
SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Singleton pattern

Declare class UserSession to be a singleton.

Instantiation of instance is named createUserSession.

Extend implementation of createUserSession by further
case distinctions (number of user sessions is smaller than
allowed maximum, successful authentication).

112/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade I

Classification object/structural

Intent Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes
the subsystem easier to use.

Applicability Use the Facade pattern when

you want to provide a simple interface to a complex
subsystem. A facade can provide a simple default view of
the subsystem that is good enough for most clients.
there are many dependencies between clients and the
implementation classes of an abstraction. Introduce a
facade to decouple the subsystem from clients and other
subsystems.
you want to layer your subsystems. Use a facade to define
an entry point to each subsystem level.

113/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade II

Structure

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Facade

Participants

Facade

knows which subsystem classes are responsible for a
request
delegates client requests to appropriate subsystem objects

subsystem classes

implement subsystem functionality
handle work assigned by the facade object
have no knowledge of the facade, i.e. no reference to it

114/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Facade III

Consequences The facade

shields clients from subsystem components, thereby
reducing the number of objects that clients deal with and
making the subsystem easier to use.
promotes weak coupling between subsystems and clients.
Weak coupling lets you vary the components of the
subsystem without affecting its clients.
doesn’t prevent applications from using subsystem classes
if they need to. Thus you can choose between ease of use
and generality.

Related Patterns Abstract Factory, Mediator

115/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Uniform interface for file system:

File system API contains different classes, whose
interaction is difficult to understand.

In particular, the admissible consequences for generating
file structures are not clear.

In real file systems: uniform interfaces for handling the
different phenomena file, directory, alias, . . .

116/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Facade pattern

FileFacade

ls(): String

pwd(): String

mkfile(name: String, content: String)

mkdir(name: String)
cd(dir: String)

pwd(): String

mkfile(name: String, content: String)

mkdir(name: String)
cd(dir: String)
ls(): String

FileSys

− root: Directory
− cwd: Directory

Implementing FileSys of FileFacade contains two private
attributes
Creation routine generates a root-directory “/” and sets
cwd to root
pwd calls cwd .getName
mkfile calls cwd .add
. . .

117/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy I

Classification object/structural
Intent Provide a surrogate or placeholder for another object to
control access to it.
Also Known As Surrogate
Applicability Proxy is applicable whenever there is a need for a
more versatile or sophisticated reference to an object than a
simple pointer.
Some situations in which the Proxy pattern is applicable:

1. A remote proxy provides a local representative for an
object in a different address space.

2. A virtual proxy creates expensive objects on demand
(delayed loading, delayed generation).

118/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy II

3. A protection proxy controls access to the original object.
Protection proxies are useful when objects should have
different access rights.

4. A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed.
Typical uses include

counting the number or references to the real object so
that it can be freed automatically when there are no more
references (also called smart pointer)
loading a persistent object into memory when it’s first
referenced
checking that the real object is locked before it’s accessed
to ensure that no other object can change it.

119/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy III

Structure

request()

Proxy

Subject

request()

original

Client<<use>>

RealSubject

request()

120/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Proxy IV

Participants

Proxy

maintains a reference that lets the proxy access the real
subject
provides an interface identical to Subject’s so that a proxy
can be substituted for the real subject
controls access to the real subject and may be responsible
for creating and deleting it

Subject

defines common interfaces for RealSubject and Proxy , so
that the proxy can be used anywhere a real subject is
expected

RealSubject

defines the real object that the proxy represents

Related Patterns Adapter, Decorator
121/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example: file system

Introduction of aliases

file alias

“symbolic link” in Unix
“alias” in MacOS
“shortcut” in Windows95+

operations on files and aliases

alias permits all operations that are possible on originals
forwards operations to the original
special interpretations of operations is possible in special
cases (e.g., for copying)

122/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Applying the Proxy pattern to the file system

New class Link as proxy for Node

getChildren()
read()
write()
add()

getChildren()
read()
write()
add()

File

remove()

getChildren()
read()
write()
add()

Link

remove()

*

original

children

getName()
getProtection()

*

Node

remove()
add()
write()

Directory

read()
getChildren()

remove()

123/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server I

Classification structural

Intent/Problem Buschmann et al. (1996)

Software system uses servers distributed over a network

Connection between components have to be established
before communication

Core functionality should be separated from
communication details

Clients should not need to know where servers are located

124/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server II

Also Known As -

Motivation/Applicability Services are located on different
servers

Structure

125/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server III

Participants/Consequences/Implementation

Provide a dispatcher to act as an intermediate layer
between client and server

Dispatcher implements a name service to provide location
transparency

Dispatcher establishes the communication

Servers provide services to other components

Servers have unique names and are connected to the
dispatcher

Clients rely on the dispatcher to locate a particular service
and to establish a connection

126/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server IV

Dynamics

127/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Client-Dispatcher-Server V

Sample Code see Buschmann et al. (1996)
Known Uses RPCs, CORBA
Related Acceptor and Connector

128/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) I

Classification structural
Intent/Problem Buschmann et al. (1996)

Commonly distributed applications use efficient low-level
mechanisms for inter-process communication (e.g.,
TCP/IP, message queues)
Low-level mechanisms often introduce dependencies on
the underlying operating system and network protocol,
which restricts portability
Higher-level mechanisms like remote procedure calls are
less efficient
Communication mechanism should be exchangeable
The senders should only need to know the names of their
receivers
The communication should not have major impact on
performance

129/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) II

Also Known As Peer-to-peer
Motivation/Applicability Efficient communication between
peers
Structure

130/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) III

Participants/Consequences/Implementation

Distributed peers collaborate to solve a particular problem.

A peer may act as a client, a server, or both.

The details of the underlying communication mechanism
are hidden from peers

System-specific functionality (name mapping to physical
locations, communication channel establishment,
marshaling) is encapsulated into separate components.

A forwarder marshals the data and sends messages to
other peers

A receiver receives and unmarshals the data.

131/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Forwarder-Receiver (Peer-to-peer) IV

Dynamics

132/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on design patterns? I

Design patterns are object-oriented patterns at detailed
design level.

They are closer to implementation than architectural
styles.

According to the classification of Gamma et al. (1995),
there are behavioral, creational and structural patterns.

Design patterns support achieving desirable properties in
implementing object-oriented software, e.g. independent
modification of parts, limitation of communication paths
etc.

133/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned on design patterns? II

We have presented and used the following patterns for
MVC:

1. Composite
2. Observer
3. Strategy
4. Factory Method

plus the patterns
5. Singleton
6. Facade
7. Proxy
8. Client-dispatcher-server
9. Forwarder-Receiver

134/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idioms

135/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Characteristics

Specific patterns for (object-oriented) programming
languages

Low abstraction level

Describe, how certain aspects of components or relations
between components can be implemented by means of a
specific programming language

136/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Literature

Buschmann et al. (1996)

Coplien (1992)

Coplien (1998)
http://users.rcn.com/jcoplien/Patterns/

C++Idioms/EuroPLoP98.html

137/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Application

Solution of implementation-specific problems in a certain
programming language, e.g.

memory management
creation of objects

Implementation of design patterns

Description of programming styles, e.g.

names for operations
formatting of source code

Simplified communication between developers

138/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for implementing “Singleton” in C++ I

Name Singleton (C++)

Problem An implementation of the Singleton design pattern is
needed to ensure that only one instance of a class exists
at runtime.

Solution Change the constructor of the corresponding class to a
private operation. Declare a static attribute theInstance,
which refers to the single instance of the class. Initialize
the pointer in the class declaration with null. Define a
public static operation getInstance(), which returns the
value of the attribute. When the operation is called for
the very first time, the single instance of the class is
constructed using the operator new. Furthermore, this
instance is assigned to the attribute theInstance.

139/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for implementing “Singleton” in C++ II

Example

class Singleton {
static Singleton *theInstance;

Singleton();

public:

static Singleton *getInstance() {
if (! theInstance)

theInstance = new Singleton;

return theInstance;

}
};
//...

Singleton* Singleton::theInstance = 0;

140/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for Implementing “Singleton” in Smalltalk I

Name Singleton (Smalltalk)

Problem An implementation of the Singleton design pattern is
needed to ensure that only one instance of a class exists
at runtime.

Solution Override the operator new of the corresponding class
such that it triggers an exception. Add the class attribute
TheInstance to the class, which contains the single
instance of the class. Implement the operation
getInstance(), which returns this instance. When the
operation is called for the very first time, the single
instance of the class is constructed using the operator
super new. Furthermore, this instance is assigned to the
attribute TheInstance.

141/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Idiom for Implementing “Singleton” in Smalltalk II

Example

new

self error: ’cannot create new object’

getInstance

TheInstance isNil ifTrue:

[TheInstance := super new].

^TheInstance

142/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer I

Example Problem of the C++ memory management. Several
clients have a reference to a commonly used object. This
issue leads to two unwanted situations:

1. A client object deletes the commonly used object
while it is referenced by another client.

2. No client object references the commonly used
object, but the object was not deleted.

Context Memory management of dynamically allocated,
multiple-referenced instances of a class.

143/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer II

Problem Objects will be passed as parameters to functions
using pointers. The following forces rule:

several clients refer to the same object

“dangling references” should be avoided

object that are not referenced should be deleted

solution should contain only a small portion of
additional client code

144/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer III

Solution counting of references of multiple-referenced
objects

body class will be extended by reference counter

only a handle class is allowed to refer to objects of
the body class

objects will be passed as value parameters and hence
automatically allocated and deleted

handle class manages reference counter of body class
instances

by overloading the operator “->” in
object->operation() using operator->() in the
handle class, its instances can be used as if they were
pointers on body class instances

145/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer IV

Client

Handle h

Handle

Body *body

operator−>()

~Handle()

operator=()

Handle(Handle&)

Handle(...)

Body

int refCounter

service()

−~Body()

−Body(...)

{holds by value}1 1..* 1

Implementation 1. Declare the constructors and the
destructor of the body class as private or protected
methods to prevent uncontrolled creation and
deletion of objects.

2. Declare the handle class as a friend class of the body
class; hence it can access the features of the body
class.

3. Extend the body class by a reference counter
(refCounter).

146/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer V

4. Add an attribute to the handle class pointing at a
body object.

5. Implement the copy constructor (Handle(Handle&))
and the assignment operator of the handle class by
copying the pointer to the body object and
incrementing the reference counter. Implement the
destructor (∼Handle) of the handle class by
decrementing the reference counter and deleting the
body class object (if the reference counter reaches 0).

6. Implement the public arrow operator of the handle
class as follows:

Body* operator->() const { return body; }
7. Extend the handle class by one or more constructors,

which create a body class instance the handle object
points at. Each of these constructors initializes the
reference counter of its body class object with 1.

147/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Example of an Idiom in C++:
Counted Pointer VI

Sample solution C++-Code . . .

Variants CountedBody -Idiom (cf. Coplien 1992): each client
has the illusion that it uses its own body class object,
even though it is referenced by other clients. The body
class object must be copied if a client modifies it.

148/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

What have we learned?

Idioms are patterns on a low level of abstraction.

They are tailor-made for specific (object-oriented)
programming languages.

They constitute concrete guidelines to solve specific
programming problems in a specific programming
language.

149/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Summary

150/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Patterns for different software development phases

Architectural styles
Structuring the software using components and connectors

Design patterns
Fine-grained design of architectural components,
communication between components or objects

Idioms
Realization of a problem solution using a specific
programming language

151/ 420



SWK

JJ+HS

Introduction

Patterns

Architectual
Patterns

Design Patterns

Idioms

Patterns:
Summary

Components

References

Conclusions

There are patterns for practically all phases of software
development.

Patterns enable developers to construct software
systematically.

Patterns have the potential to improve not only the
software development process, but also the resulting
software products.

152/ 420


