
SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

A Process for Specifying

Component-Based Software

by Cheesman and Daniels (2001)

301/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Motivation

Major challenge in software engineering today: manage
change

For Cheesman and Daniels, the objective of component
reuse is of less importance.

Aim: provide advice, guidance, and examples for modeling
enterprise-scale component systems.

302/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Architectural layers

303/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example components in the layers

304/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Realization vs. usage contracts

305/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface- vs. component specification

306/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Workflow of the overall development process

307/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Stages of the process

308/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Stages of the specification workflow

309/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Models to be produced

310/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Notations used

311/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of UML extensions

312/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Requirements Definition

313/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Requirements definition: overview

1. Business process

2. Business concept model

3. System envisioning

4. Use cases

4.1. Actors and roles
4.2. Use case identification
4.3. Use case descriptions
4.4. Quality of service

314/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business process

Business process to be supported must be understood

Its description is not a statement of the requirements for
the IT system (software)

Notation: e.g., UML activity diagrams

315/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example of a business process

Running example: hotel reservation

316/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business concept model

Expresses domain knowledge about the application
domain; thus, it is not related to software.

Does not need to be tightly scoped to the problem

Notation: UML class diagrams

317/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example of a business concept model

318/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System envisioning I

Define the software boundary; make clear which functions are
the responsibility of the software.

Example:

A hotel reservation system is required that will allow
reservations to be made for any hotel in the chain. At
present each hotel has its own, incompatible, system.
Reservations can be made by telephone to a dedicated
central reservation center, by telephone direct to a
hotel, or via the Internet. A major advantage of the
new system will be the ability to offer rooms at
alternative hotels when the desired hotel is full.

319/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System envisioning II

Within a hotel, facilities for making reservations will
exist at the front desk, in the office, and at the
concierge’s desk. Each hotel has a reservation
administrator who is responsible for controlling
reservations at the hotel, but any authorized user may
make a reservation. The target time for making a
reservation by telephone or in person is three minutes.
To speed up the process, details of previous
customers will be stored and made available.

320/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use cases

Allocate responsibility for the business process steps. Notation:
swim lanes.

Note: responsibility decisions have a profound effect on the
shape of the resulting software. They are often taken too
quickly.

321/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Actors and roles

Actors are roles that initiate and control the steps
assigned to them, even though the software may play a
part in these steps.

To be flexible, generalization relations can be introduced.

322/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification I

Use cases

describe the interaction of actors with the software

are a functional specification of the software

define the boundary between the software and its
environment

describe the interaction that follows from a single
business event

323/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification II

Hotel example: five events (corresponding to five use cases)

1. Make Reservation (covering Check Availability, Make
Reservation, and Confirm Reservation steps)

2. Cancel Reservation

3. Amend Reservation (covering Amend Reservation and
Confirm Reservation)

4. Take Up Reservation (covering Take Up Reservation and
Notify Billing System)

5. Process No-Show (covering Process No-Show and Notify
Billing System)

324/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification III

Discussion

Not turning up is a bit of a noevent. A business rule must
define when the no-show event is generated, e.g. no
arrival until 8 p.m.

The processing of no-shows can either be triggered by a
clock and be performed automatically, or be initiated by a
user (which is chosen here).

Therefore, the use case is renamed Process No-Shows,
because it deals with all reservations that meet the
no-show business rule.

But who is the corresponding actor?
Introduce ReservationAdministrator (see above)

325/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification IV

Audit

Considering the business concept model, answer the following
questions:

about the classes

Do the things these boxes represent get created and
destroyed?
Does the software need to know about this?
If so, how does it find out?
Does this thing have attributes that might change?

about the associations

Do the relationships between these things change over
time?
If so, does the software need to know and how does it find
out?

326/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification V

327/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VI

328/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VII

We assume that all the things in our model might have
attributes that can change, so the full list of uses cases, so far
as we know now, is as follows:

Make Reservation

Cancel Reservation

Amend Reservation

Take Up Reservation

Process No-Shows

Add/Amend/Remove Hotel

Add/Amend/Remove Room

Add/Amend/Remove Room Type

Add/Amend/Remove Clerk

Amend Customer

Remove Dormant Customers

Amend Address

Remove Old Reservations
329/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case identification VIII

Resulting use case diagram

330/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions I

For each use case, describe main success scenario, then add
extensions and variations.

331/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions II

332/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions III

If we were to continue with the other uses cases, we would find
that the extensions in Take Up Reservation occur in several use
cases. As a convenience, we can factor this out into a separate
use case:

333/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions IV

We can then simplify the Take Up Reservation use case:

334/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Use case descriptions V

Final use case diagram:

335/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Quality of service I

We ought to add a quality of service section to each use
case, stating our expectations, especially in the areas of
security and performance.

Where these requirements are system-wide, we can state
them separately.

For example, we might say:

Only authorized users (identified by a password)
may access the reservation service, other than
via the Internet.

336/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Quality of service II

For the Make a Reservation use case, our quality of service
statement might be

The system must support 200 simultaneous
users.

System response to any input must not exceed 2
seconds (95 percent) for direct connections and
5 seconds (90 percent) for Internet connections.

The system must support (total number of
rooms) * 10 active reservations, and assume 100
percent hotel occupancy.

337/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of requirements definition

The requirements workflow must deliver to the
specification workflow a business concept model and a set
of use cases.

The business concept model lists the important concepts
in the problem domain and shows the relationships
between them.

The use cases clarify the software boundary, identify the
actors who interact with the software, and describe those
interactions.

338/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component identification stage of the specification
workflow I

Business Concept
Model

Use Case
Model

Business

Type Model

Business
Interfaces

Architedure
Patterns

Component
Specs &
Architecture

System
Interfaces

Figure 5.1 The component identification stage of the specification workflow

339/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component identification stage of the specification
workflow II

Goal: create an initial set of interfaces and component
specifications, hooked together into a first-cut component
architecture.
Emphasis: discovery

What information needs to be managed?
What interfaces are needed to manage it?
What components are needed to provide that functionality?
How will they fit together?

Identify the system interfaces and system components in
the system services layer.
Identify the business interfaces and business type
components in the business services layer.
Take into account existing interfaces, databases, or
components that need to be interfaced with and that may
need adapting.
Try to apply architectural patterns.

340/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Focus of interface identification

Use Case Model

Business Concept Model

Figure 5.2 Interface inputs and correspondence to application architecture layers

Process is concerned with the UI-independent aspects of
an application, corresponding to the server side of things.

Refine business concept model (representing human’s eye
view) into business type model (representing software’s eye
view).

Use business type model to develop business interfaces.

The implementations of components supporting these
interfaces form the core business logic.

341/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Runtime behavior

When a user initiates a use case, the use case logic causes
the appropriate UI to be created and displayed.

The user is guided through the use case steps by the use
case logic.

Whenever the use case logic needs information to display
or needs to notify the system of a user action, it calls the
appropriate operation in the use case step logic.

This operation, in turn, uses operations defined in the core
business logic to perform its function.

Note: A component may only invoke operations on its own
level or in a level below itself.

342/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identifying system interfaces and operations

Identify one dialog type and one system interface per use
case.
Then go through each use case and for each step consider
whether or not there are any system responsibilities that
must be modeled.
If so, represent them as one or more operations on the
appropriate system interface.

Use
case

steps

Figure 5.3

Use case

G

dentify room requirements
System provides price
Request a r~ervation

Use cases map to system interfaces

Dialog
Type

System
Interface

343/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example: Make a reservation

Define initial system
interface called
IMakeReservation.

Step 2: system must allow
to get details of different
hotels (getHotelDetails()).

Step 3: Price and
availability for a given
request must be provided
(getRoomInfo()).

Step 7: operation
makeReservation() needed
that creates a reservation,
returns a reference
number, and confirms the
reservation.344/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Results of identifying system interfaces and
operations

Parameters of the operations are defined later when
considering the component interactions.

The interfaces we have defined at system level are specific
to that system and will not typically be reusable by
different systems.

Reuse of interfaces across systems is the purpose of the
business interfaces, to be discussed next.

345/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identifying business interfaces

The business interfaces are abstractions of the information that
must be managed by the system. The process for identifying
them is as follows:

1. Produce a scoped copy of the business concept model as
the business type model.

2. Refine the business type model and specify any additional
business rules with constraints.

3. Identify Core Business Types.

4. Create business interfaces for core types and then add
them to the business type model.

5. Refine the business type model to indicate business
interface responsibilities.

6. Check that the defined interfaces align with any overriding
policies, such as those defined in a corporate component
architecture.

346/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create the business type model

The business type model is represented by a UML class
diagram, like the concept model, but its purpose is
different.

Whereas the concept model is simply a map of the
information of interest in the problem domain, the business
type model contains the specific business information that
must be held by the system being specified.

The business type model is initially created by copying the
concept model and adding or removing elements until its
scope is correct.

Note: The business type model must be a precise model,
because it is the base from which the business interfaces will
emerge.

347/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example I

1

0..1

allocation

1

Figure 5.6 Scoping the business type model

348/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Example II

Eliminate the HotelChain type because the system shall
support only a single chain of hotels.
Eliminate the Hotel-Customer association (see use case
definition phase).
Eliminate Payment and Bill because they are the domain
of a separate billing system.
Eliminate Clerk and Address to keep the example simpler.

." 10
"

e ... ID V
I

:..
...

:J ;:;
:

Q
j.

C
-

e !!
!.

:J ID V
>

V
>

.-
+

'< "C ID

..
...

.
...

.

~ ".
.

~ ".
.

...
.

349/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules I

Add any additional required business rules to the simple
ones captured directly through association role
multiplicities.

This means writing some constraints and introducing new
attributes.

Example:

Identify which associations can be derived from others:

A hotel reservation must be for rooms at that same hotel,
and the type of room specified must be available at that
same hotel.

350/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules II

Availability rules:

A room is available if the number of rooms reserved at all
dates in the requested range is less than the number of
rooms.
Introduce new parameterized attribute
available(DateRange) for RoomType, on which to hang
this rule.
You can never have more reservations for a date than
rooms (no overbooking).

Pricing rules

The price of a room for a stay is the sum of the prices for
the days in the stay.
Change price attribute on RoomType to be parameterized
by date.
Introduce new attribute stayPrice, on which to hang this
rule.

351/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Define business rules III

Adding the extra attributes allows us to write these rules in
OCL.

{Hotel::room.roomType->asSet =
Hotel:: roomTypd

{Reservation::hotel =

Reservation::roomType.hotel}

Figure 5.8 Business type model

352/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Identify core types

The purpose of identifying core types is to start thinking
about which information is dependent on which other
information, and which information can stand alone.

A core business type is a business type that has
independent existence within the business.

Example: core types are Hotel and Customer.

353/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create business interfaces and assign
responsibilities I

General rule: create one business interface for each core
type of the business type model.
Each business interface manages the information
represented by the core type and its detailing types.
Naming convention: IxxxMgt

<interface type>
IHotelMgt

Figure5.9 Interface responsibility diagram of the business type model

354/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Create business interfaces and assign
responsibilities II

Each type should be owned by exactly one interface
(composition relation).

Where to allocate Reservation (provides details to both
Hotel and Customer)?

Decision: allocate Reservation to Hotel; mark association
between Reservation and Customer to be navigable only
toward customer.

355/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Allocating responsibility for associations I

When an association exists between types managed by
different interfaces, this is an inter-interface association.

The association between Reservation and Customer is
such an association.

A decision has to be made where this information will be
recorded.

Inter-interface associations are a specific form of
dependency, which contradict the high-level goal to reduce
dependencies.

Therefore: try to avoid two-way references between
interfaces.

356/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Allocating responsibility for associations II

Decision: Reservation references Customer, and Customer
is independent of Reservation.

Association is navigable in only one direction.

ICustomerMgt IHotelMgt

Figure5.10 Assigning reference direction

1. How this is achieved in the implementation is, of course, a totally separate issue.

357/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating initial interface specifications I

The system interfaces that we created earlier, which are
not part of the business type model, form an initial set of
interface specifications that subsequent stages will refine
directly.

The business type model and the business interfaces are
internal workflow artefacts.

Once we are happy with the interface responsibility
diagram, we create another set of business interfaces in
the interface specifications package, corresponding to the
business interfaces we created in the business type model.

We will further work on those interfaces in the component
specification phase.

358/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Creating initial interface specifications II

Business Type Model
Business

Interfaces

1dmv<

Business Data Types

Interface Data Types

System Interfaces

Business Interfaces

Figure 5.11 Package structure detail

359/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Existing interfaces and systems

Add to the interface specifications package any additional
interfaces that are part of the environment into which the
software will be deployed.

In particular, are there any existing interfaces that we are
obliged to use?

Are there any systems with which we need to interface,
but which are outside the specific scope of the given
development project?

Example: billing system. Its interfaces are added to the set
of system interfaces.

360/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component Specification Architecture

We now create an initial set of component specifications
and form an idea of how they might fit together.

We must choose components in such a way that it makes
sense to build or to buy that unit of functionality.

In most cases, we will create a separate component
specification for each interface specification that we have
identified.

Multiple interfaces on one component can be considered if

The concepts represented by the different interfaces have
the same lifetime.
The interactions between the interfaces are complex,
frequent, or involve large amounts of data.
We want to keep component granularity at a reasonable
size.

361/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System component specifications I

In our case study, the use-case-driven system interfaces are
strongly overlapping and manage concepts that have the
same lifetimes.

We therefore put IMakeReservation and
ITakeUpReservation on one component.

However, IBilling is kept separate.

The reservation system makes use of IBilling, so we add
the dependency between them.

We also add interface dependencies on ICustomerMgt and
IHotelMgt, although we don’t know if these really exist at
this stage.

We will validate these when we study the component
interactions.

362/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System component specifications II

«comp spec»
Reservation

System

IMakeReservation

ITakeUpReservation

, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,

IBilling 6 ! !: :

ICustomerMgt6 i
IHotelMgt 6

Figure 5.12 System component specifications

«comp spec»
Billing System

IBilling

363/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business component specifications

For the business interfaces, our starting point is one
component per interface.

Since the manager interfaces were created to manage
instances of core business types and their associations,
they are concerned with information that is managed
independently.

Result:

364/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

An initial architecture I

Now we have an initial set of component specifications,
including their supported interfaces and their interface
dependencies.

Since we don’t have any interfaces being offered by more
than one component specification in our example, we can
bind the interface dependencies of the component
specifications directly onto their corresponding component
specification interfaces.

365/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

An initial architecture II

Result:

«comp spec»
Reservation

System
IMakeReservation

ITakeUpReservation
/;',

,/ : ",
,// \ ""

«comp spec» I U- \ """"

BillingSystem IBilling \ """"

: ",: ",: ",: ",

«comp spec» I 6 """"'"CustomerMgr ""

ICustomerMgt """'"

"""'"

«comp spec»
HotelMgr

IHotelMgt

Figure 6.2 Initial component architecture

366/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component identification I

Main principles:

The system interfaces correspond to use cases, and their
operations are derived from use case steps.

A business type model is developed representing the
system’s eye view of the business concept model. Business
rules are captured on the business type model as
constraints. The business type model is an internal
workflow artifact, which is useful to maintain.

Business interfaces are discovered by identifying core types
in the business type model and creating interfaces to
manage them and their details.

367/ 420



SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component identification II

Initial business interface specifications are created by
copying the business type model interfaces. These
interfaces are refined in subsequent stages.

Initial component specifications are defined and formed
into an initial component architecture. Existing systems
and architectures are taken into account.

368/ 420


