
SWK

JJ+HS

Introduction

Patterns

Components

References

Software-Konstruktion
Wintersemester 2010/2011

Prof. Dr. Jan Jürjens and Dr.-Ing. Holger Schmidt

TU Dortmund – Department of Computer Science
Software Engineering (LS 14)

http://ls14-www.cs.tu-dortmund.de/

Slides are based on the lecture “Muster- und Komponenten-basierte
Softwareentwicklung” by Prof. Dr. Maritta Heisel

1/ 420

http://ls14-www.cs.tu-dortmund.de/

SWK

JJ+HS

Introduction

Patterns

Components

References

Organizational issues I

Exercise sessions: Holger Schmidt and Gregor Kotainy

Distribution of lectures and exercises as needed

Dates

Freitags, 14:15-15:00, GB IV - 318
Freitags, 14:15-15:00, GB IV - 228
Freitags, 15:15-16:00, GB IV - 318
Freitags, 15:15-16:00, GB IV - 228
Freitags, 16:15-17:00, GB IV - 318
Freitags, 17:15-18:00, GB IV - 318

Course material will be published under

http://ls14-www.cs.tu-dortmund.de/main2/jj/

teaching/index.html

(check regularly!)

2/ 420

http://ls14-www.cs.tu-dortmund.de/main2/jj/teaching/index.html
http://ls14-www.cs.tu-dortmund.de/main2/jj/teaching/index.html

SWK

JJ+HS

Introduction

Patterns

Components

References

Organizational issues II

Prerequisite: basic knowledge of software engineering as taught
in the course “Softwaretechnik”; knowledge of a programming
language does not suffice!

Certificate

You have to pass the exam (60 minutes) to get a certificate for
this course. The exam schedule will be announced soon on the
webpage of this course.

Who studies in another program as the Bachelor?

3/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Content

Patterns

Architectural styles (coarse-grained design)
Design patterns (fine-grained design)
Idioms (implementation)

Components

Component definition and specification
Component models

Java Beans

Component-based software development process

4/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Software engineering: definition

Software Engineering 6= Programming!

Software Engineering (Balzert):

Goal-oriented provision and systematic use of principles,
methods, concepts, notations and tools for team-based
development and application of large software systems
according to engineering principles. Goal-oriented means e.g.
taking costs, time and quality into account.

Software system

A system, whose system components and system elements
consist of software.

Software: program + documentation

5/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Phases of software engineering processes

Analysis
Goal: understand the problem

Design
Goal: obtain structure of software to be built

Implementation
Goal: obtain executable software solving the problem

Testing
Goal: find defects in implementation

6/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why do mere programming skills not suffice?

(Practically) all software contains defects.

“Software and cathedrals are much the same:
first we build them, then we pray.”

Sam Redwine

This leads to an immense economic loss and the
endangering of human life.

Why is that so?

What are new promising areas of research?

7/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Studies of the Standish-Group (CHAOS Research),
1994/1996/1998/2000/2002/2004/2006/2008

Copyright © 2008 The Trends in IT Value report is protected by copyright and is the sole property of The Standish Group International, Incorporated. It may not under any circumstances be
retransmitted in any form, repackaged in any way, or resold through any media. All rights reserved.

S
P

E
C

IA
L R

E
P

O
R

T
: Trends in IT Value

Driver 4: Maintaining Suitable Risk

Risk is everywhere – throughout the organization. You
cannot eliminate it and it might be harmful to minimize it.
The challenge is to maintain a suitable risk that provides
the most progress and benefits. In the development of new
software we have outlined in our CHAOS research the 100
best practices to build and develop software. Regarding
the risk of operational failure, we have outlined several
techniques in our IT readiness report. In creating and
maintaining IT value the suitable risk driver is made up of
three elements: fewer moving parts, incremental adoption,
and a vertical stack

In terms of downtime, the more elements that go into the
operation of an application, the greater the opportunity
for something to break. Fewer moving parts means less
opportunity for things to break. We call these moving
parts “downtime triggers.” Everything that goes into the
operation of an application is a potential downtime trigger.
Each trigger should be weighted against the progress and
benefit that trigger brings to the smooth operation of the
application. This is also true in projects – the less you do,
the greater the chance it will get it done.

A little while ago a Standish Group executive met with a
former CEO of very successful software company. This
CEO was and still is a great supporter of the work being
done at CHAOS University on project failure. For the last
few years the CEO has been working on getting a new start-
up off the ground. The CEO had a great and wonderful
vision, and many IT executives thought that vision would
be a panacea for them and their organizations. However,
he could not get the company off the ground. He then
remembered our work on keeping projects small and
cut out a small piece of the software. His sales started
climbing. Time and time again, the “big bang” has proven
to be a big failure. Incremental adoptions and an iterative
project and process do much better.

Having a vertical stack improves both cost and quality. A
vertical stack is an infrastructure built and maintained by a
single supplier, such as the operating system, middleware,
and database technology. There are many examples of
this type of vertical stack, from vendors such as IBM,
Microsoft, and HP. The reason a vertical stack lowers risk
is that all the software is naturally integrated. As it turns
out, the majority of software errors occur between the
integration points rather than in the main body code. In

addition, there is cooperation among a
vendor’s internal product line groups to
fix a problem versus the blame game
that can go on when multiple vendors
are involved.

Standish Definition: “Risk” means a threat to the
organization, installation, and project success. The threat
can be physical, poor estimating, financial, or political. In
quantitative terms, risk is the probability of an undesired
outcome. First, risk should be considered by the types of
events, such as a key person leaving the project before
its resolution. Second, risk should be concerned with the
probability of occurrence; for example, there is only a
10% chance that a key person will leave before the project
is completed.

5

CHAOS PROJECT RESOLUTION

The above chart shows the results of project

resolution over the last decade. This data is from

our CHAOS Research project on project success

and failure and covers more than 60,000 projects.

2008
32%
24%
44%

8/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why can’t software be built in the same way as
cars and houses?

Software is something special, because it

is intangible
does not wear off through use, but ages because of
changes or no changes
is not restricted through physical laws
is easily alterable
is difficult to measure, i.e. describe in a quantitative way
does not exhibit a continuous but a discrete behavior (no
safety margins possible, small causes can have great
effects)

Therefore, we need specific methods
for constructing software!

9/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Summary

Computer Science (and thus software engineering) is a
very young science.

Only a small part of software development is programming.

Due to the special features of software, specific engineering
methods are necessary, but have not reached maturity yet.

An important goal is to develop software with fewer
defects.

For this, promising and exciting new approaches exist.

10/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Recent Developments:
From “Art” to “Engineering”

11/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Which steps lead from “Art” to “Engineering”? I

Model-based development

Develop sequence of models, each describing different
aspects of the software system
Models can be analyzed and checked for coherence

Object Orientation

Software architecture follows data, not functionality
Software as dynamic collection of communicating objects
Improved reusability through encapsulation of data

Patterns

Templates for the different artifacts generated in software
development
Useful in all phases of software development
Reuse through instantiation

12/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Which steps lead from “Art” to “Engineering”? II

Component software

Build software systems from ready-made parts

Aspect-oriented programming

Write different programs, each covering different aspects
(e.g. computation vs. graphical representation) of the
software
Compilers combine the different aspect programs to one
executable program

Software Engineering for special applications
e.g. Internet and multimedia applications

13/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Why patterns and components?

Both belong to the promising new developments

Both are based on reuse:

Patterns allow re-use of software development
knowledge
Components allow re-use of pre-fabricated software

Both can be used in combination

14/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Patterns: basic ideas

Templates for documents set up during software
development

Serve to represent and re-use software development
knowledge

Represent essence, abstract from details

Are used by instantiation

Are available for (almost) all phases of software
development

15/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Components: basic ideas

Assemble software from pre-fabricated parts

Re-compilation not necessary

Source code may be inaccessible

Important: interface descriptions and component models

Interoperability is an issue

16/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Architectural Patterns

17/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Software architecture

The software we construct for solving a software development
problem must be structured further.
That structure is called architecture. It is the result of
(coarse-grained) design. It structures the software in terms of

Components
These carry out computations. Examples: Filters, data
bases, objects, abstract data types
Connectors
Means of interaction between components. Examples:
procedure calls, pipes, event broadcast

18/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Definition Bass et al. (1998)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which
comprise software components, the externally visible prop-
erties of those components, and the relationships among
them.

19/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Important points of the definition

Only properties of components that are externally visible
are described.

These (and only these) constitute the assumptions that
can be made by components about one another.

Internal details that are unimportant for the interaction of
components are abstracted from.

An architecture can define more than one structure. For
example, assignment of “modules” to teams, set of
parallel processes existing at runtime.

20/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Why architectures?

All software has an architecture, even if nobody knows it!

However, that architecture should be explicitly designed and
documented, because this entails that the software

is better comprehensible

can be analyzed more easily, e.g. for efficiency

can be better maintained

can be implemented systematically

21/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Architectural styles

Are patterns on the level of coarse-grained design, and are
also called architectural patterns

Classify software systems

The architecture of a software should be an instance of
some architectural style

22/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures I

Passive components:

process the requests sequentially and may return values

used in call-and-return systems

23/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures II

Independent components:

can be implemented as communicating processes

may initiate actions on their own (active)

communicate using messages, pipes/streams, or shared
memory

different components can run on one computer with shared
memory, or components can be distributed over a network

exchange data, but do not control each other

goal: modifiability of the software by decoupling different
computations

24/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of components used in architectures III

Reasons for independent components:

Software should run on a multiprocessor-platform

Software could be structured as a set of loosely coupled
components, i.e. a component should be able to make
reasonable progress while waiting for events from other
components

Performance is important. It can be improved by assigning
tasks to the processes and assigning processes to
processors.

25/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Structure of software / components I

function-oriented (FO, main program/subroutine)

object-oriented (OO)

26/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

function-oriented software

main program

subroutine1 subroutine2 subroutine3

Hierarchical decomposition of functionality, based on a
uses-relation
One single control-line, directly supported by programming
languages
Implicit subsystem structure: subprograms as modules
Hierarchical deduction: correctness of a subprogram
depends on the correctness of the subprograms it calls.

27/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Object-oriented software

Object Object

Object

Orientation of the architecture on the data
If modifiability and the ability of integration (through
well-defined interfaces) is important, consider using an
object-oriented design.
Encapsulation: access only possible through defined
operations. The user of a service does not need to know,
how it is implemented. The implementation can be
changed.
Disadvantage: object identities must be known.

28/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Interfaces between components / coupling

Types of component coupling:

call-and-return (for passive components)

messages / events (for independent components)

pipes / streams (for all, even network pipes exist)

shared memory (for all local components)

29/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Call-and-return

Call-and-return (control flow with some associated data):

Used to connect passive components

Corresponds to the call of an operation in a programming
language

Technically, a shared memory (stack or processor registers)
is used to pass parameters and return values

Works for function-oriented (main program/subroutine)
and object-oriented software

If the sequence of computations is fixed and components
cannot make reasonable progress while waiting for the
results of other components, consider using synchronous
calls.

30/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events I

Messages or Events (control flow with some associated data):

Asynchronous vs. synchronous (call-and-return)
communication

between active components usually asynchronous
communication is used

message queues are used to implement asynchronous
communication

asynchronous messages cannot have a return value - an
additional message in the opposite direction is necessary

31/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events II

Sender-/Receiver relationship

1:1 - The sending component sends a message to one
known receiver component

1:1U - The sending component sends a message to a
unknown receiver component - The receiver has to register
to get the message

1:N - The sending component sends a message to all
components that are registered to receive the message (see
Observer pattern)

32/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events III

Distribution, several components of a software may run:

within a single task (asynchronous messages are not
necessary)

within a single process in separate tasks, but the same
memory region

locally on one computer in separate processes
(communication is between different processes)

remote on different computers (communication is over a
network connection)

33/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events IV

Data

no parameters, only single event (only control flow)

only limited data (e.g., a pointer)

only simple data types

serializable data

any object

34/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events V

Implementations:

Events in Java (synchronous, 1toN, within single process,
any object, OO)
Delegates in .NET (asynchronous, 1toN, within single
process, any object, OO)
Signals and Slots in C++ with QT (asynchronous, 1toN,
within single process, any object, OO)
Remote procedure calls (Windows RPC/Sun RPC)
(synchronous or asynchronous, 1to1, remote, serializable
data, FO)
Remote Method Invocation (Java RMI) (synchronous,
1to1, remote, serializable data, OO)

35/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Messages / Events VI

Corba (synchronous/asynchronous since 2000, 1to1,
remote, serializable object, OO)

Windows Events/Mutex/Semaphore received with
WaitForSingleObject command (asynchronous, 1toN,
within single process, no parameters, FO)

Unix Signals sent with kill -x (asynchronous, 1to1, local,
no parameters, FO)

Windows Message Queues (asynchronous, 1to1, remote,
serializable data, FO)

36/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes / Streams

Streams (data flow with necessary control messages):

Network sockets

Unix pipes (only between components of one computer)

Windows named pipes (only between components of one
computer)

37/ 420

