
Sicherheit:  

Fragen und 

Lösungsansätze 

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 
Asymmetric Encryption and Digital Signatures with RSA 1 

Sicherheit:  

Fragen und Lösungsansätze 
im Wintersemester 2012 / 2013 

Prof. Dr. Jan Jürjens 

 

TU Dortmund, Fakultät Informatik, Lehrstuhl XIV 

 

Teil 8: Asymmetric Encryption 

and Digital Signatures with RSA 

v. 27.01.2013 



Sicherheit:  

Fragen und 

Lösungsansätze 

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 
Asymmetric Encryption and Digital Signatures with RSA 2 

Themen der Vorlesung 

Part I: Challenges and Basic Approaches 
1) Interests, Requirements, Challenges, and Vulnerabilities 
2) Key Ideas and Combined Techniques 
Part II: Control and Monitoring 
3) Fundamentals of Control and Monitoring 
4) Case Study: UNIX 
Part III: Cryptography 
5) Fundamentals of  Cryptography 
6) Case Studies: PGP and Kerberos 
7) Symmetric Encryption 
8) Asymmetric Encryption and Digital Signatures with RSA 
9) Some Further Cryptographic Protocols 
Part IV: Access Control 
10) Discretionary Access Control and Privileges 
11) Mandatory Access Control and Security Levels 
Part V: Security Architecture 
12) Layered Design Including Certificates and Credentials 
13) Intrusion Detection and Reaction 



Sicherheit:  

Fragen und 

Lösungsansätze 
Asymmetric encryption 

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 
Asymmetric Encryption and Digital Signatures with RSA 3 



Sicherheit:  

Fragen und 

Lösungsansätze 

possible 
plaintexts: 
 

xi 

 

sender Alice 
 

public encryption key 
 

attacker Malory 
 

y    observed 
 ciphertext; 
 matching plaintext xi 

 cannot be “feasibly determined” 
since computational effort is too high 
(without knowledge of the private key) 
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Complexity-theoretic secrecy property 

(one-way function approach) 



Sicherheit:  

Fragen und 

Lösungsansätze 

Parameterized family of functions fk such that for each k: 

• function fk : Dk → Rk ,   x → fk(x) 

is injective and computable in polynomial time 
 

• inverse function fk
-1: Rk → Dk ,  y → x   where y = fk(x) 

  is computationally infeasible without a knowledge of k 

  (note: we still need to refer to k to actually have an inverse function) 

• inverse function fk
-1 : Rk → Dk ,  (y,k) → x   where y = fk(x) 

is computable in polynomial time 
 if k (the private key) is used as an additional input 
 

It is an outstanding open problem of computer science 

(closely related to the open problem of whether P  ≠ NP) 

whether such families actually exist. 
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Family of one-way functions 

with trapdoors 
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RSA functions 

• an RSA function 
 

is a number-theoretic function where 

- 

 

(p, q, d) is used as the private key 

– 

 

(n, e) as the public key 

• the designated secret holder generates, randomly and confidentially, 

two different, sufficiently large prime numbers p and q 

 
• n := p ⋅ q 

 is published as the modulus of the ring ( Zn, +, ·, 0, 1): 

-  all computations are performed in this ring 

 -  the multiplicative group is formed by those elements 

 that are relatively prime to the modulus n, i.e., 

 Zn* = { x | 0 < x < n with gcd (x, n) = 1} 

-  this group has a cardinality φ(n) = (p - 1)⋅(q – 1) 

-  Euler phi function φ, 

 is used for investigating properties of exponents for exponentiations 
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• the designated secret holder randomly selects 

 the second component e of the public key such that 

 1 < e  < φ(n)  and  gcd (e, φ(n) ) = 1 

• additionally, the designated secret holder confidentially computes 

the third component d of the private key 

 as the multiplicative inverse of e modulo φ( n ): 

 1 < d < φ(n)   and e⋅d ≡ 1 mod φ(n) 

–  in principle, multiplicative inverses can be efficiently computed 

 -  in this specific situation a knowledge of φ( n ) is needed, 

 which requires one to know the secretly kept prime numbers p and q 

 
• the RSA function for the selected parameters is defined by 

 RSAn,e,d 
 

: Zn → Zn with 
 RSAn,e,d (x) = xe mod n 

-  can be computed by whoever knows the public key (n, e) 

-   the required properties of 
 injective one-way functions with trapdoors (are conjectured to) hold 
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RSA functions 
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In the setting of the RSA function RSAn,e,d , 

 for all x ∈ Zn, 

( 

 

xe)d 

 

≡ x mod n 
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the following congruences modulo n are valid for all x ∈ Zn: 
 
(xe)d ≡ xe ⋅ d 

 ≡ xk ⋅ φ(n) + 1 

 
≡ x ⋅ (xφ(n))k 

 
Case 1, x ∈ Zn*: 

 
multiplicative group Zn* has order φ(n): 

thus: 

 Case 2, x ∉ Zn*: 

case assumption: 

 n product of prime numbers p and q: 

show for each subcase: 

 
by the definitions of n, p and q 

and Chinese remainder theorem: 

 

exponentiation rules 

 e ⋅ d = k ⋅ φ(n) + 1, definition of d 

exponentiation rules 

 

(xφ(n))k ≡ 1k ≡ 1 mod n 
 
(xe)d ≡       x mod n 

 

gcd (x, n) ≠ 1 

gcd (x, p) ≠ 1   or   gcd (x, q) ≠ 1 

(xe)d ≡ x mod p and  (xe)d ≡ x mod q 

(xe)d  ≡ x mod n 
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Injectivity and trapdoor:  

sketch of proof 
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gcd (x, p) ≠ 1: 

p is prime: 

 

p divides x and 

 thus any multiple of x as well 

 
hence: 

 

( 

 

xe)d 

 

≡ x mod p 

 

similarly: 

 gcd (x, q) ≠ 1  implies 

( 

 

xe)d 

 

≡ x mod q 
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Subcase 2b 

gcd (x, p) = 1: 

then x ∈ Zp* and, accordingly, 

 the following congruences modulo p are valid: 

 
xφ(n) 

 

≡ 
 

x(p-1)⋅(q-1) 

 

definition of φ(n) 
 ≡ 

 
( 
 

xp-1)q-1 

 

exponentiation rules 
 ≡ 

 

1q-1 

 

≡ 1 

 

x ∈ Zp* has order φ(p)= p-1 

as in Case 1, we then obtain the following congruences modulo p: 

 ( 

 

xe)d 

 

≡ 
 

xe⋅d 

 

exponentiation rules 
 ≡ 

 

xk⋅φ(n)+1 

 

e⋅d 
 

= 
 

k⋅φ(n)+1, definition of d 
 ≡ 

 

x⋅(xφ(n))k 

 

exponentiation rules 

 ≡ 

 

x⋅1 

 

≡ x 

 

congruence shown above 

 similarly: 

 gcd (x, q) = 1 implies 

( 

 

xe)d 

 

≡ x mod q 
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The factorization problem 
restricted to products of two prime numbers, i.e.: 

Given a number n of known form n = p⋅q 

where p and q are prime numbers, 
 

to determine the actual factors p and q, 

 is computationally infeasible. 
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Factorization conjecture of 

computational number theory 
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RSA conjecture 

If the non-keyed inversion problem for RSA functions 

 was computationally feasible, 

then the factorization problem 

would be computationally feasible as well 
 

Specialized RSA conjecture: 

If the non-keyed inversion problem for RSA functions 

by means of determining the private exponent d from an argument-value pair 

 was computationally feasible, 

then the factorization problem 
 would be computationally feasible as well. 
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• RSA conjectures roughly says: 
 “factorization” is feasibly reducible to “RSA inversion”. 

• The converse claim, namely: 

“RSA inversion” is feasibly reducible to “factorization”, 

provably holds: 

 If an “attacker” was able to feasibly factor the public modulus n 

into the prime numbers actually employed, 

then he could feasibly determine the full private key 

by just repeating the computations of the designated secret holder. 
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RSA conjecture and 

further conjectures 
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“Factorization” is feasibly reducible to any of the following problems, 

and vice versa: 

• Euler problem: 

 Given a number n of known form n= p⋅q, 

where p and q are prime numbers, 

 to determine the value φ(n). 

• Public-key-to-private-exponent problem: 

given the public key (n, e), 

to determine the private exponent d. 
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Some similar proven claims 
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Conjectures and proven claims 

about feasible reducibility 
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• is an example of the one-way function approach 
 

• is based on RSA functions and their properties 
 

• is asymmetric, admitting multiple key usage 
 

• operates blockwise, where the block length is determined 

by the parameters of the underlying RSA function 

 

• achieves complexity-theoretic security, provided: 
 -  the factorization conjecture and the RSA conjecture hold 

 -  the key is properly generated and sufficiently long 
 -  some additional care is taken 
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RSA asymmetric block cipher 
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The RSA function RSAn,e,d : Zn → Zn , RSAn,e,d (x) = xe mod n 

has the following properties: 

• It is deterministic. Deterministic asymmetric encryption schemes are problematic, 

because they do not conceal message repetition. Also, given a sufficiently small set of 

possible plaintexts, the attacker can encrypt all possible plaintexts with the public 

encryption key and compare the result with the given ciphertext. One way to prevent 

this is to make the overall encryption process probabilistic, e.g. by encrypting not only 

the given plaintext, but the concatenation of the given plaintext with a freshly 

generated random number, to be used only once (“nonce”). 

• It satisfies the homomorphic property f(x1::x2,k) = f(x1,k) :: f(x2,k) (where x1, x2 are 

plaintexts, k is a key and :: is concatenation of bitstrings). This is problematic because 

it allows the attacker to manipulate the plaintext in predictable ways by manipulating 

the ciphertext (without being able to decrypt it). One way to prevent is to provide 

message integrity, e.g. by encrypting not only the given plaintext, but the 

concatenation of the given  plaintext with its hash (assuming as usual that the hash is 

not homomorphic). 

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 
Asymmetric Encryption and Digital Signatures with RSA 18 

What additional care ? 
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• key generation: 

 selecting a private key (p, q, d) and a public key (n, e) for RSAn,e,d 

• preprocessing of a message m, using an agreed hash function: 

 -  adding a nonce non 

 

(for probabilistic encryption) 

 -  adding the hash value h (m , non) 

 

(for authenticated encryption) 

 • encryption:   computing    y  =  xe mod n 

 for x = ( m, non, h (m, non ) ) , 

 if interpretable as a positive number less than n 

 • decryption:   computing yd mod n 

 for received message y 

• postprocessing of the decryption result: 

 -  extracting the three components 

 -  recomputing the hash value of the first two components 

 -  comparing this hash value with the third component (received hash value): 

 if the received hash value is verified, 

 the first component is returned as the (presumably) correct message 

 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 
Asymmetric Encryption and Digital Signatures with RSA 19 

RSA encryption: protocol outline 



Sicherheit:  

Fragen und 

Lösungsansätze 

for each fixed setting of an RSA function RSAn,e,d : 

• plaintexts: 

 bit strings over the set { 0 , 1} 

 of some fixed length lmes ≤ ld n  (where ld = logarithm of base 2) 

• ciphertexts: 

 bit strings over the set { 0 , 1}, 

basically of length ld n 

 (binary representation of a positive number less than n (residue modulo n)) 

 • keys: 

 given the public key ( n , e ), 

 in principle there is a unique residue modulo n 

 that can be used as the private decryption exponent d , 

whose binary representation is a bit string, 

basically of length ld n  or less 

 (from the point of view of the nondistinguished participants, 

this decryption exponent cannot be “determined”) 
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RSA encryption: underlying sets 
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RSA: key generation Gen 

• selects a security parameter l 

 that basically determines the length of the key 

 
• generates randomly two large prime numbers p and q 

of the length required by the security parameter (note that both numbers need to be 

sufficiently large; it is not sufficient if only their product is large). 

• computes the modulus n:= p⋅q 

 
• selects randomly an encryption exponent e 

 that is relatively prime to φ(n)  = 

 

(p-1)⋅(q-1) 

• computes the decryption exponent d as the 

 solution of 

 

e⋅d 

 

≡  1 mod φ(n) 
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• takes a possibly padded message m of length lmes  as a plaintext 
 
• generates a random bit string non as a nonce of length lnon 

 
• computes a hash value h ( m , non ) of length lhash 

 
• concatenates these values with appropriate separators: 
 the resulting bit string x must, basically, have length ld n 

(lmes + lnon + lhash ≤ ld n , 

 binary representation of a positive number less than n (residue modulo n) ) 

 
• taking the public key ( n , e ), 

 computes and returns the ciphertext 

 y = xe mod n 
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RSA: encryption algorithm Enc 
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• taking the first component n of the public key (n, e) 

and the third component d of the private key (p, q, d), 

inverts the given ciphertext y by computing 

x  =   yd mod n 

 

• decomposes the result x  into 

 -  message part m  

 -  nonce part non  

 -  hash value part hash  

 according to the separators employed 

 

• inspects the received hash value: 

 -  if h (m , non ) = hash , 

then m  is returned as the (supposedly) correct message 

 -  otherwise, an error is reported 
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RSA: decryption algorithm Dec 
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• to be considered: correctness, secrecy and efficiency 
• the modulus n should have a length of at least 1024; 

even a larger length might be worthwhile to resist dedicated attacks 

(note that both factors p, q need to be sufficiently large as well) 

• there is a trade-off between secrecy and efficiency, roughly estimated: 

-  key generation consumes time O ((ld n)4 ) 

-  operations of modular arithmetic, needed for encryption and decryption, 

 consume time at most O ((ld n)3 ) 

• high performance can be achieved in practice 

 by employing specialized algorithms for both software and hardware 

 
• there are some known weaknesses of specific choices of the parameters 

 
• preprocessing and postprocessing are necessary: 

 -  probabilistic encryption demanded for sophisticated secrecy property 

 -  added nonce needed for several purposes 
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Brute-forcing RSA ? 

Cf discussion on: http://crypto.stackexchange.com/questions/3043/ 

how-much-computing-resource-is-required-to-brute-force-rsa/3044#3044 
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RSA: added nonce 

• Enlarges the search space for the straightforward inversion algorithm 

that an attacker could use given a ciphertext and the public key. 

 
 

• Prevents a known ciphertext / plaintext vulnerability, by ensuring that a 
 given plaintext m will produce different ciphertexts when being sent 
 multiple times. 
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• needed to prevent active attacks enabled by the 
 multiplicativity property (homomorphism property) of exponentiation: 

for all x, y and w: (x⋅y)w 

 

= 
 

xw ⋅ yw, 

which is inherited by any RSA function 
 • example of an attack to decrypt an observed ciphertext y: 

 -  select a multiplicatively invertible element u ∈ Zn* 

-  compute t :=y⋅u e  mod n, by employing the public key (n, e) 

–  somehow succeed in presenting t as a (harmless-looking) ciphertext 

 to the holder of the private key and obtain 

 the corresponding plaintext t d with property 

t d ≡ (y⋅ u e )d 

 

≡ 
 

y d ⋅ue⋅d 
≡ 
 

yd ⋅u  mod n 
 -  solve the congruence for the wanted value yd by computing 

y d 
= 
 

t d ⋅ u -1 
mod n 
 • this attack will not succeed with the employment of a hash function, provided 

 this hash function does not suffer from the same multiplicativity property 
 ©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 

Asymmetric Encryption and Digital Signatures with RSA 27 

RSA: authenticated encryption 
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Asymmetric authentication  

(digital signing) 
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• is an example of the one-way function approach 
 
• is based on RSA functions and their properties 
 
• is asymmetric, admitting multiple key usage 
 
• achieves complexity-theoretic security, provided: 
 -  the factorization conjecture and the RSA conjecture hold 

 -  the key is properly generated and sufficiently long 
 -  some additional care is taken 
 

• is obtained by exchanging the roles of encryption and decryption, 
 given a suitable RSA function 

 
RSAn,e,d with 

 –  private key (p, q, d) 

-  public key (n, e) 
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RSA asymmetric digital signatures 
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• preprocessing of a message m using an agreed one-way hash function: 

computing a hash value  h(m) 

• authentication: 

 computing the “RSA decryption” of the hash value 

red = h(m)d mod n 

• verification: 

 -  computing the “RSA-encryption” of the cryptographic exhibit 

 red e mod n 

to recover the presumable hash value 

 
-  comparing the result 

 with the freshly recomputed hash value of the received message m 
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RSA digital signatures:  

protocol outline 
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• messages: 

 bit strings over the set {0, 1} 

that can be mapped by the agreed one-way hash function h 

to bit strings basically of length ld n 

 (positive numbers less than n (residues modulo n)) 

 
• cryptographic exhibits: 

 bit strings over the set {0, 1}, 

basically of length ld n 

(positive numbers less than n (residues modulo n)) 

 
• keys: 

 given the public key (n, e), 

in principle there is a unique residue modulo n 

 that can be used as the private decryption exponent d , 

 whose binary representation is a bit string, basically of length ld n  or less; 

(from the point of view of the nondistinguished participants, 

this decryption exponent cannot be “determined”) 
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RSA digital signatures: 

underlying sets 
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• key generation algorithm Gen: 

 same as for RSA encryption 

 
• authentication (signature) algorithm Aut: 

 -  takes a message m of an appropriate length 

 -  computes  h(m), where h is an agreed one-way hash function 

-  returns red = h(m)d mod n 

• verification algorithm Test: 

 -  takes the received cryptographic exhibit red 

 -  computes hash := red e mod n 

-  takes the received message m 

 -  determines its hash value h(m) 

-  checks whether this (correct) hash value equals the (received) value hash: 

 Test ((n, e), m, red)  returns  true  iff   h(m) = red e mod n 
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RSA digital signatures:  

three algorithms 



Sicherheit:  

Fragen und 

Lösungsansätze 

• to be considered: correctness, unforgeability and efficiency 
 
• basic aspects of these properties can be derived like for RSA encryption 
 
• regarding correctness: 
 the commutativity of multiplication and exponentiation, i.e., 

 for all b,e1,e2: 

 
e1 (b ) 

e2 e1⋅e2 

= b       = 
e1 

e2⋅e1                 e2 

b      =   (b  ) , 

is inherited by 
 -  encryption function  x e mod n 

-  decryption function  y d mod n 

• these functions are mutually inverse, independent of the application order 
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RSA digital signatures: 

 fundamental properties 
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• any commutative (asymmetric) encryption mechanism 

with encryption algorithms Enc and Dec that satisfy, 

 for all plaintexts or ciphertexts x and for all keys (ek, dk) 

 Dec (dk, Enc (ek, x)) = Enc (ek, Dec (dk, x)) 

 can be converted into an authentication (signature) mechanism 

 
• authentication:  Aut (dk, x) = Dec (dk, x), 

using the private decryption key dk as the authentication key 

 
• verification:  Test (ek, x, red) = true  iff  x = Enc (ek, red), 

using the public encryption key ek as the test key 

• correctness of the authentication 

 is implied by the encryption correctness: 

 Enc (ek, Aut (dk, x)) = Enc (ek, Dec (dk, x)) = Dec (dk, Enc (ek, x)) = x 

• unforgeability is implied by the secrecy of the encryption 

 
©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems 

Asymmetric Encryption and Digital Signatures with RSA 34 

RSA encryption and digital 

signatures 
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• is another well-known example of the one-way function approach 
 

• is based on ElGamal functions and their properties 
 

• is asymmetric, admitting multiple key usage 
 

• operates blockwise, where the block length is 
 determined by the parameters of the underlying ElGamal function 

 

• achieves complexity-theoretic security, provided: 
 -  the discrete logarithm conjecture and the ElGamal conjecture hold 

 -  the key is properly generated and sufficiently long 
 -  some additional care is taken 
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ElGamal asymmetric block cipher 
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• are increasingly important examples of the one-way function approach 
 • are based on generalized ElGamal functions that 
 are defined over appropriately constructed finite cyclic groups 

derived from elliptic curves based on a finite field 

 
• are asymmetric, admitting multiple key usage 
 • operate blockwise, where the 
 block length is determined by the parameters of the underlying elliptic curve 

 • achieve complexity-theoretic security, provided: 
 -  the pertinent discrete logarithm conjecture and related conjectures hold 

 -  the key is properly generated and sufficiently long 
 -  some additional care is taken 
 

• offer a large variety of alternatives to the still predominant RSA approach, 

and thus diminish the dependence on the special unproven conjectures 

 • promise to achieve the wanted degree of secrecy 
 with improved efficiency in comparison with the RSA approach 
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Asymmetric block ciphers based 

on elliptic curves 
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• similar to encryption 
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Asymmetric authentication by 

ElGamal and elliptic curves 


