
SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components

153/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component technology - introduction

New trend in software technology

Basic idea: build software system from smaller (already
developed and tested) parts

Re-build (compiling) of components usually not nessecary;
we distingish between

White-box components (source code available), and
Black-box components (only binary available)

Interface desciptions and component model/standard are
important

Current Technologies: (Enterprise) Java Beans, OSGi
Service Platform, Component Object Model (COM),
Corba Component Model (CCM)

The component approach tries to apply standard
engineering methods to software development

154/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Definitions of “Component” I

Generally, “component” only means “part of ...”

Doug McIlroy coined the term “software-component” at
the Garmisch conference in October 1968

The term is overloaded, e.g., for software architectures

155/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Definitions of “Component” II

Some definitions for (black-box) components:

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties. (Szyperski et al. (2002))

A package of software that is independently developed and
that defines interfaces for the services it provides and the
services it requires. (D’Souza and Wills (1998))

A software element that conforms to a component model
and can be independently deployed and composed without
modification according to a composition standard
(Heineman and Councill (2001)).

More definitions, see Szyperski et al. (2002), Chapter 11.

156/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component forms I

Features of components have in the different life-cycle states
(Cheesman and Daniels (2001)):

To use a component it must conform to the Component
Standard in use, like Enterprise Java Beans (EJB) or
Microsoft COM+.

Component Specification: valid definition of the
component.

Component Interface or just Interface is a major part of
the component specification.

It should be possible to replace one Component
Implementation with another with the same Component
Specification.

Installed Component: installed copy of the
implementation.

Component Object: instance of an Installed Component.
157/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component forms II

158/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract
What are preconditions and postconditions good for?

159/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contracts in daily life, Meyer (1997)

Contractual partners are clients and sellers or service
providers.

Both expect advantages from the contract and are willing
to make a commitment.

160/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example

I want to travel from Berlin to Duisburg.

Commitments Advantages
Passenger Pay ticket getting to Duisburg

Be there at
departure time
must keep
precondition

Has advantages from
the postcondition

Traffic
provider

Must take the
passenger to
Duisburg

receives the price for the
ticket; does not have to
take passengers who have
not paid or did not arrive
in time

Must guaran-
tee postcondi-
tion

Can assume precondi-
tion

161/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of explicit contracts

Meyer:

A contract document protects both the client, by specifying
how much should be done, and the supplier, by stating that the
supplier is not liable for failing to carry out tasks outside of the
specified scope.

Application to software
A contract is a formal agreement between a software / a class
and its environment / clients. It specifies the rights and duties
for both sides.

162/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contents of implementation contracts

Precise description of the functional properties of instances of a
class at its interface:

What does the class require from its clients?

What does the class guarantee to its clients?

What combinations of attribute values are permitted?

163/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contract

If the client fulfills the requirements of the server, then the
server will provide the specified functionality.

The client can rely on the assertions of the server. The
internals of the server class are of no interest to the client.

If the client does not fulfill the requirements of the server,
then the server has no obligations whatsoever, it can
behave arbitrarily (including breakdown).

It is not the server that has to test if the
precondition holds, but the client!

164/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Stack (generic class)

class Stack[T]
attribute nb elements: integer

max size: integer
method empty(): Boolean

full(): Boolean
push(x: T)
pop()
top(): T

end class Stack[T]

165/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of the stack operations with
preconditions and postconditions I

empty()

pre true
post noChange and

Result = true ⇔ nb elements = 0

full()

pre true
post noChange and

Result = true ⇔ nb elements = max size

push(x: T)

pre not full
post not empty and

nb elements = old nb elements + 1 and
top = x

166/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of the stack operations with
preconditions and postconditions II

pop()

pre not empty

post not full and
nb elements = old nb elements - 1
and ”top element of the stack is deleted”

top(): T

pre not empty

post noChange and
Result = ”top element of the stack”

167/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Commitments and advantages

Commitments Advantages

Client Call push(x) only if
stack is not full

Element x is put on
stack, top() results in x ,
nb elements increases by 1.

Must keep precondi-
tion

Has advantages from
postcondition

Server Makes sure that x is
placed on the stack

Unnecessary to handle the
case if stack is full.

Must guarantee
postcondition

Can assume precondition

168/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Method specification – precondition

Methods form the operational interface between client and
server.
Hence, a contract on the level of methods must describe the
condition under which a client is allowed to call a method
(precondition) and the effect the server guarantees in that case
(postcondition).

Precondition: Predicate on the parameters of the method and
the attributes of the class.

Requirement of the server to its clients – must hold when
method is called.
Example: not full

169/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Method specification – postcondition

The effect of a method describes the state that holds after the
method has terminated and the values of the output
parameters in terms of the input parameters and the state that
holds when the method is called.

Postcondition: Relation between input parameters, attributes
of the class before executing the method, and
the attributes of the class after executing the
method, and the output parameters.

Example: not empty and nb elements = old nb elements + 1
and top = x

170/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Class invariant

Not all combinations of attribute values describe an admissible
instance of a class.

class invariant: Property describing an integrity condition on
the attributes of a class.

Example: 0 ≤ nb elements ≤ max size and max size ≥ 1

The class invariant is implicitly contained in the pre- and
postconditions of all methods!

171/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contract – Relation between client and server

Commitment of the client

Satisfy preconditions of creation routines
(constructor)
Satisfy preconditions of methods

Commitment of the server:

Creation routines establish class invariant
Methods keep class invariant
Methods establish postconditions

172/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Relation to abstract data types

Classes correspond to implementations of abstract data
types (ADTs).

In an ADT specification of a stack, we would have the
following axioms:
pop(push(x,s)) = s
top(push(x,s)) = x

These axioms cannot be expressed in terms of pre- and
postconditions of single methods, because they express
relations between several different methods.

However, a stack implementation should guarantee that
the axioms are fulfilled.

173/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Contracts and inheritance

If an inheritance hierarchy is part of an interface, i.e., clients
can access servers polymorphically, then a subclass must keep
all contracts of all superclasses.

The class invariant must imply all the class invariants of
the superclasses.

Preconditions of re-defined methods must be implied by
the preconditions of the super-methods.

Postconditions of re-defined methods must imply the
postconditions of the super-methods.

These conditions guarantee that a client does not experience
any “surprises” when using a polymorphic server without
knowing its exact dynamic type.

174/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract: Overview

State

Method

Input Output

Pre−state Post−state

Precondition describes input and pre-state

Postcondition describes relation between input/pre-state
and output/post-state

175/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Design by Contract: If precondition is not satisfied

State

Method

Input ???

Pre−state ???

If we call a method with the precondition not satisfied

we do not know if there is any output and – if so – how it
looks like

we do not know if the method will terminate and – if so –
how the post-state will look like

176/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of Design by Contract

Contracts make given restrictions explicit.

Clear distribution of functionality at the interface between
client and server.

Avoiding unnecessary checks through overly defensive
programming.

Abstraction from the implementation of the server
(replaceability).

(Partial) checks at runtime by assertions.

177/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

The principle of design by contract makes explicit the
obligations of users and providers of services.

The caller of a method/a procedure (i.e., the client) must
guarantee that the precondition is fulfilled; the server must
in turn guarantee that the postcondition is fulfilled.

Assertions should be added to the code and checked at
runtime. Thus, errors are easier to find.

178/ 420


