
SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform

245/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform I
Wütherich et al. (2008)

OSGi defines a dynamic component model for Java, ie.
components can be installed, updated and uninstalled
without stopping or restarting the platform.

Components provided by OSGi are called bundles.
A bundle

contains an additional file with descriptive information, e.g.
about provided and required interfaces.
can implement a service. Services are registered at a
central Service Registry where other bundles can request
it.
can be in different states (e.g. installed, active). The
bundle lifecycle can be managed by the OSGi Framework
API.

246/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Service Platform II
Wütherich et al. (2008)

OSGi

used to stand for Open Service Gateway initiative.

is a standard defined by the OSGi Alliance
(http://www.osgi.org).

is used in applications ranging from mobile phones to the
Eclipse IDE1.

is realized by open source (e.g. Eclipse Equinox) and
commercial implementations.

consists of two parts: OSGi Framework and OSGi
Standard Services

1Integrated Development Environment247/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework

248/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework (OSGi Alliance (2010b)) I

The OSGi Framework implements a container for bundles.

The functionality of the framework is divided into the
following layers:

Execution Environment Defines the Java environment that is
needed to execute the OSGi Framework.

Module Defines a component model for Java.

Lifecycle Defines the states of a bundle.

Service Defines a service model.

Security Defines security relevant aspects.
249/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Framework (OSGi Alliance (2010b)) II

Interactions between layers:

250/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bundles

A Bundle
represents a component in the OSGi Framework.
consists of one or more Java packages.
is deployed as a Java ARchive (JAR) with additional
descriptive information.

The descriptive information is stored within the bundle
manifest MANIFEST.MF.

251/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundle Manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: My first bundle

Bundle-SymbolicName: org.example.mybundle

Bundle-Version: 1.0.0

Bundle Manifest Header Optional Description
Bundle-ManifestVersion yes Number corresponds to ver-

sion of the OSGi specification
(2 for current version).

Bundle-Name yes Defines a readable name for
the bundle.

Bundle-SymbolicName no Bundle symbolic name and
version must identify a unique
bundle.

Bundle-Version yes Specifies the version of the
bundle (default value is
0.0.0).

252/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages I

By default, the classes contained in a bundle are not
visible to classes from other bundles.

In order to use classes of one bundle in another bundle,
they must be exported and imported.

In OSGi, only packages (and thereby the contained
classes) may be exported and imported.

253/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages II

In order to offer a provided interface, a bundle must export
the package containing the interface. Therefore the
following line has to be added to the corresponding
MANIFEST.MF:
Export-Package: org.example.mypackage,

org.example.anotherpackage

A bundle that requires these interfaces has to import the
packages. This is done by adding the following line to the
MANIFEST.MF of that bundle:
Import-Package: org.example.mypackage,

org.example.anotherpackage

The OSGi Framework resolves these dependencies by
matching the imports and exports automatically as soon
as both bundles are installed.

254/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Export and Import of Packages III

An exported package can be supplied with a version:
Export-Package:

org.example.mypackage;version="1.0.0"

(The default value is 0.0.0.)

For an imported package, a version range can be specified:
Import-Package:

org.example.mypackage;version="[1.1.0,1.5.0)"

(i.e. org.example.mypackage can only be imported if its
version number is greater than or equal to 1.1.0 and less
than 1.5.0)

255/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces I

256/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces II

Bundle ”MyBundle”

Package containing the interface:

package org.example.mybundle.interfaces;

public interface GreetingInterface {

public void sayHello();

}

Package containing the implementation:

package org.example.mybundle.implementation;

import org.example.mybundle.interfaces.GreetingInterface;

public class GreetingImplementation implements

GreetingInterface {

public void sayHello() {

System.out.println("Hello!");

}

}

257/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces III

MANIFEST.MF of bundle ”MyBundle”:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with provided interface

Bundle-SymbolicName: org.example.mybundle

Bundle-Version: 1.0.0

Export-Package: org.example.mybundle.interfaces;

version="1.0.0"

258/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces IV

Bundle ”UsingBundle”

Package using the interface:

package org.example.helloworld;

import org.example.mybundle.interfaces.GreetingInterface;

public class HelloWorld {

public HelloWorld(GreetingInterface gi) {

gi.sayHello();

}

}

259/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Bundles with provided and required
interfaces V

MANIFEST.MF of bundle ”UsingBundle”

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with required interface

Bundle-SymbolicName: org.example.usingbundle

Bundle-Version: 1.0.0

Import-Package: org.example.mybundle.interfaces;

version="[1.0.0,1.5.0)"

260/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Bundle Lifecycle

A bundle that is installed within the OSGi Framework can
be in the states INSTALLED, RESOLVED,
STARTING, ACTIVE, STOPPING or UNISTALLED.

The lifecycle of a bundle can be managed by the API of
the OSGi Framework.

261/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle I
BundleActivator

One can specify actions a bundle should perfom when it is
started and stopped. To this end the following interface
BundleActivator is to be implemented:

public interface BundleActivator{
public void start(BundleContext context)

throws Exception;

public void stop(BundleContext context)

throws Exception;

}

262/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle II
BundleActivator

The implementing class (only one per bundle allowed) must
have a public, no-argument constructor.

Activator class of bundle ”SomeBundle”:

package org.example;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class HelloWorldActivator implements

BundleActivator {

public HelloWorldActivator() {}

public void start(BundleContext context)

throws Exception {

System.out.println("Hello OSGi-World!");

}

public void stop(BundleContext context)

throws Exception {

System.out.println("Goodbye OSGi-World!");

}

}
263/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle III
BundleActivator

MANIFEST.MF of bundle ”SomeBundle”:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Bundle with bundle activator

Bundle-SymbolicName: org.example

Bundle-Version: 1.0.0

Import-Package: org.osgi.framework;version="1.5.0"

Bundle-Activator: org.example.HelloWorldActivator

264/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle IV
BundleActivator

A bundle can use a BundleActivator to store the given
BundleContext:

...

public class HelloWorldActivator implements

BundleActivator {

private BundleContext bundleContext;

public void start(BundleContext context)

throws Exception {

this.bundleContext = context;

}

...

}

265/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle V
BundleContext

The BundleContext object represents the interface between all
bundles and the OSGi Framework.

This object provides methods to

install a new bundle:

public Bundle installBundle(String location)

throws BundleException

access all installed bundles:

public Bundle[] getBundles()

(de-)register listeners on bundles.
(de-)register services a bundle provides.
request services of other bundles.

266/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VI
Bundle

Every bundle that is installed within the OSGi framework
is represented by an object of type Bundle.

This object provides methods to manipulate the lifecycle
of the corresponding bundle:

public void start() throws BundleException

public void stop() throws BundleException

public void update() throws BundleException

public void uninstall() throws BundleException

267/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VII
Bundle

Example:

...

private BundleContext bundleContext;

// called by start method of activator class

public void setBundleContext(BundleContext context) {

this.bundleContext = context;

}

public void installAndStartABundle(String location) {

try {

Bundle bundle = bundleContext.installBundle(location);

bundle.start();

} catch (BundleException e) {

e.printStackTrace();

}

}

...

268/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle VIII
BundleListener

To be able to react to a changed bundle state the interface
BundleListener has to be implemented:
public interface BundleListener

extends EventListener{
public void bundleChanged(BundleEvent event);

}
The BundleContext object provides a methods to (de-)register
a BundleListener:
public void addBundleListener(BundleListener

listener)

public void removeBundleListener(BundleListener

listener)

When the state of any bundle changes, the OSGi framework calls
the method bundleChanged.

269/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Management of the bundle lifecycle IX
BundleListener

Implementation of a BundleListener:

public class ReportChange implements BundleListener {

public void bundleChanged(BundleEvent event) {

System.out.println(event.getBundle() + "changed its state");

}

}

Registration of a BundleListener:

...

public class HelloWorldActivator implements

BundleActivator {

private BundleContext bundleContext;

public void start(BundleContext context)

throws Exception {

this.bundleContext = context;

ReportChange reportChange = new ReportChange();

context.addBundleListener(reportChange);

}

...

}270/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Services I

A service is a simple Java object contained in a bundle.

Services are registered at a central Service Registry
where other bundles can request it.

The Service Registry is part of the OSGi Framework.

271/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Services II

To work with a service, the following steps are necessary:

272/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Register the service I

The bundle implementing the service must create the service and
register this service object via the BundleContext at the Service
Registry:
public ServiceRegistration registerService(String

name, Object service, Dictionary properties)

The service object is registered under a specific name (usually
the name of the interface that the service implements).

Dictionary is a Java class that maps keys to values. It can be
used to describe properties of the service.

273/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Register the service II

Bundle ”MyServiceBundle” registers the service

Activator class of bundle ”MyServiceBundle”:

package org.example.service.activator;

...

public class ServiceBundleActivator implements BundleActivator {

private ServiceRegistration registration;

public void start(BundleContext context) throws Exception {

GreetingImplementation gi = new GreetingImplementation();

registration = context.registerService

(GreetingInterface.class.getName(), gi, null);

}

public void stop(BundleContext context) throws Exception {...}

}

274/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service I

The BundleContext provides methods to request and
release a service:

Another bundle can request the registered service by its
specific name:

public ServiceReference getServiceReference

(String name)

By means of the returned ServiceReference, a reference
to the service object can be requested:

public Object getService

(ServiceReference reference)

275/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service II

To enable the OSGi Framework to manage which bundles
are using which services, a service has to be released when
it is not used any more:

public boolean ungetService

(ServiceReference reference)

The returned boolean value is false if the bundle never
used the service or the service was already deregistered.

A service object can be used by different bundles at the
same time.

276/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Request, use and release the service III

”UsingServiceBundle” requests, uses and releases the
service of bundle ”MyServiceBundle”

Activator class of bundle ”UsingServiceBundle”:

package org.example.service.helloworld;

...

public class UsingServiceActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {

ServiceReference reference = context.getServiceReference

(GreetingInterface.class.getName());

GreetingInterface gi =

(GreetingInterface)context.getService(reference);

gi.sayHello();

context.ungetService(reference);

}

public void stop(BundleContext context) throws Exception {...}

}

277/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Deregister the service I

When the service should not be available any more, the
service can be deregistered by the bundle that registered
the service.

This is done by the ServiceRegistration object that
the method registerService returned:
public void unregister()

278/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Deregister the service II

Bundle ”MyServiceBundle” deregisters the service

Activator class of bundle ”MyServiceBundle”:

package org.example.service.activator;

...

public class ServiceBundleActivator implements BundleActivator {

ServiceRegistration registration;

public void start(BundleContext context)

throws Exception {...}

public void stop(BundleContext context) throws Exception {

registration.unregister();

}

}

279/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services I

Services are dynamic, i.e. they can be registered or
deregistered at any time.

The interface ServiceTrackerCustomizer acts as a
service listener:
public Object addingService

(ServiceReference reference)

public void modifiedService

(ServiceReference reference, Object service)

public void removedService

(ServiceReference reference, Object service)

280/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services II

Implementation of a ServiceTrackerCustomizer:

public class ReportServiceChange

implements ServiceTrackerCustomizer {

private BundleContext context;

public ReportServiceChange(BundleContext context) {

this.bundleContext = context;

}

public Object addingService(ServiceReference reference) {

System.out.println(reference.getBundle.getSymbolicName()

+ "was registered"); } }

return context.getService(reference);

}

public void modifiedService(ServiceReference reference,

Object service) {...}

public void removedService(ServiceReference reference,

Object service) {...}

}

281/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services III

To register a service listener, a bundle must create a
ServiceTracker:
public ServiceTracker(BundleContext context,

String name,

ServiceTrackerCustomizer customizer)

The constructor takes the name of the service that should
be monitored for changes.

The ServiceTracker object calls the corresponding
methods of the ServiceTrackerCustomizer when the
service is registered, deregistered or one of its properties
changes.

282/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Dynamic services IV

Registration of a ServiceTrackerCustomizer:

...

private ServiceTracker tracker;

public void start(BundleContext context) throws Exception {

ReportServiceChange reportServiceChange =

new ReportServiceChange(context);

tracker = new ServiceTracker(context,

GreetingInterface.class.getName(), reportServiceChange);

tracker.open(); // to start the ServiceTracker

}

...

283/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Standard Services

284/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

OSGi Standard Services

OSGi Standard Services (OSGi Alliance (2010a)):

are based on the OSGi Framework
offer an API for different recurring problems

Over 20 OSGi Standard Services are defined:

Declarative Services
Event Admin Service
Http Service
. . .

285/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Declarative Services I

In large applications, the service model of the OSGi
Framework has some drawbacks:

Start-up time:
Instantiation and registration of many services takes too
much time.
Memory usage:
For every registered service, all associated classes and
objects are loaded in memory.
Complexity:
Because services can be registered and deregistered at any
time, the programming model is complex.

286/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Declarative Services II

Declarative Services address these problems by
introducing service components which

are not activated until the service provided by the service
component is requested for the first time.

are not activated until all services required by the service
component are available.

287/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Service Component

A service component is defined in a bundle and consists of

a component class:

simple Java class
must have a public, no-argument constructor
can implement the methods
activate(ComponentContext) and
deactivate(ComponentContext) to specify actions that
should be performed when the component is (de-)activated

a component description
description of the component as an XML document
additional line in MANIFEST.MF:
Service-Component:

OSGI-INF/component-description.xml

The Service Component Runtime creates service
components and manages their lifecycle.

288/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A simple service component

Component class:

package org.example.simplecomponent;

import org.osgi.service.component.ComponentContext;

public class SimpleComponent {

protected void activate(ComponentContext context) {

System.out.println("activate");

}

protected void deactivate(ComponentContext context) {

System.out.println("deactivate");

}

}

Component description:

<?xml version="1.0"?>

<component name="simpleComponent">

<implementation class=

"org.example.simplecomponent.SimpleComponent"/>

</component>

289/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Delayed Component I

An instance of a service component can be registered as
an OSGi service.

This is done by adding the XML element service to the
component description:
<service>

<provide interface="...">

</service>

<provide interface="..."> is used to specify the
name the service should be registered under.

A service component that provides a service is not
activated until the service is requested for the first time.

Such a service component is called a delayed component.

290/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Delayed Component II

Lifecycle of a delayed component:

A service component is satisfied as soon as its dependencies
can be resolved.

291/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component as a service I

Service Interface:

package org.example.simplecomponent;

public class SimpleService {

public void sayHello();

}

Component class:

package org.example.simplecomponent;

import org.osgi.service.component.ComponentContext;

public class SimpleComponent implements SimpleService {

public void sayHello() {

System.out.println("Hello!");

}

}

292/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component as a service II

Component description:

<?xml version="1.0"?>

<component name="simpleComponent">

<implementation class=

"org.example.simplecomponent.SimpleComponent"/>

<service>

<provide interface=

"org.example.simplecomponent.SimpleService"/>

</service>

</component>

293/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Immediate Component I

A service component can use services registered by other
bundles or service components.

This is done by adding the XML element reference to
the component description:
<reference

name="..."

interface="..."

bind="..."

unbind="..."

/>

name: The local name of the reference.

interface: The name the service is registered under.

bind: The name of the method that is used to assign the
service to the component.

unbind: The name of the method that is used to remove
the service from the component.

294/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Immediate Component II

A service component that uses services is activated as
soon as all requested services are available.

Such a service component is called an immediate
component.

Lifecycle of an immediate component:

295/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component uses a service I

Component class:

package org.example.hellocomponent;

import org.osgi.service.component.ComponentContext;

public class HelloComponent {

private SimpleService service;

protected void setService(SimpleService service) {

this.service = service;

}

protected void unsetService(SimpleService service) {

this.service = null;

}

protected void activate(ComponentContext componentContext) {

sayHello();

}

}

296/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: A service component uses a service II

Component description:

<?xml version="1.0"?>

<component name="helloComponent">

<implementation class=

"org.example.hellocomponent.HelloComponent"/>

<reference

name="SimpleService"

interface="org.example.simplecomponent.SimpleComponent"

bind="setService"

unbind="unsetService"

/>

</component>

297/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Advantages of service components

Delayed activation of services:
Services that are provided by service components will be
registered at the Service Registry when the implementing
bundle is started. But no service instance is created until
the service is requested for the first time. This reduces
start-up time and memory usage.

Resolution of service dependencies:
The Service Component Runtime resolves all service
dependencies. It instantiates and activates a service
component that uses services not until all necessary
services are available. Therefore, no service listeners have
to be implemented. This reduces complexity.

298/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned? I

OSGi defines a dynamic component model for Java.

In OSGi, components are called bundles. Bundles

consist of Java packages and an additional file with
descriptive information (e.g. about exports and imports).
have a lifecycle that can be controlled by the OSGi
Framework API.
can implement services which are registered at the Service
Registry where other bundles can request them

OSGi Standard Services offer an API for different recurring
problems, like Declarative Services which reduce start-up
time, memory usage and complexity when working with
services.

299/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

What have we learned? II

Description Management Listener
Bundle OSGi component BundleActivator

(start and
stop methods),
BundleContext,
Bundle

BundleListener

Service Java object con-
tained in a bundle

Service Registry ServiceTracker-

Customizer,
ServiceTracker

Service
Component

Java object and
component descrip-
tion contained in a
bundle

Service Component
Runtime, activate

and deactivate

methods

Delayed
Component

Service component
which provides a
service

Service Component
Runtime, activate

and deactivate

methods

Immediate
Component

Service component
which uses services

Service Component
Runtime, activate

and deactivate

methods

300/ 420


