package, corresponding to the
business interfaces we created in the business type model.

We will further work on those interfaces in the component
specification phase.

358/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating initial interface specifications II

Business Type Model
Business

Interfaces

1dmv<

Business Data Types

Interface Data Types

System Interfaces

Business Interfaces

Figure 5.11 Package structure detail

359/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Existing interfaces and systems

Add to the interface specifications package any additional
interfaces that are part of the environment into which the
software will be deployed.

In particular, are there any existing interfaces that we are
obliged to use?

Are there any systems with which we need to interface,
but which are outside the specific scope of the given
development project?

Example: billing system. Its interfaces are added to the set
of system interfaces.

360/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component Specification Architecture

We now create an initial set of component specifications
and form an idea of how they might fit together.

We must choose components in such a way that it makes
sense to build or to buy that unit of functionality.

In most cases, we will create a separate component
specification for each interface specification that we have
identified.

Multiple interfaces on one component can be considered if

The concepts represented by the different interfaces have
the same lifetime.
The interactions between the interfaces are complex,
frequent, or involve large amounts of data.
We want to keep component granularity at a reasonable
size.

361/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System component specifications I

In our case study, the use-case-driven system interfaces are
strongly overlapping and manage concepts that have the
same lifetimes.

We therefore put IMakeReservation and
ITakeUpReservation on one component.

However, IBilling is kept separate.

The reservation system makes use of IBilling, so we add
the dependency between them.

We also add interface dependencies on ICustomerMgt and
IHotelMgt, although we don’t know if these really exist at
this stage.

We will validate these when we study the component
interactions.

362/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System component specifications II

«comp spec»
Reservation

System

IMakeReservation

ITakeUpReservation

, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,

IBilling 6 ! !: :

ICustomerMgt6 i
IHotelMgt 6

Figure 5.12 System component specifications

«comp spec»
Billing System

IBilling

363/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business component specifications

For the business interfaces, our starting point is one
component per interface.

Since the manager interfaces were created to manage
instances of core business types and their associations,
they are concerned with information that is managed
independently.

Result:

364/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

An initial architecture I

Now we have an initial set of component specifications,
including their supported interfaces and their interface
dependencies.

Since we don’t have any interfaces being offered by more
than one component specification in our example, we can
bind the interface dependencies of the component
specifications directly onto their corresponding component
specification interfaces.

365/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

An initial architecture II

Result:

«comp spec»
Reservation

System
IMakeReservation

ITakeUpReservation
/;',

,/ : ",
,// \ ""

«comp spec» I U- \ """"

BillingSystem IBilling \ """"

: ",: ",: ",: ",

«comp spec» I 6 """"'"CustomerMgr ""

ICustomerMgt """'"

"""'"

«comp spec»
HotelMgr

IHotelMgt

Figure 6.2 Initial component architecture

366/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component identification I

Main principles:

The system interfaces correspond to use cases, and their
operations are derived from use case steps.

A business type model is developed representing the
system’s eye view of the business concept model. Business
rules are captured on the business type model as
constraints. The business type model is an internal
workflow artifact, which is useful to maintain.

Business interfaces are discovered by identifying core types
in the business type model and creating interfaces to
manage them and their details.

367/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component identification II

Initial business interface specifications are created by
copying the business type model interfaces. These
interfaces are refined in subsequent stages.

Initial component specifications are defined and formed
into an initial component architecture. Existing systems
and architectures are taken into account.

368/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component interaction

The component identification gives us an initial set of
interfaces and components with which to work.
Now we will decide how the components will work
together to deliver the required functionality.

)

Figure 6.1

Business
Interfaces

System
Interfaces

Component Specs
& Architedure

I t f Component Specs
n er aces & Architedure

The component interaction stage of the specification workflow

369/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Discovering business interfaces I

We have identified the operations of the system interfaces.

Example: Interface IMakeReservation has the operations
getHotelDetails(), getRoomInfo(), and makeReservation().

We do not know the signatures of these operations at this
point, nor how they will be implemented using business
components.

We haven’t even identified the operations needed on the
business interfaces.

Our component architecture diagram tells implementers of
ReservationSystem that they must use the ICustomerMgt
and IHotelMgt interfaces.

370/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Discovering business interfaces II

Procedure for discovering business operations:

Take each system interface operation and draw one or
more collaboration diagrams that trace any constraints on
flows of execution resulting from an invocation of that
operation.

Each collaboration diagram should show one or more
interactions, where each interaction shows one possible
execution flow.

So if there are several important flows, one will need to
draw several interactions.

371/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getHotelDetails() I

Input: string to be used as a partial match against the
hotel names.

Output: collection of hotel details

«data type»
HotelDetails

id: HotelId

name: String
roomTypes: String []

Figure6.3 Structured data type for hotel details

IMakeReservation::getHotelDetails(

in match: String): HotelDetails []

372/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getHotelDetails() II

Collaboration diagram:

rl~

l:getHoteIDetails(s)
IIMakeReservation:ReservationSystem

11.1:getHoteIDetails(s)

I IHotelMgt

Figure 6.4 getHotelDetailsO

(Notation: objectname/rolename:classifiername)

373/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getRoomInfo()

«data type»
ReservationDetails

hotel: Rotelld

dates: DateRange
roomType: String

Figure6.5 Structured data type for reservation details

IMakeReservation::getRoomInfo(

in res: ReservationDetails,

out availability: Boolean, out price: Currency)

~

l:getRoomInfo(r, a, p)
IIMakeReservation:ReservationSystem

Figure 6.6 getRoomlnfo() interaction

I IHotelMg!

11o1:getRoomInfo(r, a, p)

374/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies I

«data type»
CustomerDetails

name: String
postCode[O..l]: String
email[O..l]: String

Figure 6.7 Structured data type for customer details

IMakeReservation::makeReservation(

in res: ReservationDetails,

in cus: CustomerDetails, out resRef: String):

Integer

where the return value indicates the outcome of the operation

0: Success.
1: Customer does not exist, no new record could be
created, because post code and/or e-mail address were not
provided.

375/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies II

2: No post code was provided, and the name matches
more than one customer.

We need an operation on ICustomerMgt to look up a
customer’s details and return his or her CustId, so we invent
one:

ICustomerMgt::getCustomerMatching(

in cusD: CustomerDetails,

out cusID: CustId): Integer

where 0: success; 1: customer does not exist; 2: as above.

376/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies III

Which of our components is going to call that operation?

The HotelMgr component is responsible for storing the
association between reservations and customers.

The HotelMgr and CustomerMgr components are
independent of each other!

Therefore, we cannot let the ReservationSystem
component forward the makeReservation() call to the
HotelMgr and let it get on with it, because then HotelMgr
would have to use CustomerMgr.

Instead, the ReservationSystem is going to have to do this.

377/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies IV

/ICustomerMg!

l:makeReservation(r, c, rr) t1.1:getCustomerMatching(c, id) {result=O}
Il.3:notifyCustomer(id, s)

{where s inc1udes rr etc}

/IMakeReservation:ReservationSystem

11.2:makeReservation(r, id, rr)

/ IHotelMg!

Figure6.8 makeReservationO interaction (existing customer)

378/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Maintaining referential integrity

We haven’t said how many component objects there will
be at runtime.
Example: ReservationSystem will always use the same
business component objects.
Expressed using a component specification diagram.

«comp spec»
Reservation

System

1 {frozen}

1 {frozen}

<<interface type»
ICustomerMgt

«interface type»
IHotelMgt

«interface type»
IBilling

Figure 6.9 Constraints on the component object architecture

379/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Controlling intercomponent references I

Options for allocating responsibility that intercomponent
references are valid (example: deletion of a customer):

1. Allocate responsibility to the component object storing the
reference.
Example: make sure that all requests to delete customers
are sent to the HotelMgr component.

2. Allocate responsibility to the component object that owns
the target of the reference.
Example: this would be CustomerMgr.

3. Allocate responsibility to a third object, usually higher up
in the call chain.
Example: ReservationSystem.

4. Permit, and tolerate, references to become invalid.

5. Disallow the deletion of information.
380/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Controlling intercomponent references II

IICustomerMgt

t1.1:getCustomerMatching(cd, cid) {result=O}
11.3:deleteCustomer(cid)

l:deleteCustomer(cd)

Figure 6.10

IIHousekeeping:ReservationSvstem

11.2:deleteReservationsFor(cid)

I IHotelMgt

Interaction for referential integrity option 3

Disadvantage of option 3: assumes that the CustomerMgr
component is object is exclusive to the ReservationSystem.

If this assumption cannot be made, option 2 must be used.
Realization using Observer design pattern.

381/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Completing the picture

What happens if a new customer makes a reservation?

Need for an operation on ICustomerMgt to create a new
customer.

IICustomerMgt

l:makeReservation(r, c, rr) t 1.1:getCustomerMatching(c, id) {result=l}

11.2:createCustomer(c, id)
1.4:notifyCustomer(id, s)

{where s includes rr etc}

IIMakeReservation:ReservationSystem

11.3:makeReservation(r, id, rr)

I IHotelMgt

Figure 6.11 makeReservation() interaction (new customer)

Considering the Take Up Reservation Use case also gives rise to
new operations on IHotelMgt and ICustomerMgt.

382/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System interfaces with operation signatures

383/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business interfaces with operation signatures

384/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component interaction

Develop interaction models for each system interface
operation.

Discover business interface operations and their signatures.

Refine responsibilities.

Define any component architecture constraints you need.

385/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component specification

A usage contract is defined by an interface specification.
A realization contract is defined by a component
specification.
Component specifications are primarily groupings of
interfaces.
Component (and interface) specification is the final stage
of the specification workflow.

Figure 7.1

Business
Type Model Interfaces

Component Specs
& Architecture

Interfaces Component Specs
& Architecture

The component specification stage of the specification workflow

386/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying interfaces

An interface is a set of operations.

An operation represents a fine-grained contract between a
client and a component object.

To express the contract, we need a construct that
describes the state of a component object.

387/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Operation specification

An operation specifies the individual action that a component
object will perform for a client. This has a number of facets:

The input parameters: specifying the information provided
or passed to the component object.

The output parameters: specifying the information
updated or returned by the component object.

Any resulting change of state of the component object.

Any constraints that apply (precondition).

However, operation specifications on interfaces do not include
information about interactions between the component object
performing the operation and other component objects that are
required, in a specific implementation, to complete the
operation.

388/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface information models I

We need to represent the state of the component on
which the interface depends.

To do this, each interface has an interface information
model.

All changes to the state of the component object caused
by a given operation can be described in terms of this
information model definition.

389/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface information models II

Example:

«interface type»
ICustomerMgt

getCustomerMatching(in custD: CustomerDetails, out cusId: CustId): Integer
createCustomedincustD: CustomerDetails, out cusId: CustId): Boolean
getCustomerDetails(in cus: CustId): CustomerDetails
notifvCustomer(in cus: CustId, in msl/,;String)

«data type»
CustomerDetails

name: String
postCode[O..t]: String
email[O..t]: String

Customer

id: CustId

name: String
postCode:String
email: String

Figure 7.2 Interface specification diagram for the ICustomerMgt interface

390/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Pre- and postconditions I

Each operation has a pre- and a postcondition.

These can be defined precisely using OCL.

The OCL expressions can refer to the operation
parameters, the operation result, and the state of the
component object (as defined by the interface information
model).

The OCL expressions cannot refer to anything else.

391/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Pre- and postconditions II

Example:

context ICustomerMgt::getCustomerDetails

(cus: CustId): CustomerDetails

pre: -- cus is a valid customer

customer->exists(c: Customer | c.id = cus)

post:

-- the details returned match the details

-- of the customer whose id is cus

-- find the customer

let theCust: Customer = customer->

select(c: Customer| c.id = cus)->asSequence()->first() in

result.name = theCust.name and

result.postCode = theCust.postCode and

result.email = theCust.email
392/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model I

Result of component identification phase:

<<interface type>
~ IHotelMgt

Figure 7.3 (ase study interface responsibility diagram

393/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model II

Start by making a copy of the business type model in the
interface’s package.

Delete types, associations, and attributes that are not
needed.

When a type owned by one interface refers to a type
owned by another, the referenced type (Customer, in this
case) appears in the interface information models of both
interfaces.

However, it need not look the same in both interfaces.

For example, the Customer type in IHotelMgt only needs
the customer id.

394/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model III

Result:

Figure 7.4 Interface specification diagram for IHotelMgt

<<interface type»
IHotelMgt

getHotelDetails(in match: String): HotelDetails []
getRoomInfo(in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation(in res: ReservationDetails, in cus :CustId, out resRef: String): Boolean
getReservation(in resRef: String, out rd: ReservationDetails, out cusId: CustId): Boolean
beginStay(resRef: String, out roomNumber: String): Boolean

L,* , *

Reservation Hotel Room

resRef: String id: HotelId number: String
*

dates: DateRange
*

name: String 1 *

claimed: Boolean
-

1 1..*

* I * I 0..1
allocation

1

Customer RoomType

id: CustId name: String
available(during: DateRange): Boolean 1

1 price(on: Date): Currency
stayPrice(for: DateRange): Currency

395/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Invariants

An invariant is a constraint attached to a type that must
be held true for all instances of the type.

Many invariants can be expressed graphically, using UML
notation (e.g., multiplicities).

In some cases it isn’t possible or convenient to use the
graphical notation. Use OCL instead.

Example:
context Reservation

-- a reservation is claimed

-- if it has a room allocated to it

inv: claimed = allocation->notEmpty()

396/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Snapshots

A useful technique when writing pre- and postconditions is to
draw “before” and “after” instance diagrams and to highlight
the state changes that occur.

before :RoomTvpe

{name=double}

after

:RoomTvpe
{name=double}

Figure 7.5 "Before" and "after" snapshot instance diagrams for IHoteIMgt::makeReservationO397/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation I

context IHotelMgt::makeReservation

(res: ReservationDetails, cus: CustId, resRef: String)

: Boolean

pre:

-- the hotel id and room type are valid

hotel->exists(h | h.id = res.hotel

and h.room.roomType.name->includes(res.roomType))

post:

result implies

-- a reservation was created

-- identify the hotel

398/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation II

let h: Hotel = hotel->select(x | x.id = res.hotel)

->asSequence()->first() in

-- only one more reservation now than before

h.reservation->size() - h.reservation@pre->size() = 1

-- identify the reservation

and let r: Reservation = h.reservation->

select(y: Reservation| not h.reservation@pre->

includes(y))->asSequence()->first() in

-- return number is number of the new reservation

r.resRef = resRef and

399/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation III

-- other attributes match

r.dates = res.dates and

r.roomType.name = res.roomType

and not r.claimed and

r.customer.id = cus

400/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying system interfaces I

Until now, we have discussed a systematic way of moving
from the business type model to the information models of
the business interfaces.

For the system interfaces, we take a similar approach.

As with any other interface, the interface information
model of a system interface needs to contain just enough
information for the operations to be specified.

This will be a subset of the business type model.

Note that the existence of an interface information model
does not imply that an implementation of the interface
must store the information persistently. In fact, system
interfaces rarely have persistent storage.

401/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying system interfaces II

Figure 7.6 Interface specification diagram for IMakeReservation

«interface type»
IMakeReservation

getHotelOetails (in match: String): HotelOetails []
getRoomlnfo (in res: ReservationOetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationOetails, in cus: CustomerOetails, out resRef: String): Integer

*
Reservation Hotel Room

resRef: String id: HotelId
*

dates: OateRange
*

name: String 1 *
e-

claimed: Boolean 1 1..*

* I * I 0..1
allocation

1

Customer
RoomType

name: String name: String
postCode: String

available(during: OateRange): Boolean 1
email: String

1

Note that the information model for IMakeReservation does
not require the room number attribute, so it has been removed.

402/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying components

The interface specifications discussed so far deal with the
usage contract – the contract between a component
object and its clients.

Now we consider the additional specification information
that the component implementer and assembler need to
be aware of, especially the dependencies of a component
on other interfaces.

This information forms the component specification.

403/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered and used interfaces

For every component specification we need to say which
interfaces its realizations must support, see architecture
diagram of component identification phase.
Now, we must dissect that diagram into pieces specific to
each component specification.
We also need to confirm any constraints concerning which
other interfaces are to be used by a realization
(dependency arrows in architecture diagram).

404/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Scoping interactions I

Constraints how a particular operation must be
implemented are defined in interactions.

Component interactions define specification-level
constraints. All component realizations must respect them.

This is essential if we aim to be able to replace
components within a complex component assembly.

The interactions that make up the constraints on
component specifications are typically fragments of the
interactions we drew during operation discovery.

They begin with a component object receiving a message,
and only show the direct interactions from that
component.

405/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Scoping interactions II

7

Figure 7.11 Scoping an interaction
406/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Inter-interface constraints

We may want to express constraints concerning the
relationships between interface information models. This
concerns

how offered interfaces relate to each other

how offered interfaces relate to used interfaces.

407/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered interfaces

The Reservation System component offers the
IMakeReservation and ITakeUpReservation interfaces.

Both these interfaces have a Reservation information type.

Since the two interfaces are specified completely
independently, we cannot assume that that both
reservation types are the same.

This has to be expressed explicitly.

context ReservationSystem

-- constraints between offered interfaces

IMakeReservation::hotel = ITakeUpReservation::hotel

IMakeReservation::reservation =

ITakeUpReservation::reservation

IMakeReservation::customer = ITakeUpReservation::customer

where a formal definition of “=” depends on the two information

types involved.
408/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered and used interfaces

Note that the existence of an interface information model
does not imply that implementations of the interface will
store the information.

Instead, they obtain the information from the business
components.

Therefore, we write constraints that require the elements
of the interface information models to match up.

context ReservationSystem

-- constraints between offered and used interfaces

IMakeReservation::hotel = IHotelMgt::hotel

IMakeReservation::reservation =

IHotelMgt::reservation

IMakeReservation::customer = ICustomerMgt::customer

409/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces I

Each interface has its own interface information model,
which is often only slightly different from the model of
another interface.

Sometimes it is possible to simplify things by refactoring
the interfaces, especially by introducing new abstract
interfaces that act as super-types of other interfaces,
holding common interface information model elements,
and, sometimes, definitions of common operations.

In some cases it may even be practical to simply merge
system interfaces together and do not bother with
subtyping. This may be appropriate when the
corresponding use cases have the same actors.

410/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces II

Example: factor out the common elements of the information
models from IMakeReservation and ITakeUpReservation and
place them in a new interface called IReservationSystem:

IMakeReservation

IReservationSystem

lTakeUpReservation

Figure 7.12 Refactoring interfaces

«interface type»
IReservationSvstem

7 L"
Reservation Hotel Room

resRef:String id: HotelId
dates:DateRange ' '- f----
cIaimed: Boolean 1 1..'

, I, I 0..1
aIlocation

1
Customer

RoomType
name: String name: Strlng
postCode: String 1
email: String

1

411/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces III

The interface information model for IMakeReservation then
merely extends the inherited types, adding extra attributes that
are required.

RoomType
(from IReservationSystem)

name: String

Hotel

(from IReservationSystem)

id: HotelId

RoomType

available(during: DateRange): Boolean

Hotel

name: String

Figure 7.13 IMakeReservation after factoring out IReservationSystem

«interface type»
IMakeReservation

getHotelDetails(in match: String): HotelDetails []

getRoomlnfo(in res: ReservationDetails, out availability: Boolean, out price: Currency)

makeReservation (in res: ReservationDetails, in cus: CustomerDetails, out resRef: String): Integer

412/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component specification I

Interface specifications define usage contracts.

Component specifications define realization contracts.

An interface is specified by a set of operation specifications
that operate on an interface information model.

The interface information model must contain just enough
information to allow the operations to be specified. It
cannot refer to anything outside the interface.

First-cut interface information models can be derived
systematically from the business type model.

Each operation is specified using a pre- and postcondition
pair.

413/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component specification II

OCL can be used to express invariants and operation pre-
and postconditions.

Component specifications include specifications of the
interfaces offered and used.

To constrain the implementations of operations, attach
interaction fragments to component specifications.

Add constraints to component specifications to define how
elements in one interface information model relate to
elements in another.

Consider factoring or merging system interfaces to keep
things simple, but bear in mind the value of different
actors having their own interfaces on the system.

414/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Provisioning and Assembly

In the specification workflow, we have been working in a
technology-independent way.

Provisioning means to provide component
implementations, either by directly implementing the
specifications or by finding an existing component that fits
the specification.

Assembly pulls the components together, using the
component architecture for the software to define the
overall structure and the individual pieces, and adding user
interface and dialog logic.

415/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Issues in provisioning

A component realizes a component specification and an
interface realizes an interface type.

The realizations are performed in some target technology.

We must consider what mappings need to take place for
these two key realizations, between the technology-neutral
and the technology-specific level.

Main issues:
Operation parameter type, kind (in/out/inout/return), and
reference restrictions
Exception and error handling mechanisms (implementing
the contracts)
Interface inheritance and support restrictions
Operation sequence
Interface properties
Object creation mechanisms
Raising events

416/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography I

Bass, L., Clements, P., and Kazman, R. (1998). Software
Architecture in Practice. Addison-Wesley, Boston, MA,
USA, 1st edition.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (1996). Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons.

Cheesman, J. and Daniels, J. (2001). UML Components – A
Simple Process for Specifying Component-Based Software.
Addison-Wesley.

Coplien, J. O. (1992). Advanced C++ Programming Styles
and Idioms. Addison-Wesley.

417/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography II

Coplien, J. O. (1998). C++ idioms.
http://users.rcn.com/jcoplien/

Patterns/C++Idioms/EuroPLoP98.html (last visit: May
27th, 2009).

D’Souza, D. and Wills, A. C. (1998). Objects, Components
and Frameworks With UML: The Catalysis Approach.
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns – Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading.

Heineman, G. T. and Councill, W. T. (2001).
Component-Based Software Engineering. Addison-Wesley.

418/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography III

Heisel, M., Santen, T., and Souquières, J. (2002). Toward a
formal model of software components. In Proc. 4th
International Conference on Formal Engineering Methods,
pages 57–68. Springer.

Meyer, B. (1997). Object-Oriented Software Construction.
Prentice Hall International, 2nd edition.

OSGi Alliance (2010a). OSGi Service Platform Release 4
Version 4.2 Compendium Specification.
http://www.osgi.org/Download/Release4V42.

OSGi Alliance (2010b). OSGi Service Platform Release 4
Version 4.2 Core Specification.
http://www.osgi.org/Download/Release4V42.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component
Software. Pearson Education. Second edition.

419/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography IV

Wütherich, G., Hartmann, N., Kolb, B., and Lübken, M.
(2008). Die OSGi Service Platform: Eine Enführung mit
Eclipse. dpunkt.

420/ 420

	Introduction
	Patterns
	Architectual Patterns
	Design Patterns
	Idioms
	Patterns: Summary

	Components
	Design by contract
	Components and OO
	Java Beans
	OSGi
	Component Spec. Proc.

	References

