Sicherheit:

Fragen und Lösungsansätze im Wintersemester 2012 / 2013 Prof. Dr. Jan Jürjens

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV
Teil 8: Asymmetric Encryption and Digital Signatures with RSA
v. 27.01.2013

Part I: Challenges and Basic Approaches

1) Interests, Requirements, Challenges, and Vulnerabilities
2) Key Ideas and Combined Techniques

Part II: Control and Monitoring
3) Fundamentals of Control and Monitoring
4) Case Study: UNIX

Part III: Cryptography
5) Fundamentals of Cryptography
6) Case Studies: PGP and Kerberos
7) Symmetric Encryption
8) Asymmetric Encryption and Digital Signatures with RSA
9) Some Further Cryptographic Protocols

Part IV: Access Control
10) Discretionary Access Control and Privileges
11) Mandatory Access Control and Security Levels

Part V: Security Architecture
12) Layered Design Including Certificates and Credentials
13) Intrusion Detection and Reaction

Complexity-theoretic secrecy property (one-way function approach)

sender Alice
attacker Malory
possible
plaintexts:

- y observed ciphertext;
matching plaintext x_{i} cannot be "feasibly determined" since computational effort is too high (without knowledge of the private key)

Family of one-way functions with trapdoors

Parameterized family of functions f_{k} such that for each k :

- function $f_{k}: D_{k} \rightarrow R_{k}, \quad x \rightarrow f_{k}(x)$
is injective and computable in polynomial time
- inverse function $f_{k}^{-1}: R_{k} \rightarrow D_{k}, y \rightarrow x$ where $y=f_{k}(x)$ is computationally infeasible without a knowledge of k (note: we still need to refer to k to actually have an inverse function)
- inverse function $f_{k}{ }^{-1}: R_{k} \rightarrow D_{k},(y, k) \rightarrow \mathrm{x}$ where $\mathrm{y}=f_{k}(x)$ is computable in polynomial time if k (the private key) is used as an additional input

It is an outstanding open problem of computer science (closely related to the open problem of whether $P \neq N P$) whether such families actually exist.

- an $R S A$ function $R S A_{p, q, d}^{n, e}$ is a number-theoretic function where
- (p, q, d) is used as the private key
- (n, e) as the public key
- the designated secret holder generates, randomly and confidentially, two different, sufficiently large prime numbers p and q
- $n:=p \cdot q$
is published as the modulus of the ring ($\mathbf{Z}_{n},+, \cdot, 0,1$):
- all computations are performed in this ring
- the multiplicative group is formed by those elements that are relatively prime to the modulus n, i.e.,

$$
\mathbf{Z}_{n}{ }^{*}=\{x \mid 0<x<n \text { with } \operatorname{gcd}(x, n)=1\}
$$

- this group has a cardinality $\varphi(n)=(p-1) \cdot(q-1)$
- Euler phi function φ,
is used for investigating properties of exponents for exponentiations

RSA functions

- the designated secret holder randomly selects
the second component e of the public key such that
$1<e<\varphi(n)$ and $\operatorname{gcd}(e, \varphi(n))=1$
- additionally, the designated secret holder confidentially computes
the third component d of the private key
as the multiplicative inverse of e modulo $\varphi(n)$:
$1<d<\varphi(n)$ and $e \cdot d \equiv 1 \bmod \varphi(n)$
- in principle, multiplicative inverses can be efficiently computed
- in this specific situation a knowledge of $\varphi(n)$ is needed, which requires one to know the secretly kept prime numbers p and q
- the RSA function for the selected parameters is defined by
$R S A_{n, e, d}: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n}$ with
$R S A_{n, e, d}(x)=x^{e} \bmod n$
- can be computed by whoever knows the public key (n, e)
- the required properties of
injective one-way functions with trapdoors (are conjectured to) hold

In the setting of the RSA function RSAn,e,d

$$
\begin{aligned}
& \text { for all } x \in \mathbf{Z}_{n}, \\
& \left(x^{e}\right)^{d} \equiv x \bmod n
\end{aligned}
$$

Injectivity and trapdoor: sketch of proof

the following congruences modulo n are valid for all $x \in \mathbf{Z}_{n}$:

$$
\begin{aligned}
\left(x^{e}\right)^{d} & \equiv x^{e \cdot d} \\
& \equiv x^{k} \cdot \varphi(n)+1 \\
& \equiv x \cdot\left(x^{\varphi(n)}\right)^{k}
\end{aligned}
$$

exponentiation rules
$e \cdot d=k \cdot \varphi(n)+1$, definition of d exponentiation rules

Case 1, $x \in Z_{n}{ }^{*}$:
multiplicative group $\mathbf{Z}_{n}{ }^{*}$ has order $\varphi(n):(X \varphi(n))^{k} \equiv 1^{k} \equiv 1 \bmod n$ thus:
$\left(x^{e}\right)^{d} \equiv x \bmod n$
Case 2, $\boldsymbol{x} \notin \mathbf{Z}_{n}{ }^{*}$:
case assumption:
n product of prime numbers p and q :
show for each subcase:
$\operatorname{gcd}(x, n) \neq 1$
$\operatorname{gcd}(x, p) \neq 1$ or $\operatorname{gcd}(x, q) \neq 1$
$\left(x^{e}\right) d \equiv x \bmod p$ and $\left(x^{e}\right)^{d} \equiv x \bmod q$
by the definitions of n, p and q and Chinese remainder theorem:

Subcase 2a

$\operatorname{gcd}(x, p) \neq 1:$
p is prime: $\quad p$ divides x and
thus any multiple of x as well
hence: $\quad\left(x^{e}\right)^{d} \equiv x \bmod p$
similarly:

$$
\begin{aligned}
& \operatorname{gcd}(x, q) \neq 1 \text { implies } \\
& \left(x^{e}\right)^{d} \equiv x \bmod q
\end{aligned}
$$

Subcase 2b

$\operatorname{gcd}(x, p)=1:$
then $x \in \mathbf{Z}_{p}{ }^{*}$ and, accordingly,
the following congruences modulo p are valid:

$$
\begin{aligned}
x^{\varphi(n)} & \equiv x^{(p-1) \cdot(q-1)} \\
& \equiv\left(x^{p-1}\right)^{q-1} \\
& \equiv 1^{q-1} \equiv 1
\end{aligned}
$$

definition of $\varphi(n)$
exponentiation rules $x \in \mathbf{Z}_{p}{ }^{*}$ has order $\varphi(p)=p-1$
as in Case 1, we then obtain the following congruences modulo p :

$$
\begin{aligned}
\left(x^{e}\right)^{d} & \equiv x^{e \cdot d} \\
& \equiv x^{k \cdot \varphi(n)+1} \\
& \equiv x \cdot\left(x^{\varphi(n)}\right)^{k} \\
& \equiv x \cdot 1 \equiv x
\end{aligned}
$$

exponentiation rules
$e \cdot d=k \cdot \varphi(n)+1$, definition of d
exponentiation rules
similarly:

$$
\begin{aligned}
& \operatorname{gcd}(x, q)=1 \text { implies } \\
& \left(x^{e}\right)^{d} \equiv x \bmod q
\end{aligned}
$$

Factorization conjecture of computational number theory

The factorization problem restricted to products of two prime numbers, i.e.:

Given a number n of known form $n=p \cdot q$ where p and q are prime numbers,
to determine the actual factors p and q, is computationally infeasible.

RSA conjecture

If the non-keyed inversion problem for RSA functions was computationally feasible, then the factorization problem would be computationally feasible as well

Specialized RSA conjecture:

If the non-keyed inversion problem for RSA functions
by means of determining the private exponent d from an argument-value pair was computationally feasible,
then the factorization problem would be computationally feasible as well.

RSA conjecture and further conjectures

- RSA conjectures roughly says: "factorization" is feasibly reducible to "RSA inversion".
- The converse claim, namely:
"RSA inversion" is feasibly reducible to "factorization", provably holds:

If an "attacker" was able to feasibly factor the public modulus n
into the prime numbers actually employed, then he could feasibly determine the full private key by just repeating the computations of the designated secret holder.
"Factorization" is feasibly reducible to any of the following problems, and vice versa:

- Euler problem:

Given a number n of known form $n=p \cdot q$, where p and q are prime numbers, to determine the value $\varphi(n)$.

- Public-key-to-private-exponent problem:
given the public key (n, e),
to determine the private exponent d.

Conjectures and proven claims about feasible reducibility

conjectured to be infeasible

RSA asymmetric block cipher

- is an example of the one-way function approach
- is based on RSA functions and their properties
- is asymmetric, admitting multiple key usage
- operates blockwise, where the block length is determined by the parameters of the underlying RSA function
- achieves complexity-theoretic security, provided:
- the factorization conjecture and the RSA conjecture hold
- the key is properly generated and sufficiently long
- some additional care is taken

The RSA function $R S A_{n, e, d}: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n,} R S A_{n, e, d}(x)=x^{e} \bmod n$ has the following properties:

- It is deterministic. Deterministic asymmetric encryption schemes are problematic, because they do not conceal message repetition. Also, given a sufficiently small set of possible plaintexts, the attacker can encrypt all possible plaintexts with the public encryption key and compare the result with the given ciphertext. One way to prevent this is to make the overall encryption process probabilistic, e.g. by encrypting not only the given plaintext, but the concatenation of the given plaintext with a freshly generated random number, to be used only once ("nonce").
- It satisfies the homomorphic property $f(x 1:: x 2, k)=f(x 1, k):: f(x 2, k)$ (where $x 1, x 2$ are plaintexts, k is a key and $::$ is concatenation of bitstrings). This is problematic because it allows the attacker to manipulate the plaintext in predictable ways by manipulating the ciphertext (without being able to decrypt it). One way to prevent is to provide message integrity, e.g. by encrypting not only the given plaintext, but the concatenation of the given plaintext with its hash (assuming as usual that the hash is not homomorphic).

- key generation:

selecting a private key (p, q, d) and a public key (n, e) for $R S A_{n, e, d}$

- preprocessing of a message m, using an agreed hash function:
- adding a nonce non
- adding the hash value h (m, non)
(for probabilistic encryption)
(for authenticated encryption)
- encryption: computing $y=x^{e} \bmod n$

$$
\text { for } x=(m, n o n, h(m, n o n)),
$$

if interpretable as a positive number less than n

- decryption: computing $y^{d} \bmod n$ for received message y
- postprocessing of the decryption result:
- extracting the three components
- recomputing the hash value of the first two components
- comparing this hash value with the third component (received hash value):
if the received hash value is verified,
the first component is returned as the (presumably) correct message
for each fixed setting of an RSA function $R S A_{n, e, d}$:
- plaintexts:
bit strings over the set $\{0,1\}$
of some fixed length $I_{\text {mes }} \leq \operatorname{ld} n$ (where ld = logarithm of base 2)
- ciphertexts:
bit strings over the set $\{0,1\}$,
basically of length Id n
(binary representation of a positive number less than n (residue modulo n))
- keys:
given the public key (n, e),
in principle there is a unique residue modulo n
that can be used as the private decryption exponent d,
whose binary representation is a bit string,
basically of length Id n or less
(from the point of view of the nondistinguished participants, this decryption exponent cannot be "determined")

RSA: key generation Gen

- selects a security parameter I that basically determines the length of the key
- generates randomly two large prime numbers p and q
of the length required by the security parameter (note that both numbers need to be sufficiently large; it is not sufficient if only their product is large).
- computes the modulus $n:=p \cdot q$
- selects randomly an encryption exponent e that is relatively prime to $\varphi(n)=(p-1) \cdot(q-1)$
- computes the decryption exponent d as the
solution of $e \cdot d \equiv 1 \bmod \varphi(n)$
- takes a possibly padded message m of length Imes as a plaintext
- generates a random bit string non as a nonce of length Inon
- computes a hash value $h(m$, non) of length lhash
- concatenates these values with appropriate separators:
the resulting bit string x must, basically, have length Id n
$\left(I_{\text {mes }}+I_{\text {non }}+I_{\text {hash }} \leq I d n\right.$,
binary representation of a positive number less than n (residue modulo n))
- taking the public key (n, e), computes and returns the ciphertext
$y=x^{e} \bmod n$
- taking the first component n of the public key (n, e) and the third component d of the private key (p, q, d), inverts the given ciphertext y by computing

$$
x=y^{d} \bmod n
$$

- decomposes the result x into
- message part m
- nonce part non
- hash value part hash
according to the separators employed
- inspects the received hash value:
- if $h(m$, non $)=$ hash ,
then m is returned as the (supposedly) correct message
- otherwise, an error is reported
- to be considered: correctness, secrecy and efficiency
- the modulus n should have a length of at least 1024; even a larger length might be worthwhile to resist dedicated attacks (note that both factors p, q need to be sufficiently large as well)
- there is a trade-off between secrecy and efficiency, roughly estimated:
- key generation consumes time $O\left((\operatorname{ld} n)^{4}\right)$
- operations of modular arithmetic, needed for encryption and decryption, consume time at most $O\left((\operatorname{ld} n)^{3}\right)$
- high performance can be achieved in practice
by employing specialized algorithms for both software and hardware
- there are some known weaknesses of specific choices of the parameters
- preprocessing and postprocessing are necessary:
- probabilistic encryption demanded for sophisticated secrecy property - added nonce needed for several purposes

Brute-forcing RSA ?

Cf discussion on: http://crypto.stackexchange.com/questions/3043/ how-much-computing-resource-is-required-to-brute-force-rsa/3044\#3044

 The number of primes smaller than x is approximately $\frac{x}{\ln x}$. Therefore the number of 512 bit primes (approximately the length you need for 1024 bit modulus) is approximately$\frac{2^{513}}{\ln 2^{513}}-\frac{2^{512}}{\ln 2^{512}} \approx 2.76 \times 10^{151}$.

The number of RSA moduli (i.e. pair of two distinct primes) is therefore
$\frac{\left(2.76 \times 10^{151}\right)^{2}}{2}-2.76 \times 10^{151}=1.88 \times 10^{302}$.
Now consider that the observable universe contains about 10^{80} atoms. Assume that you could use each of those atoms as a CPU, and each of those CPUs could enumerate one modulus per millisecond. To enumerate all 1024bit RSA moduli you would need:
$1.88 \times 10^{302} \mathrm{~ms} / 10^{80}=1.88 \times 10^{222} \mathrm{~ms}=1.88 \times 10^{219} s=5.22 \times 10^{215} \mathrm{~h}=1.43 \mathrm{Just}$ $\times 10^{213}$ years
as a comparison: The universe is about 13.75×10^{9} years old.

RSA: added nonce

- Enlarges the search space for the straightforward inversion algorithm that an attacker could use given a ciphertext and the public key.
- Prevents a known ciphertext / plaintext vulnerability, by ensuring that a given plaintext m will produce different ciphertexts when being sent multiple times.
- needed to prevent active attacks enabled by the
multiplicativity property (homomorphism property) of exponentiation:
for all x, y and $w:(x \cdot y)^{w}=x^{w} \cdot y^{w}$,
which is inherited by any RSA function
- example of an attack to decrypt an observed ciphertext y :
- select a multiplicatively invertible element $u \in \mathbf{Z}_{n}{ }^{*}$
- compute $t:=y \cdot u^{e} \bmod n$, by employing the public key (n, e)
- somehow succeed in presenting t as a (harmless-looking) ciphertext to the holder of the private key and obtain
the corresponding plaintext t^{d} with property

$$
t^{d} \equiv\left(y \cdot u^{e}\right)^{d} \equiv y^{d} \cdot u^{e \cdot d} \equiv y^{d} \cdot u \bmod n
$$

- solve the congruence for the wanted value y^{d} by computing

$$
y^{d}=t^{d} \cdot u^{-1} \bmod n
$$

- this attack will not succeed with the employment of a hash function, provided this hash function does not suffer from the same multiplicativity property

Asymmetric authentication (digital signing)

- is an example of the one-way function approach
- is based on RSA functions and their properties
- is asymmetric, admitting multiple key usage
- achieves complexity-theoretic security, provided:
- the factorization conjecture and the RSA conjecture hold
- the key is properly generated and sufficiently long
- some additional care is taken
- is obtained by exchanging the roles of encryption and decryption, given a suitable $R S A$ function $R S A_{n, e, d}$ with
- private key (p, q, d)
- public key (n, e)

RSA digital signatures: protocol outline

- preprocessing of a message m using an agreed one-way hash function:
computing a hash value $h(m)$
- authentication:
computing the "RSA decryption" of the hash value

$$
r e d=h(m)^{d} \bmod n
$$

- verification:
- computing the "RSA-encryption" of the cryptographic exhibit red ${ }^{e} \bmod n$ to recover the presumable hash value
- comparing the result with the freshly recomputed hash value of the received message m
- messages:
bit strings over the set $\{0,1\}$
that can be mapped by the agreed one-way hash function h
to bit strings basically of length Id n
(positive numbers less than n (residues modulo n))
- cryptographic exhibits:
bit strings over the set $\{0,1\}$, basically of length Id n (positive numbers less than n (residues modulo n))
- keys:
given the public key (n, e), in principle there is a unique residue modulo n that can be used as the private decryption exponent d, whose binary representation is a bit string, basically of length ld n or less; (from the point of view of the nondistinguished participants, this decryption exponent cannot be "determined")

RSA digital signatures: three algorithms

- key generation algorithm Gen:
same as for RSA encryption
- authentication (signature) algorithm Aut:
- takes a message m of an appropriate length
- computes $h(m)$, where h is an agreed one-way hash function
- returns red $=h(m)^{d} \bmod n$
- verification algorithm Test:
- takes the received cryptographic exhibit red
- computes hash := red ${ }^{e} \bmod n$
- takes the received message m
- determines its hash value $h(m)$
- checks whether this (correct) hash value equals the (received) value hash:

Test $\left((n, e), m\right.$, red) returns true iff $h(m)=r e{ }^{e} \bmod n$

RSA digital signatures: fundamental properties

- to be considered: correctness, unforgeability and efficiency
- basic aspects of these properties can be derived like for RSA encryption
- regarding correctness:
the commutativity of multiplication and exponentiation, i.e., for all b, e_{1}, e_{2} :

$$
\left(b^{e 1}\right)^{e 2}=b^{e 1 \cdot e 2}=b^{e 2 \cdot e 1}=\left(b^{e)^{e 1}},\right.
$$

is inherited by

- encryption function $x^{e} \bmod n$
- decryption function $y^{d} \bmod n$
- these functions are mutually inverse, independent of the application order

RSA encryption and digital signatures

- any commutative (asymmetric) encryption mechanism with encryption algorithms Enc and Dec that satisfy,
for all plaintexts or ciphertexts x and for all keys (ek, dk)

$$
\operatorname{Dec}(d k, \operatorname{Enc}(e k, x))=E n c(e k, \operatorname{Dec}(d k, x))
$$

can be converted into an authentication (signature) mechanism

- authentication: $\operatorname{Aut}(d k, x)=\operatorname{Dec}(d k, x)$, using the private decryption key $d k$ as the authentication key
- verification: Test (ek, x, red) $=$ true iff $x=$ Enc (ek, red), using the public encryption key ek as the test key
- correctness of the authentication
is implied by the encryption correctness:
$\operatorname{Enc}(e k, \operatorname{Aut}(d k, x))=\operatorname{Enc}(e k, \operatorname{Dec}(d k, x))=\operatorname{Dec}(d k, \operatorname{Enc}(e k, x))=x$
- unforgeability is implied by the secrecy of the encryption

ElGamal asymmetric block cipher

- is another well-known example of the one-way function approach
- is based on ElGamal functions and their properties
- is asymmetric, admitting multiple key usage
- operates blockwise, where the block length is determined by the parameters of the underlying ElGamal function
- achieves complexity-theoretic security, provided:
- the discrete logarithm conjecture and the E/Gamal conjecture hold
- the key is properly generated and sufficiently long
- some additional care is taken

Asymmetric block ciphers based on elliptic curves

- are increasingly important examples of the one-way function approach
- are based on generalized EIGamal functions that are defined over appropriately constructed finite cyclic groups derived from elliptic curves based on a finite field
- are asymmetric, admitting multiple key usage
- operate blockwise, where the
block length is determined by the parameters of the underlying elliptic curve
- achieve complexity-theoretic security, provided:
- the pertinent discrete logarithm conjecture and related conjectures hold
- the key is properly generated and sufficiently long
- some additional care is taken
- offer a large variety of alternatives to the still predominant RSA approach, and thus diminish the dependence on the special unproven conjectures
- promise to achieve the wanted degree of secrecy with improved efficiency in comparison with the RSA approach

Asymmetric authentication by ElGamal and elliptic curves

- similar to encryption

