
SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO

This part describes approaches for structuring object-oriented
software systems into (white-box) components. Often, these
components cannot be built separately.

179/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO I

In the source code and in UML models, we usually have
associations between classes. These associations can be either
references to other components, or the referenced objects are
part of one component.

class ClassA implements InterfaceI{
private ClassB b;

private ClassC c;

}
class ClassB implements InterfaceI{

private ClassC c;

}
class ClassC {

...

}

180/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO II

ClassC

ClassA

ClassB

ClassC

ClassBClassA

<<interface>>

<<provides>>

ClassA

InterfaceI

ClassBb

c

ClassC

c

Extracted from Code:

<<provides>>

ClassA

ClassB

ClassC

Design variant 3:

Design variant 2:

Design variant 1:

181/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO III

Be careful
Not all objects can be clearly associated to a certain
component: some objects are used to exchange complex data
between components and exchanged as parameters, e.g. a user
object is created in the user interface component and sent to
the application component for further processing.

182/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Components and OO IV

Example:

Class1PartOfA

Class2PartOfA

Address

name: String

street: String

phone: String

isValid(): Bool

Address

name: String

street: String

phone: String

isValid(): Bool

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceI

InterfaceJ

ClassA

Class1PartOfA

Class2PartOfA

InterfaceJ

InterfaceI

InterfaceI<<provides>>

183/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels I

A component may be:

Just an object of a class

May use other objects to provide its functionality
The public operations of the class represent the
component interface
It is not clear which of the objects used to provide the
functionality (associated) are part of that component, and
which are not.
Other objects created by this object can be considered to
be part of the component
Usually are not built separately

184/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels II

Object with explicit provided interfaces

May use other object to provide its functionality
Still not clear which of the objects used to provide the
functionality are part of that component
Implementation can be better replaced
Usually are not built separately

Notation: Class with provided Interface / Lollipop notation /
Component according Cheesman and Daniels (2001):

<<interface>>

ClassA

InterfaceI
<<interface>>

<<provides>>

ClassA

InterfaceI

ClassA
<<comp spec>>ClassA

InterfaceI

ClassA

185/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels III

Object with explicit provided and required interfaces

Loose coupling, other components used to provide the
functionality are connected during instantiation or
initialization
Advantage: components can be easily tested separately
Other object used to provide the functionality may be
created, and they are considered to be part of the
component

Notation for 2 connected classes / Lollipop notation / Component
according Cheesman and Daniels (2001) / Composite Structure:

<<interface>>

ClassA

InterfaceI

ClassA

ClassUsingAClassUsingA

ClassA

ClassUsingA

InterfaceI

<<interface>>

<<provides>>

ClassA

InterfaceI

<<requires>> <<uses>> ClassUsingA

ClassA
<<comp spec>>

<<comp spec>>

ClassUsingA

InterfaceI

ClassA

ClassUsingA

186/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels IV

Composition in class diagrams and composite structure
diagrams:

Class1PartOfA

Class2PartOfA

<<interface>>

<<provides>>

ClassA

InterfaceI

InterfaceJ

ClassA

Class1PartOfA

Class2PartOfA

InterfaceJ

InterfaceI

InterfaceI<<provides>>

187/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels V

Object with explicit provided and required interfaces that
makes use of a component standard (e.g., providing events
or messages) to communicate with other components

Loose coupling, other components used to provide the
functionality are connected at run-time

Advantage: components can be easily tested separately

Usually, can be built separately

Same notation as for objects with explicit provided and required

interfaces

188/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component coupling levels VI

All components are separate processes that communicate
using events or messages

Loose coupling, other components used to provide the
functionality are connected at run-time

Advantage: components can be easily tested separately

Usually, can be built separately

Same notation as for objects with explicit provided and required

interfaces

189/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Simple Java Components

This part describes an implementation approach for
components with explicit provided and required interfaces.

190/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of components with explicit
provided and required interfaces

A component has provided and required interfaces that
can be connected with other components.

A component only uses functionality from its required
interfaces, from the programming language, and a limited
set of operations of the operating system (e.g., tasks,
threads, memory allocation, timers, messages,
synchronization mechanisms).

Provided and required interfaces are represented by
interface classes.

Interface operations are called synchronously.

Advantage: These classes / components can be easily
tested separately.

191/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of interfaces in Java

� interface �
if name

method 1 (par1: Integer)
method 2 (): String

package project_name;

public interface if_name {

public void method_1 (int par1);

public String method_2 ();

}

The project name should be added as a package. Otherwise
additional parameters are necessary to compile the project.
Note: int is a simple data type, and String is a class.

192/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of provided interfaces in Java I

Tuner

bat2: Batterybat1: Battery

AndSpeaker
Amplifier

PowerSupply PowerSupply

LineInOut

Each provided interface is defined as an interface class, e.g.:

public interface LineInOut {

public void transmitMusic();

}

public interface PowerSupply {

public void powerOn();

}

193/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of provided interfaces in Java II

A component can implement / provide several interfaces, e.g.:

public class AmplifierAndSpeaker implements

LineInOut, PowerSupply {

public AmplifierAndSpeaker (){} //constructor

public void transmitMusic() { Play;}

public void powerOn() { Action2;}

}

All provided operations must be implemented as methods.

194/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java I

A component can use / require several interfaces, defined as
interface classes.

public class Tuner implements PowerSupply {

private LineInOut outputDevice;

public Tuner(){ outputDevice = NULL; }

public void connectTo(LineInOut par) {outputDevice = par;}

public void powerOn() {

while (true) {

if (outputDevice!=NULL) outputDevice.transmitMusic();

}

}

195/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java II

The required interfaces become private attributes
(outputDevice of type LineInOut).

The component has to provide methods to connect the
component to the required components (connectTo). In
these connect methods, the private attributes are
initialized.

Via these private attributes, the connected components
can be used. They should only be used if they are
initialized (if (outputDevice!=NULL) ...).

Alternatively, it is possible to leave out the method connectTo

and initialize the connected interface in the constructor.

The component Tuner also provides the interface
PowerSupply and implements the method powerOn.

196/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java III

public class Battery {

private PowerSupply suppliedDevice;

public Battery(){ suppliedDevice=NULL }

public void connectTo(PowerSupply suppliedDev) {

suppliedDevice = suppliedDev;

suppliedDevice.powerOn();

}

}

The component Battery powers on the supplied device when
connected. It requires the interface PowerSupply.

197/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Implementation of required interfaces in Java IV

The components bat1, bat2, myTuner, and myAmp can be
connected as follows:

Tuner

bat2: Batterybat1: Battery

AndSpeaker
Amplifier

PowerSupply PowerSupply

LineInOut

AmplifierAndSpeaker myAmp = new AmplifierAndSpeaker();

Tuner myTuner = new Tuner();

Battery bat1 = new Battery();

Battery bat2 = new Battery()

myTuner.connectTo(myAmp);

bat1.connectTo(myTuner);

bat2.connectTo(myAmp);

198/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component specifications

Structural notations for components:

Composite structure diagrams

Class diagrams

Component diagrams

Additionally to the structure, the behavior of the components
must be described using

Pre- and postconditions for all interface operations (design
by contract)

Sequence diagrams

State machines

199/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

In object orientation, a component can take different
forms. These different forms come along with different
coupling levels.

Advantage of loosely coupled components: they can be
built and tested separately.

Provided and required interfaces of components
implemented in Java are represented by interface classes.
The component has to provide methods to connect the
component to the required component.

200/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans

201/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans I

JavaBeans

are reusable software components for Java.

can be manipulated visually in a builder tool (e.g., Sun’s
NetBeans).

are classes written in the Java programming language.

encapsulate many objects into a single object (the
bean).

conform to the following convention: JavaBeans are

serializable.
have a no-argument constructor.
allow access to properties using getter and setter
methods.

202/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans II

More information:

Sun’s JavaBeans product webpage:
http://java.sun.com/javase/technologies/

desktop/javabeans/index.jsp

Sun’s JavaBeans API webpage:
http://java.sun.com/javase/technologies/

desktop/javabeans/api/index.html

Sun’s JavaBeans tutorials:
http://java.sun.com/docs/books/

tutorial/javabeans/

203/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Events

Events

are a mechanism for propagating state change
notifications between a source JavaBean and one or more
target JavaBeans.

are the basis to plug JavaBeans together in an
application builder.

can be caught and processed by JavaBeans.

have many different uses, but a common example is their
use in a window system toolkit for delivering notifications
of mouse actions, widget updates, keyboard actions, etc.

204/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Event Model I

Event notifications are propagated from sources to
listeners by Java method invocations on the target listener
objects.

Each distinct kind of event notification is defined as a
distinct Java method. These methods are then grouped in
EventListener interfaces that inherit from
java.util.EventListener.

Event listener classes identify themselves as interested in a
particular set of events by implementing some set of
EventListener interfaces.

205/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Event Model II

The state associated with an event notification is normally
encapsulated in an event state object that inherits from
java.util.EventObject and which is passed as the sole
argument to the event method.

Event sources identify themselves as sourcing particular
events by defining registration methods and accept
references to instances of particular EventListener
interfaces.

In circumstances where listeners cannot directly implement
a particular interface, or when some additional behavior is
required, an instance of a custom adaptor class may be
interposed between a source and one or more listeners in
order to establish the relationship or to augment behavior.

206/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Properties

Properties

are attributes of a Java Bean that can affect its
appearance or its behavior.

Example: a GUI button might have a property named
“Label” that represents the text displayed in the button.

can be accessed by other JavaBeans calling their getter
and setter methods.

typically are persistent, so that their state will be stored
away as part of the persistent state of the JavaBean.

can have arbitrary types, including both built-in Java types
such as int and class or interfaces types such as
java.awt.Color.

207/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Accessor Methods

For readable properties there will be a getter method to
read the property value.

For writable properties there will be a setter method to
allow the property value to be updated.

For simple properties the accessor type signatures are:

simple setter void setFoo(PropertyType value);

simple getter PropertyType getFoo();

208/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Indexed Properties I

An indexed property supports a range of values.
Whenever the property is read or written one specifies an
index to identify which value is required.

Property indexes must be of type int.

For indexed properties the accessor type signatures are:

indexed setter
void setter(int index, PropertyType

value);

indexed getter
PropertyType getter(int index);

209/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Indexed Properties II

array setter
void setter(PropertyType values[]);

array getter
PropertyType[] getter();

The indexed getter and setter methods may throw a
java.lang.ArrayIndexOutOfBoundsException runtime
exception if an index is used that is outside the current
array bounds.

210/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties I

Sometimes when a JavaBean property changes then either
the JavaBeans container (i.e., a program that uses the
JavaBean) or some other JavaBean may wish to be
notified of the change.

A JavaBean can choose to provide a change notification
service for some or all of its properties.

Such properties are commonly known as bound
properties, as they allow other components to bind
special behavior to property changes.

The PropertyChangeListener event listener interface is
used to report updates to simple bound properties.

211/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties II

If a JavaBean supports bound properties then it should
support a pair of event listener registration methods for
PropertyChangeListener:

add listener
public void

addPropertyChangeListener

(PropertyChangeListener x);

remove listener
public void

removePropertyChangeListener

(PropertyChangeListener x);

212/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bound Properties III

When a property change occurs on a bound property the
JavaBean should call the
PropertyChangeListener.propertyChange method on
all registered listeners, passing a PropertyChangeEvent

object that encapsulates the name of the property and its
old and new values.

The event source should fire the event after updating its
internal state.

213/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: JavaBean Person I

The class Person has a property name, that can be changed
using setName(). After a change, the JavaBean informs all
listeners of this change.

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

public class Person

{

private String name = "";

private PropertyChangeSupport changes =

new PropertyChangeSupport(this);

public void setName(String name)

{

String oldName = this.name;

this.name = name;

changes.firePropertyChange("name", oldName, name);

}
214/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: JavaBean Person II

public String getName()

{

return name;

}

public void addPropertyChangeListener(

PropertyChangeListener pcl)

{

changes.addPropertyChangeListener(pcl);

}

public void removePropertyChangeListener(

PropertyChangeListener pcl)

{

changes.removePropertyChangeListener(pcl);

}

}

215/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change I

Registered PropertyChangeListener can react to the
PropertyChangeEvent.

public class ReportChange implements PropertyChangeListener {

@Override

public void propertyChange(PropertyChangeEvent e)

{

System.out.printf("Property ’%s’: ’%s’ -> ’%s’%n",

e.getPropertyName(), e.getOldValue(), e.getNewValue());

}

}

216/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change II

Person person = new Person();

ReportChange reportChange = new ReportChange();

person.addPropertyChangeListener(reportChange);

person.setName("Ulli");

// expected output: Property ’name’: ’’ -> ’Ulli’

person.setName("Ulli");

// no output expected

person.setName("Chris");

// expected output: Property ’name’: ’Ulli’ -> ’Chris’

217/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties I

Sometimes when a property change occurs some other
bean may wish to validate the change and reject it if it is
inappropriate.

We refer to properties that undergo this kind of checking
as constrained properties.

In Java Beans, constrained property setter methods are
required to support the PropertyVetoException. This
documents to the users of the constrained property that
attempted updates may be vetoed.

218/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties II

The following operations in the setter method for the
constrained property must be implemented in this order:

1. Save the old value in case the change is vetoed.

2. Notify listeners of the new proposed value, allowing them
to veto the change.

3. If no listener vetoes the change (no exception is thrown),
set the property to the new value.

219/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties III

A simple constrained property might look like:
PropertyType getFoo();

void setFoo(PropertyType value)

throws PropertyVetoException;

In the body of a setter method, the fireVetoableChange

method is invoked on the VetoableChangeSupport

attribute of the Java Bean before the
firePropertyChange method is invoked on the property
that is changed.

220/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties IV

A simple setter method for a constrained property might
look like:
public void setFoo(boolean foo)

throws PropertyVetoException{
boolean oldValue = this.foo;

vetos.fireVetoableChange("foo",

oldValue, foo);

this.foo = foo;

changes.firePropertyChange("foo",

oldValue, foo);

}

221/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties V

The VetoableChangeListener event listener interface is
used to report updates to constrained properties. If a bean
supports constrained properties then it should support a
pair of event listener registration methods for
VetoableChangeListeners:
public void addVetoableChangeListener

(VetoableChangeListener x);

public void removeVetoableChangeListener

(VetoableChangeListener x);

222/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VI

When a property change occurs on a constrained property
the bean should call the
VetoableChangeListener.vetoableChange method on
all registered listeners, passing a PropertyChangeEvent

object that encapsulates the name of the property and its
old and new values.

223/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VII

sd A Non-Vetoed Property Change

Constrained
PropertyBean

Constrained
Property

vetos : Vetoable
ChangeSupport

vcl : Vetoable
ChangeListener

changes : Property
ChangeSupport

pcl : Property
ChangeListener

set

fireVetoableChange

vetoableChange

firePropertyChange

propertyChange

224/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties VIII

If the event recipient does not wish the requested edit to
be performed it may throw a PropertyVetoException.
It is the source bean’s responsibility to catch this
exception, revert to the old value, and issue a new
VetoableChangeListener.vetoableChange event to
report the reversion.

The initial VetoableChangeListener.vetoableChange
event may have been relayed to a number of recipients
before one vetoes the new value.

225/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Constrained Properties IX

If one of the recipients vetoes, then one has to make sure
that all the other recipients are informed (fire another
VetoableChangeListener.vetoableChange event) that
the old value is restored. The source may choose to ignore
vetoes when reverting to the old value.

The event source should fire the event before updating its
internal state.

226/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change I

Registered PropertyChangeListener can react to the
PropertyChangeEvent.

public class ReportChangeVeto implements VetoableChangeListener {

@Override

public void vetoableChange(PropertyChangeEvent e)

throws PropertyVetoException

{

if ("Name".equals(e.getPropertyName()))

if ("Ulli".equal.(e.getNewValue()))

throw new PropertyVetoException("Not with me", e);

}

}

227/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change II

Person person = new Person();

ReportChangeVeto reportChangeVeto = new ReportChangeVeto();

person.addVetoableChangeListener(reportChangeVeto);

try

{

person.setName("Ulli");

}

catch (PropertyVetoException e)

{

// expected output: java.beans.

// PropertyVetoException: Not with me

e.printStackTrace();

}

228/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Reaction to Property Change III

sd A Vetoed Property Change

Constrained
PropertyBean

Constrained
Property

VetoableChange
Support

vcl:
VetoableChange

Listener

ovcl:
VetoableChange

Listener

set

f ireVetoableChange

vetoableChange

vetoableChange

throw
(PropertyVetoExceptio

n)

vetoableChange

vetoableChange

throw
(PropertyVetoExceptio

n)

229/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Component Model

Component model to specify the characteristics of a
JavaBean according to this model.

Based on a formalization of Sun’s JavaBeans model by
Heisel et al. (2002).

Described as a metamodel using a UML class diagram and
OCL constraints.

Instances of this metamodel constitute concrete JavaBean
specifications.

230/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel I
Class Model

231/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel II
OCL Constraints

The same vcs object must be used by all objects belonging to
the set cps.

context ConstrainedPropertyBean

inv: self.cps->forAll(

cp:ConstrainedProperty|cp.vcs=self.vcs)
232/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

JavaBeans Metamodel III
OCL Constraints

The content of value is returned.

context ConstrainedProperty.get

post: result=self.value

233/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating a Simple JavaBean I

Write the SimpleBean code. Put it in a file named
SimpleBean.java.

import java.awt.Color;

import java.beans.XMLDecoder;

import javax.swing.JLabel;

import java.io.Serializable;

public class SimpleBean extends JLabel

implements Serializable {

public SimpleBean() {

setText("Hello world!");

setOpaque(true);

setBackground(Color.RED);

setForeground(Color.YELLOW);

234/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating a Simple JavaBean II

setVerticalAlignment(CENTER);

setHorizontalAlignment(CENTER);

}

}

SimpleBean extends the javax.swing.JLabel graphic
component and inherits its properties, which makes the
SimpleBean a visual component.

SimpleBean also implements the
java.io.Serializable interface.

235/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File I

Create a manifest, the JAR file, and the class file
SimpleBean.class.

Use the Apache Ant (http://ant.apache.org/) tool to
create these files.

Apache Ant is a Java-based build tool that enables one to
generate XML-based configurations files as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<project default="build">

<dirname property="basedir" file="${ant.file}"/>

<property name="beanname" value="SimpleBean"/>

<property name="jarfile"

value="${basedir}/${beanname}.jar"/>
236/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File II

<target name="build" depends="compile">

<jar destfile="${jarfile}"

basedir="${basedir}" includes="*.class">

<manifest>

<section name="${beanname}.class">

<attribute name="Java-Bean" value="true"/>

</section>

</manifest>

</jar>

</target>

237/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Compiling the JavaBean and Generating a Java
Archive (JAR) File III

<target name="compile">

<javac destdir="${basedir}">

<src location="${basedir}"/>

</javac>

</target>

<target name="clean">

<delete file="${jarfile}">

<fileset dir="${basedir}" includes="*.class"/>

</delete>

</target>

</project>

238/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE I

It is recommended to save an XML script in the
build.xml file, because Ant recognizes this file name
automatically.

Load the JAR file. Use the NetBeans IDE GUI Builder to
load the jar file.

1. Start NetBeans.

2. From the file menu select “New Project” to create a new
application for the bean. You can use “Open Project” to
add the bean to an existing application.

3. Create a new application using the “New Project Wizard”.

239/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE II

4. Select a newly created project in the list of projects,
expand the “Source Packages” node, and select the
“Default Package” element.

5. Click the right mouse button and select “New -
JFrameForm” from the pop-up menu.

6. Select the newly created form node in the project tree. A
blank form opens in the GUI builder view of an editor tab.

7. Open the palette manager for “Swing/AWT components”
by selecting “Palette Manager” in the “Tools” menu.

8. In the “Palette Manager” window select the beans
components in the palette tree and press the “Add from
JAR” button.

240/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE III

9. Specify a location for the SimpleBean JAR file and follow
the “Add from JAR Wizard” instructions.

10. Select the palette and properties options from the
“Windows” menu.

11. Expand the beans group in the palette window. The
SimpleBean object appears. Drag the SimpleBean object
to the GUI builder panel.

241/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Loading the JavaBean into the GUI builder of the
NetBeans IDE IV

The following figure represents the SimpleBean object loaded
in the GUI builder panel:

242/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Inspecting the JavaBean’s Properties and Events

The SimpleBean properties will appear in the Properties
window.

For example, one can change a background property by
selecting another color.

To preview the form, use the “Preview Design” button of
the GUI builder toolbar.

To inspect events associated with the SimpleBean object,
switch to the events tab of the “Properties” window.

243/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned?

JavaBeans are (mainly) visual components according to a
component model by Sun.

Consequently, they can be used to build graphical user
interfaces using builder tools such as NetBeans.

Formalization of the JavaBeans component model using
UML class diagram, sequence diagrams, and OCL.

Construction of a simple JavaBean.

244/ 420

