
SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Model-View-Controller (MVC)
Gamma et al. (1995); Buschmann et al. (1996)

Architectural style/design patternhybrid

Aggregate design pattern out of

Composite
Observer
Strategy
Factory Method

Clear distinction of data (model), data representation on a
screen (view) and control of data manipulation or views
(controller)

70/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

How MVC works – an overview

View(s)

Model

User

Controller

71/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Description of MVC, Trygve M. H. Reenskaug

Intent Interactive applications with a flexible
human-computer interface.

Motivation Adaptability and reuse

Participants MVC separates the application into three
(independent) components

Model offers core functionality and data
View provides information to the user
Controller handles user input

All three components are related by a change-propagation
mechanism.

View and Controller constitute the user interface.

72/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

MVC class diagram

myModel
myView
initialize(Model,View)
handleEvent
update

ControllercreategetData
attach

call update

coreData
setOfObservers
attach(Observer)
detach(Observer)
notify

getData
service

myModel
myController
initialize(Model)
makeController
activate
display
update

Model

View

manipulate
display

attach
call service

Observer

update

Model: does not know View or Controller beforehand,
announces change by calling update, related components request
model state by getData, if needed keep data in a data base

View: connected to Model, displays data (visually, acoustically,
or similar) normally on a screen

Controller: administrates Views, manipulates data on behalf of
the user, ”brain” of the application

73/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Design Patterns of MVC in detail

74/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite I

Classification object/structural

Intent
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets you treat individual objects and
compositions of objects uniformly.

Also Known As —.

Motivation
Users can build complex diagrams out of simple components by
using graphics applications.
Problem: Code that uses the corresponding classes must treat
primitive and container objects differently, even if most of the
time the user treats them identically. The Composite pattern
describes how a recursive composition can be designed so that
the client does not have to distinguish between primitive
objects and containers.

75/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite II

Example:

aPicture

aPicture aLine aRectangle

aText aLine aRectangle

common operations: draw(), move(), delete(), scale()

76/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite III

Applicability
Use the Composite pattern when

you want to represent part-whole hierarchies of objects.

you want clients be able to ignore the difference between
compositions of objects and individual objects. Clients will
treat all objects in the composite structure uniformly.

Structure (abstract classes and operations are noted in italics)

*

children
getChild(int)
operation()

Composite

Component

operation()
getChild(int)

Leaf

operation()

77/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite IV

Participants

Component (graphic)

declares the interface for objects in the composition
implements default behavior for the interface common to
all classes, as appropriate
declares an interface for accessing and managing its child
components
(optional) defines an interface for accessing a component’s
parent in the recursive structure, and implements it if
that’s appropriate

Leaf (rectangle, line, text etc.)

represents leaf objects in the composition. A leaf has no
children.
defines behavior for primitive objects in the composition

78/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite V

Composite (picture)

defines behavior for components having children
stores child components
implements child-related operations in the Component
interface

Client (not contained in the class diagram)

manipulates objects in the composition through
Component interface

Collaborations
Clients use the Component class interface to interact with
objects in the composite structure. If the recipient is a leaf,
then the request is handled directly. If the recipient is a
composite, then it usually forwards the request to its child
components, possibly performing additional operations before
and/or after forwarding.

79/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VI

Consequences
The Composite pattern

defines class hierarchies consisting of primitive objects and
composite objects.
Whenever client code expects a primitive object, then it
can also take a composite object.

makes the client simple
Clients can treat composite structures and individual
objects uniformly. Clients normally don’t know (and
shouldn’t care) whether they’re dealing with a leaf or a
composite object. This simplifies client code, because it
avoids having to write tag-and-case-statement-style
functions over the classes that define the composition.

80/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VII

makes it easier to add new kinds of components.
Newly defined subclasses of Composite or Leaf work
automatically with existing structures and client code.
Clients don’t have to be changed for new component
classes.

can make your design overly general
The disadvantage of making it easy to add new
components is that it makes it harder to restrict the
components of a composite. Sometimes you want a
composite to have only certain components. With
Composite, you can’t rely on the type system to enforce
those constraints for you. You’ll have to use run-time
checks instead.

81/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite VIII

Implementation Gamma et al. (1995) considers the following
aspects:

1. Explicit parents references
Should be defined in the Component class.

2. Sharing components
Can be useful to reduce storage requirements, but destroys
tree structure.

3. Maximizing the Component interface
Necessary to make clients unaware of the specific Leaf or
Composite classes they are using. Default implementation
in Component can be overwritten in subclasses.

82/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite IX

4. Declaring the child management operations
Declaration of add- and remove-operations in the class
Component results in transparency; all components can be
treated uniformly. Costs safety, because meaningless
operations can be called, e.g. adding to objects to leafs.
Defining child management in the Composites class gives
safety, but is at the expense of transparency (leaves and
composites have different interfaces).

5. Should Component implement a list of components?
Incurs a space penalty for every leaf.

6. Child ordering
When child ordering is an issue, applying the Iterator
pattern is recommended.

83/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite X

7. Caching to improve performance
Useful, if the compositions have to be traversed or
searched frequently.

8. Who should delete components?
In languages without garbage collection, it’s usually best
to make a composite responsible for deleting its children
when it’s destroyed.

9. What’s the best data structure for storing components?
Depends on aspects of efficiency.

84/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XI

Sample Code
Equipment such as computers and stereo components are often
organized into part-whole or containment hierarchies.

1 c l a s s Equipment {
2 p u b l i c :
3 v i r t u a l Equipment () ;
4 const char ∗ Name () { r e t u r n name ; }
5 v i r t u a l Watt Power () ;
6 v i r t u a l C u r r e n c y N e t P r i c e () ;
7 v i r t u a l C u r r e n c y D i s c o u n t P r i c e () ;
8 v i r t u a l v o i d Add (Equipment ∗) ;
9 v i r t u a l v o i d Remove (Equipment ∗) ;

10 v i r t u a l I t e r a t o r <Equipment∗>∗ C r e a t e I t e r a t o r () ;
11 p r o t e c t e d :
12 Equipment (const char ∗) ;
13 p r i v a t e :
14 const char ∗ name ;
15 } ;

85/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XII

Equipment declares operations that return the attributes of a
piece of equipment, like its power consumption and cost. A
CreateIterator -operation returns an iterator for accessing its
parts.

Further classes such as FloppyDisk as class for leaves and
CompositeEquipment for composite equipment are defined in
the Gamma et al. (1995).

86/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Composite XIII

Known Uses
View -class in Model/View/Controller
Composite structure for parse trees
Portfolio containing assets

Related Patterns
Often the component-parent link is used for a Chain of
Responsibility.
Decorator is often used with composites. When
decorators and composites are used together, they will
usually have a common parent class.
Flyweight lets you share components, but they can no
longer refer to their parents.
Iterator can be used to traverse composites.
Visitor localizes operations and behavior that would
otherwise be distributed across Composite and Leaf
classes.

87/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

File system should be able to handle file structures of any
size and complexity.

Directories and (basic) files should be distinguished.

The code, e.g. for selecting the name of a directory should
be the same as for files. The same holds for size, access
rights, etc.

It should be easy to add new types of files (e.g. symbolic
links).

88/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the composite pattern

getChildren()
read()
write()
add()

getChildren()
read()
write()
add()

children

getName()
getProtection()

*

Node

remove()
add()
write()

File Directory

remove()

read()
getChildren()

remove()

89/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) I

Classification object/behavioral

Intent
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Also Known As Dependents, Publish-Subscribe

90/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) II

Applicability
Use the Observer pattern when

change to one object requires changing others,
and you do not know how many objects need to be
changed.

an object should be able to notify other objects without
making assumptions about who these objects are.

data changes a one place, but many other components
depend on this data

the number and identity of dependent components is not
known a priori or may change over timer

polling is not feasible.

91/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) III

Structure

GetState()

SetState()

observerState

Update()

ConcreteObserver

Attach(Observer)

Detach(Observer)

Notify()

Subject

ConcreteSubject

observers

subject

Update()

Observer

subjectState

92/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) IV

Participants

Subject

knows its observers
provides an interface for attaching and detaching Observer
objects

Observer

defines an update interface for objects that should be
notified of changes in a subject

ConcreteSubject

stores state of interest to ConcreteObserver object
sends a notification to its observers when its state changes
Also called publisher.

93/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) V

ConcreteObserver

maintains a reference to a ConcreteSubject object

stores state that should stay consistent with the
ConcreteSubject’s

implements the update-interface of Observer

components/objects depend on changes

Also called subscriber.

94/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Observer (or: Publisher/subscriber) VI

Dynamics:

Related Patterns Mediator, Singleton

95/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

When the name of a file or directory is changed
(setName), the representation of the name on the display
will be updated, too.

96/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Observer pattern

GetName()

SetName()

Attach(Observer)

Detach(Observer)

Notify()

Subject

File

observers

subject

Update()

Observer

Display

concreteSubject concreteObserver

filename obsStateOfFilename

Update()

97/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy I

Classification object/behavioral

Intent
Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Also Known as Policy

Applicability Use the Strategy pattern when

many related classes differ only in their behavior. Strategy
provides a way to configure a class with one of many
behaviors.
you need different variants of an algorithm.
an algorithm uses data that clients should not know about.
a class defines many behaviors, and these appear as
multiple conditional statements in its operations.

98/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy II

Structure

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Context

ContextInterface()

strategy

99/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Strategy III

Participants

Strategy

declares an interface common to all supported algorithms.
Context uses this interface to call algorithm defined by a
ConcreteStrategy .

ConcreteStrategy

implements the algorithm using the Strategy interface.

Context

is configured with a ConcreteStrategy object
may define an interface that lets Strategy access its data

Related Patterns Flyweight

100/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

It is not allowed to delete directories which contain files or
are write protected.

101/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Strategy pattern

Strategy

deleteDirectory()

ConcreteStrategyA

deleteDirectory()

ConcreteStrategyB

deleteDirectory()

ConcreteStrategyC

deleteDirectory()

isEmpty() !isEmpty() isProtected()

Directory

DirectoryInterface()

strategy

102/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method I

Classification creational

Intent
Define an interface for creating an object, but let subclasses
decide which class to instantiate.

Also Known As Virtual Constructor

Applicability Use the Factory Method pattern when

a class cannot anticipate the class of objects it must
create.

a class wants its subclass to specify the object it creates.

classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate.

103/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method II

Structure

Creator

FactoryMethod()

AnOperation()

Product

ConcreteProduct ConcreteCreator

FactoryMethod()

AnOperation()

<<create>>

104/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Factory Method III

Participants

Product (Files)

defines the interface of objects the FactoryMethod()
creates

ConcreteProduct (Text-File)

implements the Product interface

Creator (Application)

declares the FactoryMethod(), which returns an object of
type Product

ConcreteCreator (Open Office)

overrides the FactoryMethod() to return an instance of a
ConcreteProduct

Related Patterns
Abstract Factory, Template Method, Prototypes

105/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

The file system offers the creation of files, where the kind
of file to be created (.txt, .ods, .xls) depends on the
particular application.

106/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application of the Factory Method pattern

<<create>>

Save()

Close()

Files

Open()

Text−File OpenOffice

CreateFiles()

Application

CreateFiles()

NewFiles()

OpenFiles()

107/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton I

Classification object/creational

Intent Ensure a class only has one instance and provide a
global point of access to it.

Motivation
It’s important for some classes to have exactly one instance
(e.g., printer spooler). That class should be responsible for
keeping track of its sole instance. The class can ensure that no
other instance can be created, and it can provide a way to
access the instance.

Applicability Use the Singleton pattern when

there must be exactly one instance of a class, and it must
be accessible to clients from a well-known access point.
the sole instance should be extensible by subclassing, and
clients should be able to use an extended instance without
modifying their code.

108/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton II

Structure

if uniqueInstance = null
then uniqueInstance := new Singleton
endif
return uniqueInstance

uniqueInstance
singletonData

Singleton

GetSingletonData()
singletonOperation()

instance()

Participants

Singleton

defines an instance operation that lets clients access its
unique instance.
may be responsible for creating its own unique instance.

109/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Singleton III

Collaborations

Clients access a singleton instance solely through the
singleton’s instance-operation.

Consequences

Controlled access to the sole instance.

Improvement over global variables.

Permits refinement of operations and representation
through subclassing

Permits a variable (!) number of instances.

Related Patterns Abstract Factory, Builder, Prototype

110/ 420

SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Consider users in a multi-user system:

User logs in to the system.

generates an object of the class UserSession

We want to ensure that

a only a maximum number of user sessions exist per user.
user sessions are only generated if authentication was
successful.

Basic concept:

singleton-pattern
variation necessary

111/ 420

