
Sicherheit:

Fragen und

Lösungsansätze

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 1

Willkommen zur Vorlesung

Sicherheit:

Fragen und Lösungsansätze
im Wintersemester 2012 / 2013

Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV

Vorlesungswebseite (bitte notieren):

http://www-jj.cs.tu-dortmund.de/secse/pages/teaching/ws12-13/sfl/index_de.shtml

Sicherheit:

Fragen und

Lösungsansätze

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 2

Themen der Vorlesung

Part I: Challenges and Basic Approaches
1) Interests, Requirements, Challenges, and Vulnerabilities
2) Key Ideas and Combined Techniques
Part II: Control and Monitoring
3) Fundamentals of Control and Monitoring
4) Case Study: UNIX
Part III: Cryptography
5) Fundamentals of Cryptography
6) Case Studies: PGP and Kerberos
7) Symmetric Encryption
8) Asymmetric Encryption and Digital Signatures with RSA
9) Some Further Cryptographic Protocols
Part IV: Access Control
10) Discretionary Access Control and Privileges
11) Mandatory Access Control and Security Levels
Part V: Security Architecture
12) Layered Design Including Certificates and Credentials
13) Intrusion Detection and Reaction

Sicherheit:

Fragen und

Lösungsansätze

• UNIX supports participants in
 - using their own workstation for their specific application tasks

 - cooperating with colleagues in server-based local networks for joint projects

• a participant can manage his own computing resources at his discretion,
 - either keeping them private

 - or making them available to other particular participants or to everybody

• security mechanisms
 - enforce the virtual isolation of identified, previously registered users

 - enable the deliberate sharing of resources

• the mechanisms are closely intertwined with the basic functional concepts of

files and processes, which are managed by the UNIX kernel

• the kernel acts as controller and monitor of all security-relevant accesses

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 3

Some basic features of UNIX

Sicherheit:

Fragen und

Lösungsansätze

• identification of registered users as participants

• passwords for user authentication at login time

• a one-way hash function for storing password data

• discretionary access rights concerning files as basic objects and

three fundamental operational modes, read, write and execute

 • owners, as autonomous grantors of access rights

• owners, groups and the full community of all users, as kinds of grantees

• right amplification for temporarily increasing the operational options of a user
 • a super-user, capable of overriding the specifications of owners

• access control concerning the commands and the corresponding system calls

• monitoring of the functionality
 • kernel-based implementation of control and monitoring

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 4

Basic blocks of control and

monitoring (and cryptography)

Sicherheit:

Fragen und

Lösungsansätze

• UNIX provides a virtual machine
 that offers an external command interface

with the following fundamental features:

 - identified participants can
 - master processes that
 - execute programs
 - stored in files

• the processes, in turn, can operate on files,

in particular for reading and writing

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 5

Conceptual design of the

operating system functionality

Sicherheit:

Fragen und

Lösungsansätze

participant

suid

owner

owned_by

master

member

access privileges
 owner group other

r w x r w x r w x

file

execution

process

group

sgid

group
 share
 available_for

group

master

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 6

ER model of fundamental functional

features and security concepts

Sicherheit:

Fragen und

Lösungsansätze

• a previously registered participant
 can start a session by means of the login command

• for this the system

- assigns a physical device for input and output data to him
 - starts a command interpreter
 as the first process mastered by that participant

 • afterwards, the participant can issue commands,

which may possibly generate additional processes

that are also mastered by him

 • the commands invoke system calls that serve for
 - process management

 - signaling
 - file management
 - directory and file system management
 - protection
 - time management
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 7

Participants, sessions,

and system calls

Sicherheit:

Fragen und

Lösungsansätze

• execute (the program contained in) a file, and in doing so

• read or write in (usually other) files

• create new files and remove existing ones

• generate new (child) processes

• have a lifespan,
 starting with the generation by a father process and

 ending with a synchronization with the pertinent father process

• constitute a process tree:
 - when the UNIX system is started, an initial process init is generated

 - an already running (father) process can generate new (child) processes

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 8

Processes as active subjects

Sicherheit:

Fragen und

Lösungsansätze
Lifespan of a process

father process

(child) process

fork
 (child) process is generated

 by the father process

exec

(child) process exchanges process space

wait

exit

(child) process synchronizes with

father process and is ended

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 9

Sicherheit:

Fragen und

Lösungsansätze

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 10

Growing and shrinking

of a process tree

initial process

child process for each

 physical device

 by login

child process for

command interpreter

by a command that

 creates a new process

by a further command that

creates a new process

by logout

…

…

…

…

Sicherheit:

Fragen und

Lösungsansätze
Files as passive objects

• files are uniformly managed by the system using a file tree

• a file is identified by its path name within the file tree

• a file that constitutes a branching node in the file tree

is a directory listing other files

• a file that constitutes a leaf in the file tree

is a plain file containing data,

 which might be considered as an executable program

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 11

Sicherheit:

Fragen und

Lösungsansätze

• a participant acts as the owner of the files created by him

• the system administrator assigns participants as members of a group:
 - a group comprises those participants that are entitled to share files

 - an owner can make a file available for a group to share it
 • for each file, the owner implicitly specifies three disjoint participant classes:

 - himself as owner
 - the members of the pertinent group, except the owner if applicable
 - all other participants
 • the owner of a file discretionarily declares access privileges

for each of these classes - for the processes mastered -

by permitting or prohibiting the operations

belonging to an operational mode:

 - read
 - write
 - execute

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 12

Conceptual design

of the security concepts

Sicherheit:

Fragen und

Lösungsansätze

Operation with command

Operation with command

Operational
 on plain file

on directory

mode

open file for reading:

open directory for scanning:

read
 open(,o_rdonly)

opendir

read content:

read next entry:
 read

readdir

open file for writing:

write
 open(,o_wronly)

modify content: write

insert entry:

add

delete content:

truncate

delete entry: remove

rename entry: rename

execute content as program:

select as current directory:

execute
 execute

cd

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 13

Some operations with commands

and their operational mode

Sicherheit:

Fragen und

Lösungsansätze

• normally,
 a user is the master of the command interpreter process that he has started,

and of all its descendants

 • additionally, the (primary) group of that user is said to be the

group master of all those processes

 • if a process requests an operation op on a file file,

 then the access privileges file.access_privileges

are inspected according to the masterships of the process

in order to take an access decision

 • for each file, the owner can additionally set two execution flags,

suid and sgid,

 that direct its usage as a program, or as a directory, respectively:
 - for a plain file containing an executable program,
 the flag impacts on the mastership of an executing process

 - for a directory,
 the flag impacts on the ownership of inserted files

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 14

Mastership and group mastership

Sicherheit:

Fragen und

Lösungsansätze

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 15

Refined ER model of the functional

features and security concepts

Sicherheit:

Fragen und

Lösungsansätze
Refined ER model: users

human

 individual

physical
 device

username password

connected

surrogate

uid

full name home
 directory

user

primary
member

 shell file … /etc/passwd

 /etc/shadow

member

 /etc/groups

gid

 (user identification)

(group identification)

 ISA

superuser_

 id

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 16

Sicherheit:

Fragen und

Lösungsansätze
Refined ER model: files

ISA

superuser
 id

uid
 (user identification)

access privileges

owner group other

 r w x r w x r w x

suid filename

owner

gid
 (group identification)

i_nodes

sgid

group

share
owned_by

file
 available_for

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 17

Sicherheit:

Fragen und

Lösungsansätze

owner

suid filename

owned_ file

by

execution

sgid

group

share
available_
for

current
master

original

effective uid

real uid

effective gid current

 group master

real gid original

master

saved uid

process group master

suppl.

 gid
 uppl.

saved gid

process
table

saved
master

process id u mask …
saved

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 18

Refined ER model: processes

Sicherheit:

Fragen und

Lösungsansätze

• a human individual
 • the physical device
 from which the individual issued his last login command

 • an abstract user:
 - representing the previously registered human individual within the system:

 as a result of a successful login command,

 the abstract user is connected to the
 physical device from which the command was received
 - uniquely identified by a username

 - associated with further administrative data, e.g.:
 - password data

 - full name,
 -

(the path name of) home directory in the overall file tree
 –

(the path name of the file containing) command interpreter (shell file)
 • a user identification, i.e., a cardinal number uid,

 which serves as a (not necessarily unique) surrogate for an abstract user

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 19

Different notions of a participant

Sicherheit:

Fragen und

Lösungsansätze
System administrator

• is a human individual,
 typically registered as a distinguished abstract user

whose username is root and

 whose surrogate is superuser_id

(in general, represented by 0)

• enjoys nearly unrestricted operational options

(consequently, so does any human individual

who succeeds in being related to root)

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 20

Sicherheit:

Fragen und

Lösungsansätze
Groups

• a group is represented by a group identification, gid

• each abstract user is a primary member of one group,

and can be a member of any further groups

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 21

Sicherheit:

Fragen und

Lösungsansätze

• all relationships of files/processes with participants/groups are interpreted as

relationships with user identification/group identifications

• the master and the group master relationships are further differentiated

in order to enable dynamic modifications

• a user identification uid
 (the surrogate of a user connected to a physical device

 from which a human individual has issued a login command)

 is seen as the original master of the command interpreter process

generated during the login procedure

 and of all its descendants

• these processes are also said to have this uid as their real uid

• correspondingly,
 a group identification gid

 is seen as the original group master of these processes,

which are also said to have this gid as their real gid

 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 22

Mastership and

group mastership refined

Sicherheit:

Fragen und

Lösungsansätze
Current masterships

• normally, the original masterships are intended to determine the access

decision when a process requests an operation on a file

 • to distinguish between normal and exceptional cases,
 - an additional current mastership (an effective uid) and

 - an additional current group mastership (an effective gid)

are maintained and actually employed for access decisions

 • the current mastership and the current group mastership of a process

are automatically manipulated according

 to the execution flags suid and sgid of the executed file:

 - normally, if the respective flag is not set,
 then the current mastership is assigned the original mastership, and

 the current group mastership is assigned the original group mastership
 - exceptionally, if the respective flag is set,

 then the current mastership is assigned
 the user identification of the owner of the file to be executed, and

the current group mastership is assigned

 the group identification for which that file has been made available
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 23

Sicherheit:

Fragen und

Lösungsansätze
Right amplification

• the exceptional case is used for right amplification,
 to dynamically increase the operational options of a process

while it is executing a file with a flag set

 • the owner of that file allows all ‘‘participants’’

that are permitted to execute the file at all

to act thereby as if they were the owner himself

 • if the owner is more powerful than such a participant
 (e.g., if the owner is the nearly omnipotent abstract user root),

 then the operational options of the participant are temporarily increased
 • the current masterships and current group masterships

 can also be manipulated by special, suitably protected commands
 • for this option, the additional

 saved mastership and saved group mastership

are used to restore the original situation

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 24

Sicherheit:

Fragen und

Lösungsansätze

• a human individual can act as a participant of a UNIX installation

 only if the system administrator has registered him in advance as user,

thereby assigning a username to him

• this assignment and further user-related data are stored in the files

/etc/passwd and /etc/shadow

 • the usernames serve for identification and for accountability of all actions

 • whenever an individual submits a login command,

 the system

 - checks whether the username is known from a registration

 by inspecting the file /etc/passwd :

 if the username is found, it is considered as known, otherwise as unknown

 - evaluates whether the actual command is authentic, relying on:

 - appropriate registrations

 - the integrity of the underlying files

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 25

Identification and authentication

Sicherheit:

Fragen und

Lösungsansätze

• if the individual can input the agreed password,

then the command is seen as authentic

 • the system relies on
 –

appropriate password agreements
 –

the individual’s care in keeping his password secret
 – the integrity and confidentiality of the file /etc/shadow
 • the confidentiality of this file is supported by several mechanisms:

 - passwords are not stored directly,
 but only their images under a one-way hash function

 - on any input of the password,
 the system immediately computes its hash value and

compares that hash value with the stored value

 • the hash values are stored in a specially protected file /etc/shadow:

 - a write access to an entry (password modification) is allowed only if

 the request stems from root or from the pertinent user

 - a read access to an entry is allowed only for authenticity evaluations
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 26

Proof of authenticity

by a password procedure

Sicherheit:

Fragen und

Lösungsansätze
Access decisions

• the kernel has to take access decisions concerning
 - a process as an active subject

 - a file as a controlled passive object
 - arequestedoperation
 • given a triple (process, file, operation),

the kernel has to decide whether

 - the process identified by process is allowed

 - to actually execute the operation denoted by operation

 - on the file named file

• two cases according to the effective user identification of the process,

process.current_master:

 - if process.current_master = superuser_uid,

 then nearly everything is considered to be allowed

 - otherwise, a decision procedure is called

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 27

Sicherheit:

Fragen und

Lösungsansätze

function decide(process, file, operation): Boolean;

if process.current_master = file.owner

 then return file.access_privileges.owner.mode(operation)

else

 if process.current_groupmaster = file.group

 OR

 EXISTS process.supplementary_groupmaster:

 process.supplementary_groupmaster = file.group
 then return file.access_privileges.group.mode(operation)

else return file.access_privileges.other.mode(operation)

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 28

Access decisions

regarding normal users

Sicherheit:

Fragen und

Lösungsansätze

• implemented by means of the fundamental functional features of UNIX
 • data about users and groups is stored in the special files
 -

/etc/passwd

 -

/etc/shadow

 –

/etc/group

• these files are owned by the system administrator (under superuser_id)

 • the access privileges for these files are given by
 - r--|r--|r--

 - rw-|---|---
 - r--|r--|r--
 • additionally, modifications of the files /etc/passwd and /etc/group

are specially restricted to processes with the effective uid superuser_id

 • security-relevant data about files is managed in i-nodes
 • security-relevant data about processes is maintained in the process table

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 29

Knowledge base on permitted

operational options

Sicherheit:

Fragen und

Lösungsansätze

/etc/passwd

/etc/shadow

/etc/group

username

username

groupname

reference to /etc/shadow

hash value of password

group password

user identification (uid)

date of last modification

group identification (gid)

gid of primary group

maximum lifetime

usernames of members

full name, comment

date of expiration

path name of home directory

path name of shell file

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 30

Main entries of the administration

files for users and groups

Sicherheit:

Fragen und

Lösungsansätze

• the commands useradd, usermod and userdel
 manipulate the entries for users

 in the files /etc/passwd, /etc/shadow and /etc/group:

 only executed for a process
 whose effective user identification is superuser_uid

• the commands groupadd, groupmod and groupdel

manipulate the entries for groups

 in the file /etc/group:

 only executed for a process
 whose effective user identification is superuser_uid

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 31

Modifications of the knowledge base:

user and group administration

Sicherheit:

Fragen und

Lösungsansätze

• the command passwd

 modifies an entry of a user in the file /etc/shadow:

 only executed for a process
 whose effective user identification is
 - superuser_uid
 or
 - equal to the user identification of the user

 whose password is requested to be changed

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 32

Modifications of the knowledge

base: password management

Sicherheit:

Fragen und

Lösungsansätze

• the command login tries to identify and authenticate the issuer

 • on success, the issuer is recognized as a known registered user

 • by a system call fork, a new process is generated for that user

 • that process, by use of a system call exec,

 starts executing the shell file of the user as a command interpreter

 • the masterships and group masterships are determined as follows:
 - the real uid, effective uid and saved uid are all assigned

 the user identification of the user, i.e., user.surrogate

 - the real gid, effective gid and saved gid are all assigned

 the primary group of the user, i.e., user.primary_member

 - the supplementary gid is assigned

 the set of elements of user.member

• subsequently, this process is treated as the original ancestor of all processes

that are generated during the session started by the login command

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 33

Modifications of the knowledge

base: login procedure

Sicherheit:

Fragen und

Lösungsansätze

• normally,
 a process inherits its masterships and group masterships

from its immediate ancestor

• exceptionally,
 masterships and group masterships are determined differently, namely if

 - the file executed has an execution flag suid or sgid set,

or

 - some explicit command modifies the implicit assignment

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 34

Modifications of the knowledge

base: mastership assignments

Sicherheit:

Fragen und

Lösungsansätze

• the system call
 create(filename, access_privileges, suid, sgid)

 creates a new file

• the owner and the group share of the file are assigned

 the effective uid and the effective gid, respectively,

of the creating process

• the access privileges and
 the execution flags suid and sgid are assigned

according to the respective parameters of the call,

possibly modified according to the mask umask

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 35

Modifications of the knowledge

base: file management

Sicherheit:

Fragen und

Lösungsansätze

• the mask umask specifies nine truth values,

 one for each value contained in the parameter for the access privileges:
 - each mask value is complemented
 - the conjunction with the corresponding parameter value is taken

• a mask value true (or 1) is complemented into false (or 0) and thus

 always results in the corresponding access privilege being set to false (or 0),

thereby expressing a prohibition

• in general, individuals are strongly recommended
 to prohibit write access to files with an execution flag suid or sgid set:

 avoids unintended/malicious modification of the program contained,

 resulting in unwanted effects of right amplification

• the system call umask(new_umask)

 modifies the current nine truth values of the mask umask into

the values specified by the parameter new_umask

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 36

Modifications of the knowledge

base: masking access privileges

Sicherheit:

Fragen und

Lösungsansätze

• the system call fork generates a new process

 • a subsequent system call exec(command_file)

 exchanges the content of its address space, thereby loading the program

that is contained in the file specified as the parameter command_file,

whose instructions are then executed

 • masterships, group masterships and the mask umask of that process:

 - if the flags suid and sgid of the file command_file are not set,

 then the new process inherits all masterships and group masterships

 from its father process

 - if the flag suid is set,

 then the effective uid and the saved uid are assigned

to command_file.owner

 - if the flag sgid is set,

 then the effective gid and the saved gid are assigned

to command_file.group share

 - the mask umask is inherited from the father process

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 37

Modifications of the knowledge

base: process management

Sicherheit:

Fragen und

Lösungsansätze

• the system call setuid(uid) assigns

 the masterships real uid, effective uid and saved uid

the parameter value uid:

 only executed for a process that satisfies the following precondition:

the effective uid equals superuser_uid,

 or the real uid equals the parameter value uid

 (i.e., in the latter case, the original situation is restored)
 • the system call seteuid(euid) assigns

the current mastership effective uid

the parameter value euid,

 which might be the real uid or the saved uid

• thereby, while executing a file with the execution flag suid set,

a process can repeatedly change its effective uid:

 the process can select

 the uid of that user who has generated the original ancestor, or

the uid of the owner of the file executed

 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 38

Modifications of the knowledge

base: execution flags

Sicherheit:

Fragen und

Lösungsansätze

• the system calls setgid(gid) and setegid(egid)
 manipulate the group masterships

 • the command /bin/su -

 changes the effective uid of the currently executed process

into superuser_uid

 (thus the system administrator can acquire the mastership of any process):

 only executed if the issuer is successfully authenticated

 with the agreed password for the system administrator with username root

• the command chown changes the owner of a file:

 only executed for a process that satisfies the following precondition:

the effective uid equals superuser_uid or

 equals the current owner of the file

 • the command chmod changes the access privileges of a file:

 only executed for a process that satisfies the following precondition:

the effective uid equals superuser_uid or

 equals the current owner of the file

 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 39

Modifications of the knowledge

base: some further manipulations

Sicherheit:

Fragen und

Lösungsansätze

• basically, UNIX does not maintain an
 explicit knowledge base on the usage history for taking access decisions,

except for keeping track of process generations

• most UNIX versions offer log services for monitoring that
 - produce log data about issued commands and executed system calls

 - store that data in special log files

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 40

Knowledge base on usage history

Sicherheit:

Fragen und

Lösungsansätze

• the file lastlog contains the

 date of the last issuing of a login command for each of the registered users,

whether successful or failed

• the file loginlog contains

 entries about all failed issuings of a login command,

 comprising the username employed, the physical device used and the date

• the file pacct contains entries about all issued commands,

including their date

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 41

Examples of UNIX log files

Sicherheit:

Fragen und

Lösungsansätze

• the file sulog contains

 entries about all successful or failed attempts to issue the critical su command;

for each attempt, the following is recorded:

 - success or failure
 - the username employed
 - the physical device used
 - the date

• the files utmp or wtmp contain

 entries about the currently active participants;

in particular, the following is recorded:

 - the username employed
 - the physical device used
 - the process identification of the original ancestor process

 that was started by the login command

 to execute the user’s command interpreter
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 42

Examples of UNIX log files,

continued

Sicherheit:

Fragen und

Lösungsansätze
Audit services

• log services send their log data as audit messages to an audit service
 that unifies and prepares that data for persistent storage or further monitoring

• the audit service syslog works on audit messages that are sent

 - by the kernel, exploiting /dev/klog

 - by user processes, exploiting /dev/log

 - by network services, exploiting the UDP port 514

• the audit messages consist of four entries:
 - the name of the program whose execution generated the message

 - a classification of the executing process into one of a restricted number

 of event sources, called facilities, which are known as

 kern, user, mail, lpr, auth, daemon, news, uucp, local0, …, local7, mark
 - a priority level, which is one of

 emerg(ency), alert, crit(ical), err(or), warning, notice, info(rmational),

(from) debug(ging), none

 - the actual notification of the action that has occurred
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems

Case Study: UNIX 43

Sicherheit:

Fragen und

Lösungsansätze

• the system administrator can configure the audit service syslog

using the file /etc/syslog.conf,

 which contains expressions of the form
 facility.priority destination

• such an expression determines how an audit message
 - that stems from an event source classified as facility and

 - has the level priority should be treated, i.e.,

 - to which destination it has to be forwarded

 • destination might denote

 - the path name of a file
 - a username,
 - a remote address,
 - a pipe
 - the wildcard * (standing for all possible receivers)

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 44

Configuration of an audit service:

example

Sicherheit:

Fragen und

Lösungsansätze
Overall architecture

• control and monitoring are part of the operating system kernel
 • the kernel realizes the system calls offered by UNIX
 • a system call is treated roughly as follows:
 - the kernel checks the operator and the parameters of the call and

 then deposits these items in dedicated registers or storage cells

 - a software interrupt or trap dispenses the calling process
 - the program determined by the specified operator

 is executed with the specified parameters

 - if applicable, return values for the calling process are deposited
 - subsequently, the calling process can be resumed
 • this procedure needs special hardware support for security: storage protection,

processor states, privileged instructions, process space separation, ...

 • most UNIX installations are part of a network,
 and thus employ various features for securing the connections

to remote participants and the interactions with them

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems
Case Study: UNIX 45

