
OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Introduction to OCL
Wintersemester 2010/2011

Prof. Dr. Jan Jürjens and Dr.-Ing. Holger Schmidt

TU Dortmund – Department of Computer Science
Software Engineering (LS 14)

http://ls14-www.cs.tu-dortmund.de/

Slides are based on the lecture “Muster- und Komponenten-basierte
Softwareentwicklung” by Prof. Dr. Maritta Heisel

1/ 50

http://ls14-www.cs.tu-dortmund.de/

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Motivation for Formal Model-Based
Specification

UML (Unified Modeling Language) 2.0 [UML09] is a
(semi-formal) modeling language proposed by the OMG
(Object Management Group)1.

UML is the de facto industry standard notation to model
software analysis and design artifacts.

UML Superstructure specification 2.2 2 describes 14
(semi-)formal diagram types, e.g., class and use-case
diagrams.

Limits:

not precise and automatic verification hardly possible
weak code generation capabilities (usually only code
skeletons, not fully functional code)

1http://www.omg.org/
2http://www.omg.org/spec/UML/2.2/2/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Running Example: Airport Class Diagram

How many passengers can be registered for a flight?

3/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Formal Models

(Semi-formal) visual models can be enriched with formal
specifications of

state constraints (with invariants)
operation semantics (with pre- and post-conditions)

UML defines a language that can be used with this goal:
Object Constraint Language (OCL)

Advantages:

UML diagrams enriched with OCL expressions lead to
precise specifications that can be verified automatically
formal specifications remove the ambiguity that
characterizes informal specifications
formal specifications can be automatically verified
tools exist that generate code and assertions in Java from
OCL specifications of state invariants and operations’ pre-
and post conditions

4/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

What is OCL?

OCL is a formal language used to describe constraints on
UML models.

OCL is not a programming language; therefore, it is not
possible to write program logic or flow control in OCL.

OCL expressions are guaranteed to be without side
effects:

when an OCL expression is evaluated, it simply returns a
value; it cannot change anything in the model
the state of the system will never change because of the
evaluation of an OCL expression, even though an OCL
expression can be used to specify a state change (e.g., in a
post-condition)

OCL supports strong type checking.

5/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Literature

OMG specification:

“Object Constraint Language 2.0” [UML10]
http://www.omg.org/spec/OCL/2.2/PDF

(Partly) basis for our “Introduction to OCL”:

“The Object Constraint Language: Getting Your Models
Ready for MDA” [WK03]

“OCL – Object Constraint Language” (slides)
http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

6/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Specification of OCL Expressions

OCL expressions

are always bound to a UML model

always put constraints on the elements of the UML model
they belong to; this model describes which classes may be
used and which attributes, operations, and associations are
available for objects from these classes

are denoted in the UML model they belong to or in a
separate document

7/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Definitions

Constraint A restriction on one or more parts of a UML
model.

Class invariant A constraint that must (almost) always be met
by all instances of a class.

Pre-condition A constraint that must be true before the
execution of an operation.

Post-condition A constraint that must be true after the
execution of an operation.

Guard condition A constraint that must be true before a
transition in a statechart/state diagram, or
analogously a message in a sequence diagram,
and other behavioral UML diagrams.

8/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Basic Format of an OCL Expression

context <identifier> <constraintType>
[<constraintName>]:<boolean expression>

context a keyword to mark the relative model element
indicated by <identifier> from which other model
elements can be referenced. The keyword self
can be used within <boolean expression> to
access the context.

<identifier> is a class or operation name

<constraintType> is one of the keywords inv, pre, or post

<constraintName> is an optional name for the constraint

<boolean expression> is some boolean expression, often an
equation

9/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

OCL Types and Keywords

The following types can be used in an OCL expression:

predefined types

primitive types: String, Integer, Real, Boolean
collection types: Set, Bag, Sequence, OrderedSet
tuple types: Tuple
special types: OclType, OclAny, . . .

classifiers from the UML model and their features

classes, enumeration classes, and role names
attributes and operations

The following keywords can be used in an OCL expression:

if − then − else − endif : conditional expression

not, or , and , xor , implies boolean operators

def global definitions

let − in local definitions

10/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Class Invariants

An invariant

is a condition that must hold before and after execution of
a method, but can be violated during method execution
is specified with the keyword inv in the context of an
instance of a classifier (class, role name, . . .)

11/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Common types of invariants

Domain constraints:
constraints on the set of possible values of an attribute

Unique constraints:
an attribute or set of attributes in a class that cannot take
the same value or set of values for two distinct instances
of the class

Time constraints

Constraints that define derived model elements (e.g.,
derived attributes)

Existence rules:
rules that state that certain objects/values should exist/be
defined when other objects/values exist/are defined

12/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Invariants on Attributes I

The class to which the invariant refers is the context of
the invariant.

It is followed by a boolean expression that states the
invariant.

All attributes of the context class may be used in this
invariant.

Example

context Flight
inv : duration < 4

Meaning: ?

Each flight has a duration of less than 4h.

13/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Invariants on Attributes I

The class to which the invariant refers is the context of
the invariant.

It is followed by a boolean expression that states the
invariant.

All attributes of the context class may be used in this
invariant.

Example

context Flight
inv : duration < 4

Meaning:

Each flight has a duration of less than 4h.

13/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Usage of self

The following invariant notations are equivalent:

context Flight
inv : self .duration < 4

context Flight
inv : duration < 4

14/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Invariants on Attributes II

If the type of the attribute is a class, the attributes or
query operations defined on that class can be used to
write the invariant (using a dot notation).

Query operation:
An operation that does not change the value of any
attributes.

Example

context Flight
inv : departTime.isBefore(arrivalTime)

Meaning: ?

The departure date is earlier than the arrival date.

15/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Invariants on Attributes II

If the type of the attribute is a class, the attributes or
query operations defined on that class can be used to
write the invariant (using a dot notation).

Query operation:
An operation that does not change the value of any
attributes.

Example

context Flight
inv : departTime.isBefore(arrivalTime)

Meaning:

The departure date is earlier than the arrival date.

15/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Enumeration Types

Enumeration uses datatype followed by :: and the value

Example

context Passenger
inv : self .age > 95 implies

self .needsAssistance = Assistance :: wheelchair

Meaning: ?

Each passenger with an age above 95 needs assistence by a
wheelchair.

16/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Enumeration Types

Enumeration uses datatype followed by :: and the value

Example

context Passenger
inv : self .age > 95 implies

self .needsAssistance = Assistance :: wheelchair

Meaning:

Each passenger with an age above 95 needs assistence by a
wheelchair.

16/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Associations and Navigation I

Every association is a navigation path.

The context of the expression is the starting point.

Role names (or association ends) are used to identify the
navigated associations.

17/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Associations and Navigation II

Example

context Flight
inv : origin <> destination

Meaning: ?

The origin of each flight is unequal to the destination.

Example

context Flight
inv : origin.name = ′Duisburg ′

Meaning: ?

The origin of each flight is Duisburg.

18/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Associations and Navigation II

Example

context Flight
inv : origin <> destination

Meaning:

The origin of each flight is unequal to the destination.

Example

context Flight
inv : origin.name = ′Duisburg ′

Meaning: ?

The origin of each flight is Duisburg.

18/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Associations and Navigation II

Example

context Flight
inv : origin <> destination

Meaning:

The origin of each flight is unequal to the destination.

Example

context Flight
inv : origin.name = ′Duisburg ′

Meaning:

The origin of each flight is Duisburg.

18/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Associations and Navigation III

Often associations are one-to-many or many-to-many,
which means that constraints on a collection of objects are
necessary.

OCL expressions either state a fact about all objects in the
collection or states facts about the collection itself.

19/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Using Collection Operations I

One of the collection operations can be used whenever
navigation results in a collection of objects.

An arrow (− >) between the rolename and the operation
indicates the use of one of the predefined collection
operations (e.g. passengers− > size()).

A dot (.) between the rolename and the operation
indicates the use of one of an operation defined in the
UML model (e.g. departTime.isBefore(arrivalTime)).

Example

context Flight
inv : passengers− > size() <= maxNrPassengers

Meaning: ?

The number of passengers is less or equal to the maximum
number of seats.

20/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Using Collection Operations I

One of the collection operations can be used whenever
navigation results in a collection of objects.

An arrow (− >) between the rolename and the operation
indicates the use of one of the predefined collection
operations (e.g. passengers− > size()).

A dot (.) between the rolename and the operation
indicates the use of one of an operation defined in the
UML model (e.g. departTime.isBefore(arrivalTime)).

Example

context Flight
inv : passengers− > size() <= maxNrPassengers

Meaning:
The number of passengers is less or equal to the maximum
number of seats.

20/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Using Collection Operations II

A collection of objects may be:

Set:

Each element may occur only once.
Single navigation of an association results in a Set.

Bag:

Elements may be present more than once.
Combined navigation results in a Bag.

OrderedSet:

A set in which the elements are ordered.
Single navigation of an association that is marked as
{ordered} results in an OrderedSet.

Sequence:

A Bag in which the elements are ordered.
Combined navigation of associations, at least one of which
is marked as {ordered}, results in an Sequence.

21/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The collect Operation I

The operation can be used to collect attribute values, e.g.
passengers− > collect(name).

Meaning (in pseudo code)

Collection<String> c = new Collection();

foreach (p: passengers) {c.add(p.name);}
return c;

The operation also can be used to build a new collection
from the objects held by association ends, e.g.
arrivingFlights− > collect(airline).

Meaning (in pseudo code)

Collection<Airline> c = new Collection();

foreach (f: arrivingFlights) {c.add(f.airline);}
return c;

22/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The collect Operation II

The resulting collection contains different objects from the
original collection.

When the source collection is a Set the resulting collection
is not a Set but a Bag.

If the source collection is a Sequence or an OrderedSet,
the resulting collection is a Sequence.

The dot notation is an abbreviation for applying the
collect operation:

passengers.name
arrivingFlights.airline

23/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The collect Operation III

Example

context Airport
inv : arrivingFlights− > size() =

arrivingFlights− > collect(airline)− > size()

Meaning: ?

Each arriving flight is carried out by an airline.

24/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The collect Operation III

Example

context Airport
inv : arrivingFlights− > size() =

arrivingFlights− > collect(airline)− > size()

Meaning:

Each arriving flight is carried out by an airline.

24/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The select Operation

The select operation takes an OCL expression as
parameter.

The result of select is a subcollection of the collection on
which it is applied.

select selects all elements from the collection for which the
expression evaluates to true.

Example

context Flight
inv : passengers− > select(needsAssistance <>

Assistance :: noAssistance)− > size() <= 10

Meaning: ?

The number of passengers who need assistance is less or
equal to 10.

25/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The select Operation

The select operation takes an OCL expression as
parameter.

The result of select is a subcollection of the collection on
which it is applied.

select selects all elements from the collection for which the
expression evaluates to true.

Example

context Flight
inv : passengers− > select(needsAssistance <>

Assistance :: noAssistance)− > size() <= 10

Meaning:
The number of passengers who need assistance is less or
equal to 10.

25/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The reject Operation

The reject operation is analogous to select.

reject selects all elements from the collection for which the
expression evaluates to false.

Example

context Flight
inv : passengers− > reject(needsAssistance =

Assistance :: noAssistance)− > size() <= 10

Meaning: ?

The number of passengers who need assistance is less or
equal to 10.

26/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The reject Operation

The reject operation is analogous to select.

reject selects all elements from the collection for which the
expression evaluates to false.

Example

context Flight
inv : passengers− > reject(needsAssistance =

Assistance :: noAssistance)− > size() <= 10

Meaning:

The number of passengers who need assistance is less or
equal to 10.

26/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The forAll Operation I

The forAll operation can be used to specify that a certain
condition must hold for all elements of a collection.

The forAll operation takes an OCL expression as
parameter.

This operation is used when there already is a (sub)set of
all instances of a class, and the elements of of that
(sub)set should be checked.

The result of the operation is a boolean value:

true if the expression evaluates to true for all elements in
the collection
otherwise false

27/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The forAll Operation II

class.allInstances(): collection of all instances of the class

Example

context Airport
inv : Airport.allInstances()− > forAll(a1, a2 |

a1 <> a2 implies a1.name <> a2.name)

Meaning: ?

Each airport name is unique.

Equivalent:

context Airport
inv : Airport.allInstances()− > isUnique(name)

28/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

The forAll Operation II

class.allInstances(): collection of all instances of the class

Example

context Airport
inv : Airport.allInstances()− > forAll(a1, a2 |

a1 <> a2 implies a1.name <> a2.name)

Meaning:

Each airport name is unique.

Equivalent:

context Airport
inv : Airport.allInstances()− > isUnique(name)

28/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Pre- and Post-Conditions I

In class diagrams only the syntax and signature of
operations can be defined.

Operation semantics can be specified through pre- and
post-conditions in OCL.

Pre-condition:

condition on the arguments and initial object state that
must hold for the operation call to be valid

29/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Example for Pre-Condition

Example

context Passenger :: book(name : String , flight : Flight,
age : Integer , assistance : Assistance)

pre : flight.passengers− > size() < flight.maxNrPassengers

Meaning: ?

The amount of passengers registered for flight before the
execution of book must be less than maxNrPassengers.

30/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Example for Pre-Condition

Example

context Passenger :: book(name : String , flight : Flight,
age : Integer , assistance : Assistance)

pre : flight.passengers− > size() < flight.maxNrPassengers

Meaning:

The amount of passengers registered for flight before the
execution of book must be less than maxNrPassengers.

30/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Pre- and Post-Conditions II

Post-condition:

condition on the return value, final object state, arguments,
and initial object state that must hold in the end of the
operation execution, assuming the pre-condition is satisfied
specifies intended result and state change (what), but not
the steps (how)
the pre state of an object field is indicated with @pre
the returned value is indicated with the keyword result

31/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Example for Post-Condition

Example

context Passenger :: book(name : String , flight : Flight,
age : Integer , assistance : Assistance)

post : flight.passengers− > size()−
flight.passengers@pre− > size() = 1 and
flight.passengers− > exists(p : Passenger |p.age = age
and p.name = name
and p.needsAssistance = assistance)

Meaning: ?

one additional object exists after execution
the attributes of one object have been initialized using the
parameter values of book

32/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Example for Post-Condition

Example

context Passenger :: book(name : String , flight : Flight,
age : Integer , assistance : Assistance)

post : flight.passengers− > size()−
flight.passengers@pre− > size() = 1 and
flight.passengers− > exists(p : Passenger |p.age = age
and p.name = name
and p.needsAssistance = assistance)

Meaning:

one additional object exists after execution
the attributes of one object have been initialized using the
parameter values of book

32/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Papyrus I

Papyrus is a free open-source tool for modelling with UML
2.0.

Download: http://www.papyrusuml.org/

Based on the Eclipse environment.

Full respect of the UML 2.0 standard as defined by the
OMG (according to website).

Extendable architecture of Papyrus that allows users to
add new diagrams, new code generators, etc.

Allows OCL constraints to be embedded in models.

33/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Papyrus II

34/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Primitive Types
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 15

OCL types

� Predefined types

• Primitive types: String, Integer, Real, Boolean

• Collection types: Set, Bag, Sequence, OrderedSet

• Tuple types: Tuple

• Special types: OclType, OclAny, …

� User-defined model types

• User defined classes such as Customer, Date, etc.

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 16

Primitive types

'a',

'John'

1.5, …

-1, 0, 1,

…

true,

false

Values

=, <>, and, or, xor, not, implies,

if-then-else-endif (note 2)

Boolean

=, <>, size(), concat(s2),

substring(lower, upper)

(1<=lower<=upper<=size),

toReal(), toInteger()

A string of

characters

String

=, <>, >, <, >=, <=, *, +, - (unary), - (binary),

/, abs(), max(b), min(b), round(), floor()

A real

number of

any size

Real

=, <>, >, <, >=, <=, *, +, - (unary), - (binary),

/ (real), abs(), max(b), min(b), mod(b), div(b)

A whole

number of

any size

Integer

Operators and OperationsDescriptionType

Notes:

1) Operations indicated with parenthesis are applied with “.”, but the parenthesis may be omitted.

2) Example: title = (if isMale then 'Mr.' else 'Ms.' endif)

35/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Collections and Tuples
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 17

Collections and tuples

Collection(T)
Abstract collection of

elements of type T

OrderedSet {2, 1}OrderedSet(T)
Ordered collection,

no duplicates

Tuple {age: Integer = 5,

name: String = 'Joe‘ }

Tuple {name = 'Joe', age = 5}

Tuple(field1: T1,
… fieldn : Tn)

Tuple (with named

parts)

Bag {1, 1, 2}Bag(T)
Unordered collection,

duplicates allowed

Sequence {1, 2, 1}

Sequence {1..4} (same as {1,2,3,4})
Sequence(T)

Ordered collection,

duplicates allowed

Set{1 , 2}Set(T)
Unordered collection,

no duplicates

ExamplesSyntaxDescription

Note 1: They are value types: “=” and “<>” compare values and not references.

Note 2: Tuple components can be accessed with “.” as in “t1.name”

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 18

Operations on Collection(T)

The addition of all elements in self (T must

support “+”)

sum(): T

The cartesian product operation of self and c2.product(c2: Collection(T2)) :

Set(Tuple(first:T, second:T2))

True if self contains none of the elements of c2excludesAll(c2:
Collection(T)): Boolean

The number of occurrences of object in selfcount(object: T): Integer

True if object is not an element of selfexcludes(object: T): Boolean

size = 0isEmpty(): Boolean

size > 0notEmpty(): Boolean

True if object is an element of selfincludes(object: T): Boolean

True if self contains all the elements of c2includesAll(c2: Collection(T)):

Boolean

The number of elements in this collection (self)size(): Integer

DescriptionOperation

Note: Operations on collections are applied with “->” and not “.”

36/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Collection(T)
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 17

Collections and tuples

Collection(T)
Abstract collection of

elements of type T

OrderedSet {2, 1}OrderedSet(T)
Ordered collection,

no duplicates

Tuple {age: Integer = 5,

name: String = 'Joe‘ }

Tuple {name = 'Joe', age = 5}

Tuple(field1: T1,
… fieldn : Tn)

Tuple (with named

parts)

Bag {1, 1, 2}Bag(T)
Unordered collection,

duplicates allowed

Sequence {1, 2, 1}

Sequence {1..4} (same as {1,2,3,4})
Sequence(T)

Ordered collection,

duplicates allowed

Set{1 , 2}Set(T)
Unordered collection,

no duplicates

ExamplesSyntaxDescription

Note 1: They are value types: “=” and “<>” compare values and not references.

Note 2: Tuple components can be accessed with “.” as in “t1.name”

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 18

Operations on Collection(T)

The addition of all elements in self (T must

support “+”)

sum(): T

The cartesian product operation of self and c2.product(c2: Collection(T2)) :

Set(Tuple(first:T, second:T2))

True if self contains none of the elements of c2excludesAll(c2:
Collection(T)): Boolean

The number of occurrences of object in selfcount(object: T): Integer

True if object is not an element of selfexcludes(object: T): Boolean

size = 0isEmpty(): Boolean

size > 0notEmpty(): Boolean

True if object is an element of selfincludes(object: T): Boolean

True if self contains all the elements of c2includesAll(c2: Collection(T)):

Boolean

The number of elements in this collection (self)size(): Integer

DescriptionOperation

Note: Operations on collections are applied with “->” and not “.”

37/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Iterator Expressions on Collection(T) I
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

38/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Iterator Expressions on Collection(T) II
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 19

Iterator expressions on Collection(T) (1/2)

Returns any element in the source collection for which

body evaluates to true. The result is null if there is none.

any(iterator | body):
T

The Collection of elements resulting from applying body to

every member of the source set. The result is flattened.

collect(iterator|
body): Collection(T2)

Results in true if body evaluates to a different value for

each element in the source collection.

isUnique(iterator|
body): Boolean

True if body evaluates to true for each element in the

source collection. Allows multiple iterator variables.

forAll(iterators |
body): Boolean

Returns the final value of an accumulator that, after

initialization, is updated with the value of the body

expression for every element in the source collection.

iterate(iterator: T;
accum: T2 = init |

body) : T2

True if body evaluates to true for at least one element in

the source collection. Allows multiple iterator variables.

exists(iterators |
body) : Boolean

True if there is exactly one element in the source

collection for which body is true

one(iterator| body):
Boolean

DescriptionIterator expression

Note: The iterator variable declaration can be omitted when there is no ambiguity.

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 20

Iterator expressions on Collection(T) (2/2)

The Collection of elements of the source collection

for which body is false. The result collection is of

the same type of the source collection.

reject(iterator | body):
Collection(T)

The Collection of elements of the source collection

for which body is true. The result collection is of the

same type of the source collection.

select(iterator | body):
Collection(T)

The Collection of elements (allowing duplicates)

that results from applying body (of type T2) to every

member of the source collection. The result is not

flattened. Conversions: Set -> Bag, OrderedSet ->

Sequence.

collectNested(iterator |
body):

CollectionWithDuplicates(T2

)

Returns an ordered Collection of all the elements of

the source collection by ascending order of the value

of the body expression. The type T2 of the body

expression must support “<”. Conversions: Set ->

OrderedSet, Bag -> Sequence.

sortedBy(iterator | body):
OrderedCollection(T)

DescriptionIterator expression

39/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Set(T) I
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 21

Examples with collections

� class.allInstances: set of instances of the class

� Equivalent expressions (invariant):

• Customer.allInstances->isUnique(number)

• Customer.allInstances->forAll(c1, c2 |

c1 <> c2 implies c1.number <> c2.number)

• not Customer.allInstances->iterate(c1 : Customer ;

dup : Boolean = false |

dup or (c <> self and c.number = self.number))

� Derived attribute

• totalDebits =

movements->select(m | m.type = debit)->collect(value)->sum()

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 22

Operations on Set(T) (1/2)

Do self and s contain the same elements?=(s: Set(T)) : Boolean

The set containing all the elements that are

in self or s, but not in both.

symmetricDifference(s: Set(T)):
Set(T)

The set containing all elements of self plus

object.

including(object: T): Set(T)

The set containing all elements of self minus

object.

excluding(object: T): Set(T)

The intersection of self and b.intersection(b: Bag(T)): Set(T)

The intersection of self and s.intersection(s: Set(T)): Set(T)

The union of self and s.union(s: Set(T)): Set(T)

The union of self and bag b.union(b: Bag(T)): Bag(T)

The elements of self, which are not in s.-(s: Set(T)) : Set(T)

DescriptionOperation

40/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Set(T) II
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 23

Operations on Set(T) (2/2)

If T is a collection type, the result is the set

with all the elements of all the elements of

self; otherwise, the result is self.

flatten() : Set(T2)

OrderedSet with elements from self in

undefined order.

asOrderedSet():
OrderedSet(T)

Sequence with elements from self in

undefined order.

asSequence(): Sequence(T)

Bag will all the elements from self.asBag(): Bag(T)

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 24

Operations on Bag(T)

Set with elements from self, without duplicates.asSet(): Set(T)

OrderedSet with elements from self in undefined

order, without duplicates.

asOrderedSet(): OrderedSet(T)

The bag with all elements of self without object.excluding(object: T): Bag(T)

The bag with all elements of self plus object.including(object: T): Bag(T)

The union of self and set.union(set: Set(T)): Bag(T)

True if self and bag contain the same elements,

the same number of times.

=(bag: Bag(T)) : Boolean

If T is a collection type: bag with all the elements

of all the elements of self; otherwise: self.

flatten() : Bag(T2)

Seq. with elements from self in undefined order. asSequence(): Sequence(T)

The intersection of self and set.intersection(set: Set(T)): Set(T)

The intersection of self and bag.intersection(bag:Bag(T)): Bag(T)

The union of self and bag.union(bag: Bag(T)): Bag(T)

DescriptionOperation

41/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Bag(T)
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 23

Operations on Set(T) (2/2)

If T is a collection type, the result is the set

with all the elements of all the elements of

self; otherwise, the result is self.

flatten() : Set(T2)

OrderedSet with elements from self in

undefined order.

asOrderedSet():
OrderedSet(T)

Sequence with elements from self in

undefined order.

asSequence(): Sequence(T)

Bag will all the elements from self.asBag(): Bag(T)

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 24

Operations on Bag(T)

Set with elements from self, without duplicates.asSet(): Set(T)

OrderedSet with elements from self in undefined

order, without duplicates.

asOrderedSet(): OrderedSet(T)

The bag with all elements of self without object.excluding(object: T): Bag(T)

The bag with all elements of self plus object.including(object: T): Bag(T)

The union of self and set.union(set: Set(T)): Bag(T)

True if self and bag contain the same elements,

the same number of times.

=(bag: Bag(T)) : Boolean

If T is a collection type: bag with all the elements

of all the elements of self; otherwise: self.

flatten() : Bag(T2)

Seq. with elements from self in undefined order. asSequence(): Sequence(T)

The intersection of self and set.intersection(set: Set(T)): Set(T)

The intersection of self and bag.intersection(bag:Bag(T)): Bag(T)

The union of self and bag.union(bag: Bag(T)): Bag(T)

DescriptionOperation

42/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Sequence(T) I
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 25

Operations on Sequence(T) (1/2)

If T is a collection type, the result is the set with all the

elements of all the elements of self; otherwise, it’s self.

flatten() : Sequence(T2)

The sequence consisting of all elements in self, followed

by all elements in s.

union(s: Sequence(T)):
Sequence(T)

True if self contains the same elements as s, in the same

order.

=(s: Sequence(T)) :
Boolean

The sequence consisting of self with object inserted at

position index (1<=index<=size+1)

insertAt(index : Integer,
object : T) : Sequence(T)

The sequence with object, followed by all elements in

self.

prepend(obj: T):
Sequence(T)

The sequence with all elements of self, followed by

object.

append(object: T):
Sequence(T)

The sub-sequence of self starting at index lower, up to

and including index upper (1<=lower<=upper<=size)

subSequence(lower :
Integer, upper: Integer) :

Sequence(T)

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 26

Operations on Sequence(T) (2/2)

The i-th element of self (1<=i<=size)at(i : Integer) : T

The index of object in self.indexOf(object : T) : Integer

The sequence containing all elements of self apart

from all occurrences of object.

excluding(object: T):
Sequence(T)

The Bag containing all the elements from self,

including duplicates.

asBag(): Bag(T)

The Set containing all the elements from self, with

duplicates removed.

asSet(): Set(T)

An OrderedSet that contains all the elements from

self, in the same order, with duplicates removed.

asOrderedSet():
OrderedSet(T)

The last element in self.last() : T

The sequence containing all elements of self plus

object added as last element

including(object: T):
Sequence(T)

The first element in self.first() : T

DescriptionOperation

43/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on Sequence(T) II
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 25

Operations on Sequence(T) (1/2)

If T is a collection type, the result is the set with all the

elements of all the elements of self; otherwise, it’s self.

flatten() : Sequence(T2)

The sequence consisting of all elements in self, followed

by all elements in s.

union(s: Sequence(T)):
Sequence(T)

True if self contains the same elements as s, in the same

order.

=(s: Sequence(T)) :
Boolean

The sequence consisting of self with object inserted at

position index (1<=index<=size+1)

insertAt(index : Integer,
object : T) : Sequence(T)

The sequence with object, followed by all elements in

self.

prepend(obj: T):
Sequence(T)

The sequence with all elements of self, followed by

object.

append(object: T):
Sequence(T)

The sub-sequence of self starting at index lower, up to

and including index upper (1<=lower<=upper<=size)

subSequence(lower :
Integer, upper: Integer) :

Sequence(T)

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 26

Operations on Sequence(T) (2/2)

The i-th element of self (1<=i<=size)at(i : Integer) : T

The index of object in self.indexOf(object : T) : Integer

The sequence containing all elements of self apart

from all occurrences of object.

excluding(object: T):
Sequence(T)

The Bag containing all the elements from self,

including duplicates.

asBag(): Bag(T)

The Set containing all the elements from self, with

duplicates removed.

asSet(): Set(T)

An OrderedSet that contains all the elements from

self, in the same order, with duplicates removed.

asOrderedSet():
OrderedSet(T)

The last element in self.last() : T

The sequence containing all elements of self plus

object added as last element

including(object: T):
Sequence(T)

The first element in self.first() : T

DescriptionOperation

44/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations on OrderedSet(T)
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 27

Operations on OrderedSet(T)

The last element in self.last() : T

The set consisting of self with object inserted

at position index.

insertAt(index : Integer,
object : T) : OrderedSet(T)

The sequence consisting of object, followed by

all elements in self.

prepend(object: T):
OrderedSet(T)

The set of elements, consisting of all elements

of self, followed by object.

append(object: T):
OrderedSet(T)

The first element in self.first() : T

The index of object in the sequence.indexOf(object : T) : Integer

The sub-set of self starting at number lower,

up to and including element number upper

(1<=lower<=upper<=size).

subOrderedSet(lower :
Integer, upper : Integer) :

OrderedSet(T)

The i-th element of self (1<=i<=size).at(i : Integer) : T

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 28

* Special types

Supertype for all types except for collection and tuple types.

All classes in a UML model inherit all operations defined on

OclAny.

OclAny

Template type with one parameter T to be substituted by a

concrete operation or signal type. Used in some postconditions

that need to constrain the messages sent during the operation

execution.

OclMessage

Meta type.OclType

The type OclInvalid is a type that conforms to all other types.

It has one single instance called invalid. Any property call

applied on invalid results in invalid, except for the operations

oclIsUndefined() and oclIsInvalid().

OclInvalid

The type OclVoid is a type that conforms to all other types. It

has one single instance called null. Any property call applied on

null results in OclInvalid, except for the operation

oclIsUndefined(). A collection may have null’s.

OclVoid

DescriptionType

45/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Special Types
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 27

Operations on OrderedSet(T)

The last element in self.last() : T

The set consisting of self with object inserted

at position index.

insertAt(index : Integer,
object : T) : OrderedSet(T)

The sequence consisting of object, followed by

all elements in self.

prepend(object: T):
OrderedSet(T)

The set of elements, consisting of all elements

of self, followed by object.

append(object: T):
OrderedSet(T)

The first element in self.first() : T

The index of object in the sequence.indexOf(object : T) : Integer

The sub-set of self starting at number lower,

up to and including element number upper

(1<=lower<=upper<=size).

subOrderedSet(lower :
Integer, upper : Integer) :

OrderedSet(T)

The i-th element of self (1<=i<=size).at(i : Integer) : T

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 28

* Special types

Supertype for all types except for collection and tuple types.

All classes in a UML model inherit all operations defined on

OclAny.

OclAny

Template type with one parameter T to be substituted by a

concrete operation or signal type. Used in some postconditions

that need to constrain the messages sent during the operation

execution.

OclMessage

Meta type.OclType

The type OclInvalid is a type that conforms to all other types.

It has one single instance called invalid. Any property call

applied on invalid results in invalid, except for the operations

oclIsUndefined() and oclIsInvalid().

OclInvalid

The type OclVoid is a type that conforms to all other types. It

has one single instance called null. Any property call applied on

null results in OclInvalid, except for the operation

oclIsUndefined(). A collection may have null’s.

OclVoid

DescriptionType

46/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations Defined in OclAny
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 29

* Operations defined in OclAny

True if self is equal to null or invalid.oclIsUndefined() : Boolean

True if self is equal to invalid.oclIsInvalid() : Boolean

True if self is in state s.
oclIsInState(s : OclState) :
Boolean

True if self is of type t or a subtype of t.
oclIsKindOf(t : OclType) :
Boolean

True if self is of type t.
oclIsTypeOf(t: OclType) :
Boolean

Cast (type conversion) operation. Useful for

downcast.

oclAsType(t : OclType) :
OclType

True if self is the same object as object2.=(object2 : OclAny) : Boolean

Static operation that returns all instances of a

classifier.
allInstances() : Set(T)

Can only be used in a postcondition. True if self

was created during the operation execution.
oclIsNew() : Boolean

True if self is a different object from object2.<>(object2 : OclAny) : Boolean

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 30

* Properties defined in OclMessage

Returns true if the OclMessage represents the

sending of a UML Operation call.

isOperationCall() :
Boolean

The value of the message parameter.parameterName

True if type of template parameter is an operation

call, and the called operation has returned a value.

hasReturned() :
Boolean

Returns true if the OclMessage represents the

sending of a UML Signal.

isSignalSent() :

Boolean

Returns the result of the called operation, if type of

template parameter is an operation call, and the

called operation has returned a value.

result()

DescriptionOperation

47/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Operations Defined in OclMessage
Taken from http://www.di.uminho.pt/~jmf/MDSE/u2c.pdf

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 29

* Operations defined in OclAny

True if self is equal to null or invalid.oclIsUndefined() : Boolean

True if self is equal to invalid.oclIsInvalid() : Boolean

True if self is in state s.
oclIsInState(s : OclState) :
Boolean

True if self is of type t or a subtype of t.
oclIsKindOf(t : OclType) :
Boolean

True if self is of type t.
oclIsTypeOf(t: OclType) :
Boolean

Cast (type conversion) operation. Useful for

downcast.

oclAsType(t : OclType) :
OclType

True if self is the same object as object2.=(object2 : OclAny) : Boolean

Static operation that returns all instances of a

classifier.
allInstances() : Set(T)

Can only be used in a postcondition. True if self

was created during the operation execution.
oclIsNew() : Boolean

True if self is a different object from object2.<>(object2 : OclAny) : Boolean

DescriptionOperation

OCL – Object Constraint Language, João Pascoal Faria, 06 January 2008 30

* Properties defined in OclMessage

Returns true if the OclMessage represents the

sending of a UML Operation call.

isOperationCall() :
Boolean

The value of the message parameter.parameterName

True if type of template parameter is an operation

call, and the called operation has returned a value.

hasReturned() :
Boolean

Returns true if the OclMessage represents the

sending of a UML Signal.

isSignalSent() :

Boolean

Returns the result of the called operation, if type of

template parameter is an operation call, and the

called operation has returned a value.

result()

DescriptionOperation

48/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Literature I

[UML09] UML Revision Task Force.
OMG Unified Modeling Language: Superstructure,
February 2009.
http://www.omg.org/spec/UML/2.2/.
2

[UML10] UML Revision Task Force.
Object Constraint Language Specification, February
2010.
http://www.omg.org/spec/OCL/2.2/.
6

49/ 50

OCL

JJ+HS

Introduction

Basics

Class
Invariants

Collections

Pre- and Post-
Conditions

Tools

Quick
Reference

Literature

Literature II

[WK03] Jos Warmer and Anneke Kleppe.
The Object Constraint Language: Getting Your
Models Ready for MDA.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.
6

50/ 50

	Introduction
	Basics
	Class Invariants
	Collections
	Pre- and Post-Conditions
	Tools
	Quick Reference
	Literature

