
SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Shared Memory

Shared Memory (can only be used for data flow):

usually possible within a single process

if different tasks work on one memory region,
synchronization is necessary

files can be used as a shared memory between different
processes

most operating systems provide functionality to reserve a
shared memory that can be used by different processes

38/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Control flow vs. data flow

Control flow Data flow

Decisive question: how does
the location of control move
through the program?

Decisive question: how does
the data move through the
program?

Data can go along with con-
trol, but is not decisive.

The control is activated
where the data is situated.

Important: sequence of com-
putations

Important: availability and
transformation of data

39/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Organization of components

Batch sequential (independent components using file
system as shared memory or passive components with
call-and-return)

Pipes & filters (can be implemented with pipes, messages
or as call-and-return system)

Layered architectures (using calls or messages)

Client-server architecture, using streams (e.g. Sockets) or
remote messages (e.g., RPCs)

Data-centered systems (repositories)

Data bases
Blackboards

Event systems (implemented with messages, Observer
pattern applied)

40/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Batch sequential

Processing steps are independent programs that run as
different processes

Each step terminates before the next one begins

Data are transferred as a whole

File can be used as a shared memory between the different
processes

Process

Data Flow

Notation

tape
Validate

tape
Sort

tape
Update

tape
Report

report

tape

Data transformation

Examples: typical transformational applications such as
computing salaries, or the like

41/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & Filters

Name of that style originates from programs written in the
Unix programming environment

Filters: transform streams of input data into streams of
output data in an incremental way
Pipes: move data from a filter output to a filter input
General scheme of computation:
let pipes and filters operate in a non-deterministic manner
until no further computations are possible

pipes

filters

Specialization: pipelines, i.e., linear sequences of filters

42/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages of pipes & filters architectures

The overall input-output behavior is determined by a
simple composition of the behavior of the individual filters.

Re-use of filters is possible.

Easy to maintain and to improve by adding or replacing
filters.

Concurrency is supported in a natural way, because filters
can operate independently of each other.

Can be analyzed well, for example concerning throughput
of deadlocks.

43/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Disadvantages of pipes & filters architectures

Often lead to batch-processing, i.e. concurrency is not
utilized

Not appropriate for interactive applications

Efficiency may be problematic

All components have to parse the input

44/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) I

Alternative 1: push pipeline with passive filter components
and synchronous calls. Activity starts with the data source.

45/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) II

Alternative 2: pull pipeline with passive filter components and
synchronous calls. Data sink starts the activity by calling for
data.

46/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Pipes & filters’ dynamic behavior / implementation
alternatives (Buschmann et al. (1996)) III

Alternative 3: pipeline with active filter components that pull,
process and than push data. Each filter runs in its own thread
of control. Buffering pipes are used for communication and
synchronize the flow of data.

47/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Comparison of batch sequential and pipes & filters

Both decompose software systems into fixed sequences of
computations

In both cases components interact only through data flow

batch sequential pipes & filters

coarse-grained, total fine-grained, incremental

no concurrency concurrency possible

not interactive often interactive, but inelegant

48/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Layered architectures

Hierarchical Organization. Each layer offers services for the
layers above.

Application

Adapter

Operating system or

hardware abstraction layer (HAL)

Well-known Example: ISO/OSI-Reference model for
communication protocols.

49/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures I

Advantages:

Design is performed on successive lower abstraction layers,
i.e. services are defined at first in an abstract way and
then in an increasingly concrete way.
Can be changed easily, since changes in one layer (should)
only effect the adjacent layers.
Portability is supported.
Can be implemented as a call-and-return system or
composed from independent components.

50/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures II

Disadvantages:

It is often difficult to identify and clearly separate different
abstraction layers.
The previous reason and reasons of efficiency often lead to
layer bridging in practice, i.e. not only adjacent layers
communicate directly with each other.

51/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages / disadvantages of layered
architectures III

Reasons for a layered architecture:

If the software tasks can be divided into classes, of which
one is application-specific and the other is usable for
several applications, but platform specific, consider using a
layered architecture.
Also consider using a layered architecture, if the software
should be portable or an already developed infrastructure
can be used.

52/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-server architectures

A server serves several clients, which are usually distributed
over a net. Service requests are always initiated by the client,
and can be served in a synchronous or asynchronous way.

Example: web-server and browser (client)

The repository architecture style is a special client-server
architecture

Client-dispatcher-server design pattern is often applied

53/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) I

Shared Data

Client Client

Client
Client

Client

Client

Bidirectional Data Flow

Computational Component/ObjectConcrete Class

Notation

Characteristics:

The integration of data is an important goal.
The software can be described by describing how the
repository can be used and changed by the different
parties.
Components that access the repository are relatively
independent from each other, and the repository is
independent of them.

54/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) II

New components can be easily added and are not effected
by changes of other components

If components act independently from each other, then such a
repository architecture is a client-server-architecture at the
same time =⇒ Architectural styles are not disjoint!

Databases
The data storage is passive, the sequence of the operations is
defined through the input streams.

Blackboards
A blackboard is an active repository: it sends messages to
interested components, when certain data has changed.
Overlap with event/action-style.

55/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Data-Centered Systems (Repositories) III

Heuristics for Repository Architectures

Central problem is the storage, representation,
administration as well as access to a large number of
connected, persistent data.
Choose a database architecture, if the execution order of
the components is determined through a stream of queries
and transactions, and if the data are highly structured or
in case a commercial database system is available, which
can then be used for the desired purpose.
Choose a blackboard architecture, if consumer and
producer of data should be easily exchangeable.
If it is probable that the representation of data will
change, prefer an object-oriented architecture.

56/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Event systems I

Also called Event/Action-Style

Independent components do not need to know each other

Components publish that they offer certain data or services

Other components announce interest in particular events
or data
=⇒ publish/subscribe-principle

Often an event- or message manager is responsible for
distributing the messages

Choose an event-system, if

producers and consumers of events should be decoupled.

scalability is important. Here, new processes can be
added, that react to already defined events.

57/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Event systems II

EVENTS Event
Manager OUT2

RESULT2IN2

Component 2

RESULT1IN1

OUT1
Component 1

IN3

OUT3

RESULT3

Component 3

Each component defines incoming procedure calls and
outgoing events in its interface
The communication among components takes place by
publishing events that trigger procedure calls
Sequence of the called procedures is not deterministic
Decoupling of implementation and use of components
Implemented using the Observer design pattern

58/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Relation between architectural patterns and design
patterns I

Event Systems:

Implemented using Observer pattern

Components:

Structured using Facade pattern

A component is often implemented using the Singleton
pattern

User Interface Components:

Implemented using MVC pattern (with Composite,
Observer, Strategy, and Factory Method)

59/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Relation between architectural patterns and design
patterns II

Streams:
If a stream interface is given but messages should be
exchanged efficiently, apply

Forwarder-Receiver pattern

Remote Procedure Call (RPC):
In RPC implementations the following design patterns are
applied:

Client-Dispatcher-Server pattern to locate the service

Proxy pattern for the operation stubs of the client

60/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on architectural patterns?

The the software system needs to be structured.
That structure is called architecture of the software
system. It consists of components and connectors.
Software architectures describe the structure of the
solution of a problem.
Software architectures can be classified. These classes are
called architectural styles.
Usually, several architectures can be used to structure a
software. These differ in non-functional characteristics
(quality attributes).

61/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design Patterns

62/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design patterns (Gamma et al. (1995)):
characterized by

Usage for detailed design

Object-oriented paradigm

“Description of a family of solutions for a software design
problem” (Tichy)

Class

Class Class

Class Structuring of architectural components

63/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Gamma et al. (1995))

creational
concern the process of object creation

structural
deal with the composition of classes or objects

behavioral
characterize the ways in which classes or objects interact
and distribute responsibility

Second criterion: scope
specifies whether the pattern applies primarily to classes or to
objects.

64/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Tichy) I

Coupling/decoupling patterns
System is divided into units that can be changed
independently from each other
e.g. Iterator, Facade, Proxy

Unification patterns
Similarities are extracted and only described at one place.
e.g. Composite, Abstract Factory

Data-structure patterns
Process states of objects independently of their
responsibilities
e.g. Memento, Singleton

65/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Types of design patterns (Tichy) II

Control flow patterns
Influence the control flow; provide for the right method to
be called at the right time
e.g. Strategy, Visitor

Virtual machines
Receive programs and data as input, execute programs
according to data
e.g. Interpreter
(Remark: no clear boundary to architectural styles)

66/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Advantages of design patterns (Tichy)

Improvement of team communication
Design pattern as “short formula” in discussions

Compilation of essential concepts, expressed in a concrete
form

Documentation of the “state of the art”
Help for less experienced designers, not constantly
reinventing the wheel

Improvement of the code quality
Given structure, code examples

67/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of design patterns (Gamma et al.
(1995)) I

Name and Classification A good name is important, because it
will become part of the design vocabulary.

Intent What does the pattern do? Which problems does
it solve?

Also Known As Other familiar names.

Motivation Scenario which illustrates the design problem and
how the pattern solves the problem.

Applicability What are the situations in which the design
pattern can be applied? How can one recognize
these situations?

Structure Class and interaction diagrams.

Participants Classes and objects, which are part of the
pattern, as well as their responsibilities.

68/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of design patterns (Gamma et al.
(1995)) II

Collaborations How do the participants collaborate to carry out
their responsibilities?

Consequences What are the trade-offs and results of using the
pattern? What aspect of system structure does it
let one vary independently?

Implementation What pitfalls, hints, or techniques should one
be aware of when implementing the pattern? Are
there any language-specific issues?

Sample Code Code fragments in C++ or Smalltalk.

Known Uses At least two examples of applications taken from
existing systems of different fields.

Related Patterns Similar patterns and patterns that are often
used in combination with the described pattern.

69/ 420

