Sicherheit:

Fragen und Lösungsansätze im Wintersemester 2012 / 2013 Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV
Teil 7: Symmetric Encryption v. 15.01. 2013
Part I: Challenges and Basic Approaches

1) Interests, Requirements, Challenges, and Vulnerabilities
2) Key Ideas and Combined Techniques
Part II: Control and Monitoring
3) Fundamentals of Control and Monitoring
4) Case Study: UNIX
Part III: Cryptography
5) Fundamentals of Cryptography
6) Case Studies: PGP and Kerberos
7) Symmetric Encryption
8) Asymmetric Encryption and Digital Signatures with RSA
9) Some Further Cryptographic Protocols
Part IV: Access Control
10) Discretionary Access Control and Privileges
11) Mandatory Access Control and Security Levels
Part V: Security Architecture
12) Layered Design Including Certificates and Credentials
13) Intrusion Detection and Reaction

Encryption mechanism: functionality

- underlying sets:
- D
- R
- K = EK DK set K of (possible) keys, each of which comprises
- ek $\in E K$ encryption key
- dk $\in D K \quad$ decryption key
- Gen $: \rightarrow K \quad$ key generation algorithm,
might take a natural number / as a security parameter
- Enc: EK $\quad D \rightarrow R$ encryption algorithm, transforms a plaintext $x \in D$
into a ciphertext $y=\operatorname{Enc}(e k, x) \in R$ using an encryption key ek $\in E K$
- Dec: DK $\quad R \rightarrow D$ decryption algorithm, transforms a ciphertext $y \in R$ into a plaintext $x=\operatorname{Dec}(d k, y) \in D$ using a decryption key $d k \in D K$
- correctness
using a generated key pair,
any encryption can be reversed by the corresponding decryption, i.e.,
for all keys (ek, dk) $\in E K \quad D K$ generated by Gen,
for all plaintexts $x \in D$:
$\operatorname{Dec}(d k, \operatorname{Enc}(e k, x))=x$
- secrecy (naive version)
without knowing the pertinent decryption key $d k$, an (unauthorized) observer of a ciphertext $y=\operatorname{Enc}(e k, x)$
cannot "determine" the corresponding plaintext x
(semantic version: such an observer
can "determine" only those properties of the corresponding plaintext x
that he could "determine" without knowing the ciphertext y at all)
- efficiency
algorithms Gen, Enc and Dec are efficiently computable

Classification

- mode of operation: blockwise or streamwise
- relationship between keys:
symmetric or asymmetric
- justification of a secrecy property: one-time key or one-way function or chaos
sender Alice
attacker Malory
possible plaintexts:
possible keys:
- at least as many as plaintexts
- actual key selected randomly

Complexity-theoretic secrecy property (one-way function approach)

sender Alice
attacker Malory
possible plaintexts:

Empirical secrecy property (chaos approach / confusion and diffusion)

sender Alice
attacker Malory

One-time keys and perfect ciphers (Vernam)

- are based on
- a sufficient (and „nearly necessary") condition for perfectness, achieving probability-theoretic secrecy
- the resulting group-based construction
- are symmetric, having identical encryption key and decryption key
- are restricted to a single key usage
- operate streamwise by considering a plaintext as a sequence of bits, each of which is treated separately
- plaintext domain, ciphertext range and key set are chosen as $\{0,1\}$
- set $\{0,1\}$ is seen as the carrier of the group ($\mathbf{Z}_{2},+, 0$) of residue classes modulo 2, where the residue classes are identified with their representatives 0 and 1
- group operation of addition modulo 2 is identical to the Boolean operation XOR (exclusive or, denoted by the operator \oplus)
key 0

$\operatorname{Enc}(0, x)=0 \oplus x=x$ delivers the identity permutation
key 1

$\operatorname{Enc}(1, x)=1 \oplus x=1-x$
delivers the exchanging permutation

One-time keys: handling bit strings of length n

- employ the corresponding product group:
- take the group ($\mathrm{Z}_{2},+, 0$) n times
- define the group operation componentwise

- plaintexts: bit strings of length n, i.e., "streams" (x_{1}, \ldots, x_{n}) of length n over the set $\{0,1\}$
- ciphertexts: bit strings of the same length n, i.e., "streams" (y_{1}, \ldots, y_{n}) of length n over the set $\{0,1\}$
- keys: bit strings of the same length n, i.e., "streams" (k_{1}, \ldots, k_{n}) of length n over the set $\{0,1\}$

One-time keys: algorithms

- key generation algorithm Gen(erate_Cipher_Key)
selects a "truly random" cipher key (k_{1}, \ldots, k_{n})
- encryption algorithm Enc
handles the plaintext (x_{1}, \ldots, x_{n}) and the cipher key (k_{1}, \ldots, k_{n}) as streams; treats each corresponding pair of a plaintext bit $x i$ and a cipher key bit $k i$ as input for a XOR operation, yielding a ciphertext bit

$$
y_{i}=k_{i} \oplus x_{i}
$$

- decryption algorithm Dec
handles the ciphertext (y_{1}, \ldots, y_{n}) and the cipher key (k_{1}, \ldots, k_{n}) as streams;
treats each corresponding pair of a ciphertext bit y_{i} and a cipher key bit k_{i}
as input for a XOR operation,
yielding the original plaintext bit x_{i} correctly:
$k_{i} \oplus y_{i}=k_{i} \oplus\left(k_{i} \oplus x_{i}\right)=\left(k_{i} \oplus k_{i}\right) \oplus x_{i}=0 \oplus x_{i}=x_{i}$
- restriction to using a key only once is crucial:
observing a ciphertext/plaintext pair, an attacker achieves complete success: solve, for each position i, the equation $y_{i}=k_{i} \oplus x_{i}$
regarding the secret key bit as

$$
k_{i}=y_{i} \oplus x_{i}
$$

- considering the transmission of a single message:
qualified to the best possible extent regarding secrecy and efficiency
- as a trade-off for the best secrecy - proved to be inevitable:
- secret cipher key can be used only once
- secret cipher key must be as long as the anticipated plaintext
- as a stand-alone mechanism,
pure one-time key encryption is practically employed only in dedicated applications with extremely high secrecy requirements
- however, basic approach is widely exploited in
- variants
- subparts of other mechanisms

Stream ciphers with pseudorandom sequences (Vigenère)

- are a variant of the one-time key encryption mechanism
- are obtained by replacing the "truly random" cipher key by a pseudorandom one that is determined by a short(er) pseudo-key
- are symmetric
- operate streamwise by considering a plaintext as a sequence of bits, each of which is treated separately
- cannot be perfect or probability-theoretically secure in practice, since the pseudo-key is often substantially shorter than the generated cipher key

Vigenère: overall structure

- has been a most influential example of the chaos approach, used worldwide
- designed by IBM and the National Security Agency (NSA) of the USA
- standardized by the National Bureau of Standards (NBS)
in 1976/77 for "unclassified government communication"
- adopted by the American National Standards Institute (ANSI)
in 1981 for commercial and private applications
- is a symmetric mechanism, admitting multiple key usage
- operates blockwise, where the block length is 64 bits
- has a key length of 56 bits:
today, the pure form of this mechanism is considered to be outdated, as it suffers from a too short key length
- has a still useful variant: Triple-DES

Triple-DES

inputs:

- a plaintext x / a ciphertext y
- three different keys k_{1}, k_{2}, k_{3}
encryption algorithm: successively perform
- an encryption with k_{1},
- a decryption with k_{2}
- another encryption with k_{3}
yielding the ciphertext y as
$\operatorname{Enc}\left(k_{3}, \operatorname{Dec}\left(k_{2}, \operatorname{Enc}\left(k_{1}, x\right)\right)\right)$
decryption algorithm: perform corresponding inverse algorithms to obtain
$\operatorname{Dec}\left(k_{1}, \operatorname{Enc}\left(k_{2}, \operatorname{Dec}\left(k_{3}, y\right)\right)\right)$

IDEA (International Data Encryption Algorithm)

- was developed as an alternative to DES
- is a further example of the chaos approach
- combines
- a DES-like round structure operating on block parts and round keys
- algebraic group operations
- was adopted for Pretty Good Privacy (PGP), but never reached common acceptance
- is symmetric, admitting multiple key usage
- operates blockwise, where the block length is 64 bits
- has a key length of 128 bits, still sufficient from today's perspective

AES-Rijndael (Advanced Encryption Standard)

- was designed by the Belgian researchers J. Daemen and V. Rijmen, winner of a public competition and evaluation, organized by the NIST
- follows the chaos approach, producing confusion and diffusion
- is symmetric, admits multiple key usage, operates blockwise
- permits block lengths varying from 128 bits to any larger multiple of 32 bits
- permits key length varying from 128 bits to any larger multiple of 32 bits
- is somehow restricted for standardization:
- block length is fixed at 128 bits
- key length is restricted to be 128, 192 or 256 bits, today regarded as sufficient to resist exhaustive search and trial attacks
- combines several long-approved techniques
- operating roundwise on block parts and round keys
- superimposing the randomness of the key on the blocks using XOR
- permuting the positions of a block or a key
- employing of advanced algebraic operations showing one-way behavior

AES-Rijndael (Advanced Encryption Standard)

- operates on the following sets:
- plaintexts:
bit strings (blocks over $\{0,1\}$) of length 128 (or a larger multiple of 32), represented as a byte matrix of 4 rows and 4 columns,
thus having 16 entries of 8 bits each
- ciphertexts:
bit strings (blocks) of the same length as the plaintext blocks
- keys:
bit strings of length 128 (or a larger multiple of 32),
again represented as a byte matrix like the plaintexts
- employs three algorithms as follows
- key generation: select a "truly random" bit string of length 128
- encryption: perform byte matrix transformations, see next pages
- decryption: invert the byte matrix transformations in reverse order, employing the round keys accordingly

Encryption algorithm AES (k, x)

- takes a key k and a plaintext x as input
- represents them as byte matrices
- operates on the current byte matrices
- uses some preprocessing and postprocessing
- performs 10 (or more for larger block or key lengths) uniform rounds
- executes four steps in one round:
(1) bytewise substitutions
(2) permutations that shift positions within a row
(3) transformations on columns and
(4) bitwise XOR operations with the round key

AES-step (1): bytewise substitutions

- step (1) is defined by a non-linear, invertible function SRD on bytes, i.e., each byte of the current matrix is independently substituted by applying SRD
- invertibility ensures that a correct decryption is possible just by applying the inverse function SRD-1
- non-linearity is aimed at achieving confusion, in terms of both
- algebraic complexity
- small statistical correlations between argument and value bytes
- the substitution function SRD has two convenient representations:
- tabular representation organized as a lookup table of size 16×16
- algebraic representation

Tabular representation of the substitution function

argument byte a: seen as composed of two hexadecimal symbols li and co value bvte v : table entrv for line li and column co

0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
063	7 C	77	7B	F2	6B	6F	C5	30	01	67	2 B	FE	D7	AB	76
1 CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9 C	A4	72	C0
2 B 7	FD	93	26	36	3 F	F7	CC	34	A5	E5	F1	71	D8	31	15
304	C7	23	C3	18	96	05	9 A	07	12	80	E2	EB	27	B2	75
409	83	2 C	1 A	1 B	6E	5A	A0	52	3B	D6	B3	29	E3	2 F	84
553	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4	58	CF
6 D0	EF	AA	FB	43	4D	33	85	45	F9	02	7 F	50	3 C	9 F	A8
751	A3	40	8F	92	9 D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8 CD	OC	13	EC	5 F	97	44	17	C4	A7	7E	3D	64	5D	19	73
960	81	4	DC	22	2A	90	88	46	EE	B8	14	DE	5E	OB	DB
A E0	32	3A	OA	49	06	24	5	C2	D3	AC	62	91	95	E4	79
B E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	88
C BA	78	25	2E	1 C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D 70	3 E	B5	66	48	03	F6	OE	61	35	57	B9	86	C1	1D	9E
E E1	F8	98	11	69	D9	8E	94	9 B	1 E	87	E9	CE	55	28	DF
F 8C	A1	89	OD	BF	E6	42	68	41	99	2D	OF	B0	54	BB	16

Algebraic representation of the substitution function

- the representation treats a byte as an element of the finite field (Galois field) GF(2^{8}), where each bit of a byte is seen as a coefficient of a polynomial with degree at most 7
- the multiplicative structure is defined by
the usual multiplication of polynomials, followed by a reduction
modulo the irreducible polynomial $x^{8}+x^{4}+x^{3}+x+1$
- the function $S_{R D}$ has a representation of the form

$$
S_{R D}(a)=f\left(a^{-1}\right) \text {, where }
$$

- the inversion operation refers to the multiplicative structure of $\operatorname{GF}\left(2^{8}\right)$
- f is an affine function in $\operatorname{GF}\left(2^{8}\right)$, basically described by
- a suitable 88 bit matrix F
- a suitable constant byte c
such that
$f(a)=\left(\begin{array}{ll}F \times a\end{array}\right) \oplus c$

AES-step (2): permutations shifting positions within a row

- step (2) is defined by the offsets to be used for each of the rows: the offsets are $0,1,2$ and 3 byte positions, meaning that
- the first row remains invariant
- the second, third and fourth rows are shifted by 8 , 16 and 24 bit positions, respectively, to the left
- the shiftings are aimed at achieving good diffusion, and can be easily redone for a correct decryption

AES-step (3): transformations on columns

- step (3) is defined by a linear, invertible function MCRD on "columns": each column of the current matrix is considered as an element of $\{0,1\}^{32}$ and independently substituted by applying $M C_{R D}$
- invertibility ensures that a correct decryption is possible
- the specific selection of $M C_{R D}$ is aimed mainly at achieving diffusion, now regarding the rows of the byte matrices
- additionally, the selection was influenced by efficiency reasons
- $M C_{R D}$ admits an algebraic definition in terms of polynomial multiplication:

$$
M C_{R D}\left(\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\left[\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right] \times\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

AES-step (4): bitwise XOR operations with the round key

- XOR superimposes the randomness of the sophisticatedly manipulated key on the intermediate state of the byte matrix
- effects of the superimposition can be correctly undone by applying these XOR operations with the same key arguments
- round keys are inductively computed
by employing complex algebraic operations,
while at the same time achieving an acceptable efficiency
- for the given block length and key length of 128 bits each
(or suitably adapted for other possible lengths),
the initial 4×4 byte matrix for the key k given as input
is expanded into a $4 x(1+10) \cdot 4$ byte matrix, i.e.,
for each of the 10 rounds,
four new columns are generated and taken as the round key
- the key expansion scheme distinguishes between the first column of a new round key and the remaining columns, but each column i is defined in terms of the
- corresponding column $i-4$ of the preceding round key
- the immediately preceding column $i-1$
- remaining columns:
the column i is computed by directly applying the bitwise $X O R$ operation
- first column:
the preceding column is first transformed by a non-linear function that is a suitable composition of
- the bytewise application of the substitution function SRD
- a permutation that shifts the positions in a column
- the addition of a round constant

AES: decryption

- there is a straightforward decryption algorithm: basically, it performs the inverses of all byte matrix transformation in reverse order, employing the round keys accordingly
- the design also includes an equivalent decryption algorithm:
it maintains the sequence of steps within a round, replacing the steps by their respective inverses

AES: efficiency

- NIST requirements:
successor of DES should enable an efficient implementation on smartcards, which could, for example, be used as personal computing devices
-the Rijndael proposal:
the community was convinced regarding efficiency for implementations in both hardware and software
- the construction as a whole:
high efficiency is enabled even though it operates on structures consisting of 128 bits (or even more)
- in combination with some block mode: transmission rates are suitable for large multimedia objects
- like any other symmetric block cipher: usage as part of a hybrid encryption method is possible

Question

- Why does it make sense to have a fixed, publically known bijection in step 1 of AES, given that applying a bijection does not change the information content of the data?
General answer (independently of AES):
Imagine an encryption function $E(x, k)$ which satisfies the following property:
$E(x 1:: x 2, k)=E(x 1, k):: E(x 2, k)$
(where :: is concatenation of bit-strings).
- Why is this property potentially dangerous ? (hint: integrity of encrypted data in transit when message structure is known)
- What can one do against this danger ? (hint: two alternatives)
- Why does it make sense to have a fixed, publically known bijection in step 1 of AES, given that applying a bijection does not change the information content of the data?
General answer (independently of AES):
Imagine an encryption function $E(x, k)$ which satisfies the following property:
$E(x 1:: x 2, k)=E(x 1, k):: E(x 2, k)$
(where :: is concatenation of bit-strings).
- Why is this property potentially dangerous ? (hint: integrity of encrypted data in transit when message structure is known)
=> Example: What could the attacker do with: E("I owe you 100 EUR.",k) ? => E("I owe you 1000 EUR.",k) = E("I owe you 100",k):: E("0",k):: E("EUR.",k) (and the latter three fragments can be extracted from E("I owe you 100 EUR.",k) using the equation above.
- What can one do against this danger? (hint: two alternatives)
=> Apply bijection which breaks the equation. (Alternative: secure hash)
- underlying block cipher encrypts plaintext blocks and decrypts ciphertext blocks of a fixed length I_{B}
- fragmentation
- divides a longer message into appropriate fragments
- treats the resulting stream of fragments
by using the block cipher in what is known as
a block mode (mode of operation)
I) (1) the original message is divided into fragments of
length equal to exactly the block length I_{B} of the underlying block cipher
(2) the block cipher treats the fragments
- either separately (electronic codebook)
- or in a suitably chained way (cipher block chaining)
II) (1) the original message is divided into fragments
of length $I \leq I_{B}$ (typically, $I=1$ or $I=8$)
such that a plaintext stream of bits or bytes results
(2) the underlying block cipher is used
to generate a corresponding (apparently pseudorandom) cipher key
stream that is superimposed on the plaintext stream
by using the XOR operation
(cipher feedback, output feedback, counter-with-cipher-block-chaining)
can be seen as a variant of the one-time key encryption mechanism, where perfectness is abandoned for the sake of a reusable, short key as demanded by the underlying block cipher

Electronic Codebook (ECB) Mode

Cipher Block Chaining (CBC) Mode

sender

receiver
recovered
plaintext
block stream

- encryption algorithm Enc:
- for the first block x_{1},

$$
\operatorname{Enc}\left(k, x_{1}\right):=\operatorname{Block} \operatorname{Enc}\left(k, x_{1} \oplus \text { init }\right)
$$

- for all further blocks x_{i} with $i>1$,
$\operatorname{Enc}\left(k, x_{i}\right):=\operatorname{Block} \operatorname{Enc}\left(k, x_{i} \oplus \operatorname{Enc}\left(k, x_{i-1}\right)\right)$
- decryption algorithm Dec:
- for $i=1$,

$$
\operatorname{Dec}\left(k, y_{1}\right):=\text { Block_Dec }\left(k, y_{1}\right) \oplus \text { init }
$$

$$
\left.=\text { Block Dec (} k, \text { Block Enc }\left(k, x_{1} \oplus \text { init }\right)\right) \oplus \text { init }
$$

- for $i>1$,

$$
=\left(x_{1} \oplus \text { init }\right) \oplus \text { init }=x_{1}
$$

$\operatorname{Dec}\left(k, y_{i}\right)$

$$
\begin{aligned}
& :=\operatorname{Block} \operatorname{Dec}\left(k, y_{i}\right) \oplus y_{i-1} \\
& =\operatorname{Block} \operatorname{Dec}\left(k, \operatorname{Enc}\left(k, x_{i}\right)\right) \oplus \operatorname{Enc}\left(k, x_{i-1}\right) \\
& =\operatorname{Block} \operatorname{Dec}\left(k, \operatorname{Block} \operatorname{Enc}\left(k, x_{i} \oplus \operatorname{Enc}\left(k, x_{i-1}\right)\right)\right) \oplus \operatorname{Enc}\left(k, x_{i-1}\right) \\
& =\left(x_{i} \oplus \operatorname{Enc}\left(k, x_{i-1}\right)\right) \oplus \operatorname{Enc}\left(k, x_{i-1}\right)=x_{i}
\end{aligned}
$$

- characteristic feature of the cipher block chaining mode: all blocks are treated in a connected way requiring strict serialization
- the last resulting ciphertext block seen as a message digest: this block can be employed as a piece of cryptographic evidence (a cryptographic exhibit) for an authenticity verification algorithm

Cipher Feedback (CFB) Mode

- follows the second basic approach, achieving a variant of the one-time key encryption mechanism
- generates the required pseudorandom cipher key stream by means of the encryption algorithm Block_Enc(ryption) of the underlying block cipher
- does not employ the corresponding decryption algorithm, and thus cannot be used for an asymmetric block cipher
- extracts the cipher key stream from the outputs of the block cipher encryption, whose inputs are taken as a feedback from the ciphertext stream
- uses an initialization vector init as a seed, which must be used only once but can be communicated to the receiver without protection
- example: fragment length $I=8$ block size of the underlying block cipher $I_{B}=64$

CFB: overall structure

sender
receiver
plaintext
element stream
ciphertext element stream
recovered plaintext element stream

- encryption algorithm Enc:
for each plaintext byte x_{i},

$$
\operatorname{Enc}\left(k, x_{i}\right):=x_{i} \oplus \text { Left }\left(\text { Block_Enc }\left(k, \text { shift_sender }_{i}\right)\right) .
$$

- decryption algorithm Dec
for each ciphertext byte y_{i},
$\operatorname{Dec}\left(k, y_{i}\right):=y_{i} \oplus \operatorname{Left}\left(\right.$ Block_Enc $\left(k\right.$, shift_receiver $\left.\left.{ }_{i}\right)\right)$
$=\left(x_{i} \oplus\right.$ Left $\left(\right.$ Block_Enc $\left(k\right.$, shift_sender $\left.\left.\left.r_{i}\right)\right)\right)$
$\oplus \operatorname{Left}\left(\right.$ Block_Enc $^{(k,} k$, shift_receiver $\left.\left.r_{i}\right)\right)=x_{i}$,
provided shift_sender ${ }_{i}=$ shift_receiver $_{i}$
- required equality of the shifti inputs on both sides is achieved by using the same initialization vector init and then, inductively, by employing the same operations and inputs to generate them
- characteristic feature of the cipher feedback mode:
the last resulting ciphertext block
depends potentially on the full plaintext stream
- the last resulting ciphertext block seen as a message digest: this block can be employed as a piece of cryptographic evidence (a cryptographic exhibit) for an authenticity verification algorithm

Output Feedback (OFB) Mode

- follows the second basic approach
- required pseudorandom cipher key stream is generated as for the cipher feedback mode, except of the following
- the block cipher encryption takes the feedback directly from its own outputs
- since only the encryption algorithm of the underlying block cipher is involved, this mode cannot be used for an asymmetric block cipher
- example:
- fragment length: $I=8$
- block size of the underlying block cipher: $I_{B}=64$

Counter-with-Cipher-BlockChaining Mode (CCM)

- generates a pseudorandom cipher key stream
by encrypting a sequence of counters counti
using the underlying block encryption
- computes the counters by

$$
\text { count }_{i}:=\text { init }+i \bmod 2^{1 B},
$$

assuming a block size $I B$ of the block cipher and
taking an initialization vector init of that size

- cannot be used for an asymmetric block cipher
- exploits that for each $i=1,2, \ldots$:
- the pair of the counter counti and the corresponding plaintext block xi can be treated independently of all other pairs, as for ECB
- the counter counti is independent of the ciphertext stream (and thus of the plaintext stream), as for OFB

Counter-with-Cipher-BlockChaining Mode (CCM)

- achieves authenticated encryption:
- additionally performs CBC encryption without transmitting the resulting ciphertext blocks
- superimposes the last resulting CBC ciphertext block $y_{\text {fin }}$ on the counter count $_{0}=$ init
- appends the resulting block $y_{\text {fin }} \oplus$ count $_{0}$ as a message digest

Features of block modes

- initialization vector:
- some computational overhead is necessary
- a parameterization of the encryption is achieved:
if the initialization vector is varied for identical messages and kept secret, then the encryption could even be seen as probabilistic
- fault tolerance, for the sake of availability: propagation of a modification error is considered:
- in the plaintext stream
- during transmission, in the ciphertext stream:
- all modes recover shortly after a modification error
- OFB and CCM even behave optimally (only the error position is affected)
- modification error in the plaintext stream:
- ECB, OFB and the main part of CCM recover shortly after the error position or totally prevent propagation
- for CBC, CFB and the digest production part of CCM, an error might "diffuse" through the full succeeding cipher stream: accordingly, the resulting final cipher block can be seen as a message digest and can thus be employed as a piece of cryptographic evidence (a cryptographic exhibit)
- synchronization errors owing to lost fragments:
for all modes, additional measures must be employed, e.g., by suitably inserting separators at agreed fragment borders

Rudimentary comparison of block modes

	ECB	CBC	CFB	OFB	CCM
Initialization vector / parameterization	no	yes	yes	yes	yes
Propagation of error in plaintext fragment	limited to block	unlimited up to end of stream	unlimited up to end of stream	limited to error position	limited to error position, except for superimposed last CBC ciphe block
Suitable for producing a message digest	no	by last cipher block	by last cipher block	no	by superimposed last CBC cipher block
Propagation of error in ciphertext fragment	limited to block	limited to block and succeeding block	limited to block and succeeding block	limited to error position	limited to error position

Some rough advice to a security administrator

- electronic codebook mode
is suitable for short, randomly selected messages
such as nonces or cryptographic keys of another mechanism
- cipher block chaining mode
might be employed for long files with any non-predictable content
- cipher feedback mode, output feedback mode and counter mode support the transmission of a few bits or bytes, e.g., as needed for connections between a central processing unit and external devices such as a keyboard and monitor
- output feedback mode and counter mode might be preferred for highly failure-sensitive applications, since modification errors are not propagated at all (except for the added message digest)

