
SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component interaction

The component identification gives us an initial set of
interfaces and components with which to work.
Now we will decide how the components will work
together to deliver the required functionality.

)

Figure 6.1

Business
Interfaces

System
Interfaces

Component Specs
& Architedure

I t f Component Specs
n er aces & Architedure

The component interaction stage of the specification workflow

369/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Discovering business interfaces I

We have identified the operations of the system interfaces.

Example: Interface IMakeReservation has the operations
getHotelDetails(), getRoomInfo(), and makeReservation().

We do not know the signatures of these operations at this
point, nor how they will be implemented using business
components.

We haven’t even identified the operations needed on the
business interfaces.

Our component architecture diagram tells implementers of
ReservationSystem that they must use the ICustomerMgt
and IHotelMgt interfaces.

370/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Discovering business interfaces II

Procedure for discovering business operations:

Take each system interface operation and draw one or
more collaboration diagrams that trace any constraints on
flows of execution resulting from an invocation of that
operation.

Each collaboration diagram should show one or more
interactions, where each interaction shows one possible
execution flow.

So if there are several important flows, one will need to
draw several interactions.

371/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getHotelDetails() I

Input: string to be used as a partial match against the
hotel names.

Output: collection of hotel details

«data type»
HotelDetails

id: HotelId

name: String
roomTypes: String []

Figure6.3 Structured data type for hotel details

IMakeReservation::getHotelDetails(

in match: String): HotelDetails []

372/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getHotelDetails() II

Collaboration diagram:

rl~

l:getHoteIDetails(s)
IIMakeReservation:ReservationSystem

11.1:getHoteIDetails(s)

I IHotelMgt

Figure 6.4 getHotelDetailsO

(Notation: objectname/rolename:classifiername)

373/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

getRoomInfo()

«data type»
ReservationDetails

hotel: Rotelld

dates: DateRange
roomType: String

Figure6.5 Structured data type for reservation details

IMakeReservation::getRoomInfo(

in res: ReservationDetails,

out availability: Boolean, out price: Currency)

~

l:getRoomInfo(r, a, p)
IIMakeReservation:ReservationSystem

Figure 6.6 getRoomlnfo() interaction

I IHotelMg!

11o1:getRoomInfo(r, a, p)

374/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies I

«data type»
CustomerDetails

name: String
postCode[O..l]: String
email[O..l]: String

Figure 6.7 Structured data type for customer details

IMakeReservation::makeReservation(

in res: ReservationDetails,

in cus: CustomerDetails, out resRef: String):

Integer

where the return value indicates the outcome of the operation

0: Success.
1: Customer does not exist, no new record could be
created, because post code and/or e-mail address were not
provided.

375/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies II

2: No post code was provided, and the name matches
more than one customer.

We need an operation on ICustomerMgt to look up a
customer’s details and return his or her CustId, so we invent
one:

ICustomerMgt::getCustomerMatching(

in cusD: CustomerDetails,

out cusID: CustId): Integer

where 0: success; 1: customer does not exist; 2: as above.

376/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies III

Which of our components is going to call that operation?

The HotelMgr component is responsible for storing the
association between reservations and customers.

The HotelMgr and CustomerMgr components are
independent of each other!

Therefore, we cannot let the ReservationSystem
component forward the makeReservation() call to the
HotelMgr and let it get on with it, because then HotelMgr
would have to use CustomerMgr.

Instead, the ReservationSystem is going to have to do this.

377/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

makeReservation(): breaking dependencies IV

/ICustomerMg!

l:makeReservation(r, c, rr) t1.1:getCustomerMatching(c, id) {result=O}
Il.3:notifyCustomer(id, s)

{where s inc1udes rr etc}

/IMakeReservation:ReservationSystem

11.2:makeReservation(r, id, rr)

/ IHotelMg!

Figure6.8 makeReservationO interaction (existing customer)

378/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Maintaining referential integrity

We haven’t said how many component objects there will
be at runtime.
Example: ReservationSystem will always use the same
business component objects.
Expressed using a component specification diagram.

«comp spec»
Reservation

System

1 {frozen}

1 {frozen}

<<interface type»
ICustomerMgt

«interface type»
IHotelMgt

«interface type»
IBilling

Figure 6.9 Constraints on the component object architecture

379/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Controlling intercomponent references I

Options for allocating responsibility that intercomponent
references are valid (example: deletion of a customer):

1. Allocate responsibility to the component object storing the
reference.
Example: make sure that all requests to delete customers
are sent to the HotelMgr component.

2. Allocate responsibility to the component object that owns
the target of the reference.
Example: this would be CustomerMgr.

3. Allocate responsibility to a third object, usually higher up
in the call chain.
Example: ReservationSystem.

4. Permit, and tolerate, references to become invalid.

5. Disallow the deletion of information.
380/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Controlling intercomponent references II

IICustomerMgt

t1.1:getCustomerMatching(cd, cid) {result=O}
11.3:deleteCustomer(cid)

l:deleteCustomer(cd)

Figure 6.10

IIHousekeeping:ReservationSvstem

11.2:deleteReservationsFor(cid)

I IHotelMgt

Interaction for referential integrity option 3

Disadvantage of option 3: assumes that the CustomerMgr
component is object is exclusive to the ReservationSystem.

If this assumption cannot be made, option 2 must be used.
Realization using Observer design pattern.

381/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Completing the picture

What happens if a new customer makes a reservation?

Need for an operation on ICustomerMgt to create a new
customer.

IICustomerMgt

l:makeReservation(r, c, rr) t 1.1:getCustomerMatching(c, id) {result=l}

11.2:createCustomer(c, id)
1.4:notifyCustomer(id, s)

{where s includes rr etc}

IIMakeReservation:ReservationSystem

11.3:makeReservation(r, id, rr)

I IHotelMgt

Figure 6.11 makeReservation() interaction (new customer)

Considering the Take Up Reservation Use case also gives rise to
new operations on IHotelMgt and ICustomerMgt.

382/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

System interfaces with operation signatures

383/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Business interfaces with operation signatures

384/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component interaction

Develop interaction models for each system interface
operation.

Discover business interface operations and their signatures.

Refine responsibilities.

Define any component architecture constraints you need.

385/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Component specification

A usage contract is defined by an interface specification.
A realization contract is defined by a component
specification.
Component specifications are primarily groupings of
interfaces.
Component (and interface) specification is the final stage
of the specification workflow.

Figure 7.1

Business
Type Model Interfaces

Component Specs
& Architecture

Interfaces Component Specs
& Architecture

The component specification stage of the specification workflow

386/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying interfaces

An interface is a set of operations.

An operation represents a fine-grained contract between a
client and a component object.

To express the contract, we need a construct that
describes the state of a component object.

387/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Operation specification

An operation specifies the individual action that a component
object will perform for a client. This has a number of facets:

The input parameters: specifying the information provided
or passed to the component object.

The output parameters: specifying the information
updated or returned by the component object.

Any resulting change of state of the component object.

Any constraints that apply (precondition).

However, operation specifications on interfaces do not include
information about interactions between the component object
performing the operation and other component objects that are
required, in a specific implementation, to complete the
operation.

388/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface information models I

We need to represent the state of the component on
which the interface depends.

To do this, each interface has an interface information
model.

All changes to the state of the component object caused
by a given operation can be described in terms of this
information model definition.

389/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Interface information models II

Example:

«interface type»
ICustomerMgt

getCustomerMatching(in custD: CustomerDetails, out cusId: CustId): Integer
createCustomedincustD: CustomerDetails, out cusId: CustId): Boolean
getCustomerDetails(in cus: CustId): CustomerDetails
notifvCustomer(in cus: CustId, in msl/,;String)

«data type»
CustomerDetails

name: String
postCode[O..t]: String
email[O..t]: String

Customer

id: CustId

name: String
postCode:String
email: String

Figure 7.2 Interface specification diagram for the ICustomerMgt interface

390/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Pre- and postconditions I

Each operation has a pre- and a postcondition.

These can be defined precisely using OCL.

The OCL expressions can refer to the operation
parameters, the operation result, and the state of the
component object (as defined by the interface information
model).

The OCL expressions cannot refer to anything else.

391/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Pre- and postconditions II

Example:

context ICustomerMgt::getCustomerDetails

(cus: CustId): CustomerDetails

pre: -- cus is a valid customer

customer->exists(c: Customer | c.id = cus)

post:

-- the details returned match the details

-- of the customer whose id is cus

-- find the customer

let theCust: Customer = customer->

select(c: Customer| c.id = cus)->asSequence()->first() in

result.name = theCust.name and

result.postCode = theCust.postCode and

result.email = theCust.email
392/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model I

Result of component identification phase:

<<interface type>
~ IHotelMgt

Figure 7.3 (ase study interface responsibility diagram

393/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model II

Start by making a copy of the business type model in the
interface’s package.

Delete types, associations, and attributes that are not
needed.

When a type owned by one interface refers to a type
owned by another, the referenced type (Customer, in this
case) appears in the interface information models of both
interfaces.

However, it need not look the same in both interfaces.

For example, the Customer type in IHotelMgt only needs
the customer id.

394/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

From business type model to interface information
model III

Result:

Figure 7.4 Interface specification diagram for IHotelMgt

<<interface type»
IHotelMgt

getHotelDetails(in match: String): HotelDetails []
getRoomInfo(in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation(in res: ReservationDetails, in cus :CustId, out resRef: String): Boolean
getReservation(in resRef: String, out rd: ReservationDetails, out cusId: CustId): Boolean
beginStay(resRef: String, out roomNumber: String): Boolean

L,* , *

Reservation Hotel Room

resRef: String id: HotelId number: String
*

dates: DateRange
*

name: String 1 *

claimed: Boolean
-

1 1..*

* I * I 0..1
allocation

1

Customer RoomType

id: CustId name: String
available(during: DateRange): Boolean 1

1 price(on: Date): Currency
stayPrice(for: DateRange): Currency

395/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Invariants

An invariant is a constraint attached to a type that must
be held true for all instances of the type.

Many invariants can be expressed graphically, using UML
notation (e.g., multiplicities).

In some cases it isn’t possible or convenient to use the
graphical notation. Use OCL instead.

Example:
context Reservation

-- a reservation is claimed

-- if it has a room allocated to it

inv: claimed = allocation->notEmpty()

396/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Snapshots

A useful technique when writing pre- and postconditions is to
draw “before” and “after” instance diagrams and to highlight
the state changes that occur.

before :RoomTvpe

{name=double}

after

:RoomTvpe
{name=double}

Figure 7.5 "Before" and "after" snapshot instance diagrams for IHoteIMgt::makeReservationO397/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation I

context IHotelMgt::makeReservation

(res: ReservationDetails, cus: CustId, resRef: String)

: Boolean

pre:

-- the hotel id and room type are valid

hotel->exists(h | h.id = res.hotel

and h.room.roomType.name->includes(res.roomType))

post:

result implies

-- a reservation was created

-- identify the hotel

398/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation II

let h: Hotel = hotel->select(x | x.id = res.hotel)

->asSequence()->first() in

-- only one more reservation now than before

h.reservation->size() - h.reservation@pre->size() = 1

-- identify the reservation

and let r: Reservation = h.reservation->

select(y: Reservation| not h.reservation@pre->

includes(y))->asSequence()->first() in

-- return number is number of the new reservation

r.resRef = resRef and

399/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specification of IHotelMgt::makeReservation III

-- other attributes match

r.dates = res.dates and

r.roomType.name = res.roomType

and not r.claimed and

r.customer.id = cus

400/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying system interfaces I

Until now, we have discussed a systematic way of moving
from the business type model to the information models of
the business interfaces.

For the system interfaces, we take a similar approach.

As with any other interface, the interface information
model of a system interface needs to contain just enough
information for the operations to be specified.

This will be a subset of the business type model.

Note that the existence of an interface information model
does not imply that an implementation of the interface
must store the information persistently. In fact, system
interfaces rarely have persistent storage.

401/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying system interfaces II

Figure 7.6 Interface specification diagram for IMakeReservation

«interface type»
IMakeReservation

getHotelOetails (in match: String): HotelOetails []
getRoomlnfo (in res: ReservationOetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationOetails, in cus: CustomerOetails, out resRef: String): Integer

*
Reservation Hotel Room

resRef: String id: HotelId
*

dates: OateRange
*

name: String 1 *
e-

claimed: Boolean 1 1..*

* I * I 0..1
allocation

1

Customer
RoomType

name: String name: String
postCode: String

available(during: OateRange): Boolean 1
email: String

1

Note that the information model for IMakeReservation does
not require the room number attribute, so it has been removed.

402/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Specifying components

The interface specifications discussed so far deal with the
usage contract – the contract between a component
object and its clients.

Now we consider the additional specification information
that the component implementer and assembler need to
be aware of, especially the dependencies of a component
on other interfaces.

This information forms the component specification.

403/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered and used interfaces

For every component specification we need to say which
interfaces its realizations must support, see architecture
diagram of component identification phase.
Now, we must dissect that diagram into pieces specific to
each component specification.
We also need to confirm any constraints concerning which
other interfaces are to be used by a realization
(dependency arrows in architecture diagram).

404/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Scoping interactions I

Constraints how a particular operation must be
implemented are defined in interactions.

Component interactions define specification-level
constraints. All component realizations must respect them.

This is essential if we aim to be able to replace
components within a complex component assembly.

The interactions that make up the constraints on
component specifications are typically fragments of the
interactions we drew during operation discovery.

They begin with a component object receiving a message,
and only show the direct interactions from that
component.

405/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Scoping interactions II

7

Figure 7.11 Scoping an interaction
406/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Inter-interface constraints

We may want to express constraints concerning the
relationships between interface information models. This
concerns

how offered interfaces relate to each other

how offered interfaces relate to used interfaces.

407/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered interfaces

The Reservation System component offers the
IMakeReservation and ITakeUpReservation interfaces.

Both these interfaces have a Reservation information type.

Since the two interfaces are specified completely
independently, we cannot assume that that both
reservation types are the same.

This has to be expressed explicitly.

context ReservationSystem

-- constraints between offered interfaces

IMakeReservation::hotel = ITakeUpReservation::hotel

IMakeReservation::reservation =

ITakeUpReservation::reservation

IMakeReservation::customer = ITakeUpReservation::customer

where a formal definition of “=” depends on the two information

types involved.
408/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Offered and used interfaces

Note that the existence of an interface information model
does not imply that implementations of the interface will
store the information.

Instead, they obtain the information from the business
components.

Therefore, we write constraints that require the elements
of the interface information models to match up.

context ReservationSystem

-- constraints between offered and used interfaces

IMakeReservation::hotel = IHotelMgt::hotel

IMakeReservation::reservation =

IHotelMgt::reservation

IMakeReservation::customer = ICustomerMgt::customer

409/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces I

Each interface has its own interface information model,
which is often only slightly different from the model of
another interface.

Sometimes it is possible to simplify things by refactoring
the interfaces, especially by introducing new abstract
interfaces that act as super-types of other interfaces,
holding common interface information model elements,
and, sometimes, definitions of common operations.

In some cases it may even be practical to simply merge
system interfaces together and do not bother with
subtyping. This may be appropriate when the
corresponding use cases have the same actors.

410/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces II

Example: factor out the common elements of the information
models from IMakeReservation and ITakeUpReservation and
place them in a new interface called IReservationSystem:

IMakeReservation

IReservationSystem

lTakeUpReservation

Figure 7.12 Refactoring interfaces

«interface type»
IReservationSvstem

7 L"
Reservation Hotel Room

resRef:String id: HotelId
dates:DateRange ' '- f----
cIaimed: Boolean 1 1..'

, I, I 0..1
aIlocation

1
Customer

RoomType
name: String name: Strlng
postCode: String 1
email: String

1

411/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Factoring interfaces III

The interface information model for IMakeReservation then
merely extends the inherited types, adding extra attributes that
are required.

RoomType
(from IReservationSystem)

name: String

Hotel

(from IReservationSystem)

id: HotelId

RoomType

available(during: DateRange): Boolean

Hotel

name: String

Figure 7.13 IMakeReservation after factoring out IReservationSystem

«interface type»
IMakeReservation

getHotelDetails(in match: String): HotelDetails []

getRoomlnfo(in res: ReservationDetails, out availability: Boolean, out price: Currency)

makeReservation (in res: ReservationDetails, in cus: CustomerDetails, out resRef: String): Integer

412/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component specification I

Interface specifications define usage contracts.

Component specifications define realization contracts.

An interface is specified by a set of operation specifications
that operate on an interface information model.

The interface information model must contain just enough
information to allow the operations to be specified. It
cannot refer to anything outside the interface.

First-cut interface information models can be derived
systematically from the business type model.

Each operation is specified using a pre- and postcondition
pair.

413/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Summary of component specification II

OCL can be used to express invariants and operation pre-
and postconditions.

Component specifications include specifications of the
interfaces offered and used.

To constrain the implementations of operations, attach
interaction fragments to component specifications.

Add constraints to component specifications to define how
elements in one interface information model relate to
elements in another.

Consider factoring or merging system interfaces to keep
things simple, but bear in mind the value of different
actors having their own interfaces on the system.

414/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Provisioning and Assembly

In the specification workflow, we have been working in a
technology-independent way.

Provisioning means to provide component
implementations, either by directly implementing the
specifications or by finding an existing component that fits
the specification.

Assembly pulls the components together, using the
component architecture for the software to define the
overall structure and the individual pieces, and adding user
interface and dialog logic.

415/ 420

SWK

JJ+HS

Introduction

Patterns

Components

Design by
contract

Components and
OO

Java Beans

OSGi

Component
Spec. Proc.

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Provisioning
and Assembly

References

Issues in provisioning

A component realizes a component specification and an
interface realizes an interface type.

The realizations are performed in some target technology.

We must consider what mappings need to take place for
these two key realizations, between the technology-neutral
and the technology-specific level.

Main issues:
Operation parameter type, kind (in/out/inout/return), and
reference restrictions
Exception and error handling mechanisms (implementing
the contracts)
Interface inheritance and support restrictions
Operation sequence
Interface properties
Object creation mechanisms
Raising events

416/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography I

Bass, L., Clements, P., and Kazman, R. (1998). Software
Architecture in Practice. Addison-Wesley, Boston, MA,
USA, 1st edition.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (1996). Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons.

Cheesman, J. and Daniels, J. (2001). UML Components – A
Simple Process for Specifying Component-Based Software.
Addison-Wesley.

Coplien, J. O. (1992). Advanced C++ Programming Styles
and Idioms. Addison-Wesley.

417/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography II

Coplien, J. O. (1998). C++ idioms.
http://users.rcn.com/jcoplien/

Patterns/C++Idioms/EuroPLoP98.html (last visit: May
27th, 2009).

D’Souza, D. and Wills, A. C. (1998). Objects, Components
and Frameworks With UML: The Catalysis Approach.
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns – Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading.

Heineman, G. T. and Councill, W. T. (2001).
Component-Based Software Engineering. Addison-Wesley.

418/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography III

Heisel, M., Santen, T., and Souquières, J. (2002). Toward a
formal model of software components. In Proc. 4th
International Conference on Formal Engineering Methods,
pages 57–68. Springer.

Meyer, B. (1997). Object-Oriented Software Construction.
Prentice Hall International, 2nd edition.

OSGi Alliance (2010a). OSGi Service Platform Release 4
Version 4.2 Compendium Specification.
http://www.osgi.org/Download/Release4V42.

OSGi Alliance (2010b). OSGi Service Platform Release 4
Version 4.2 Core Specification.
http://www.osgi.org/Download/Release4V42.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component
Software. Pearson Education. Second edition.

419/ 420

SWK

JJ+HS

Introduction

Patterns

Components

References

Bibliography IV

Wütherich, G., Hartmann, N., Kolb, B., and Lübken, M.
(2008). Die OSGi Service Platform: Eine Enführung mit
Eclipse. dpunkt.

420/ 420

